1
|
Omini J, Dele-Osibanjo T, Kim H, Zhang J, Obata T. Is the TCA cycle malate dehydrogenase-citrate synthase metabolon an illusion? Essays Biochem 2024; 68:99-106. [PMID: 38958532 PMCID: PMC11461322 DOI: 10.1042/ebc20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein-protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.
Collapse
Affiliation(s)
- Joy Omini
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Taiwo Dele-Osibanjo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Jing Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| |
Collapse
|
2
|
Moiz B, Li A, Padmanabhan S, Sriram G, Clyne AM. Isotope-Assisted Metabolic Flux Analysis: A Powerful Technique to Gain New Insights into the Human Metabolome in Health and Disease. Metabolites 2022; 12:1066. [PMID: 36355149 PMCID: PMC9694183 DOI: 10.3390/metabo12111066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 04/28/2024] Open
Abstract
Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot be directly measured. Instead, flux quantification requires sophisticated mathematical and computational analysis of data from isotope labeling experiments. In this review, we describe isotope-assisted metabolic flux analysis (iMFA), a rigorous computational approach to fluxome quantification that integrates metabolic network models and experimental data to generate quantitative metabolic flux maps. We highlight practical considerations for implementing iMFA in mammalian models, as well as iMFA applications in in vitro and in vivo studies of physiology and disease. Finally, we identify promising new frontiers in iMFA which may enable us to fully unlock the potential of iMFA in biomedical research.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Andrew Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Surya Padmanabhan
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Kondrat S, von Lieres E. Mechanisms and Effects of Substrate Channelling in Enzymatic Cascades. Methods Mol Biol 2022; 2487:27-50. [PMID: 35687228 DOI: 10.1007/978-1-0716-2269-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Substrate or metabolite channelling is a transfer of intermediates produced by one enzyme to the sequential enzyme of a reaction cascade or metabolic pathway, without releasing them entirely into bulk. Despite an enormous effort and more than three decades of research, substrate channelling remains the subject of continuing debates and active investigation. Herein, we review the benefits and mechanisms of substrate channelling in vivo and in vitro. We discuss critically the effects that substrate channelling can have on enzymatic cascades, including speeding up or slowing down reaction cascades and protecting intermediates from sequestration and enzymes' surroundings from toxic or otherwise detrimental intermediates. We also discuss how macromolecular crowding affects substrate channelling and point out the galore of open questions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany.
- IV. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany.
| | - Eric von Lieres
- Forschungszentrum Jülich, IBG-1: Biotechnology, Jülich, Germany
| |
Collapse
|
4
|
Lin CY, Sun Y, Song J, Chen HC, Shi R, Yang C, Liu J, Tunlaya-Anukit S, Liu B, Loziuk PL, Williams CM, Muddiman DC, Lin YCJ, Sederoff RR, Wang JP, Chiang VL. Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2021; 12:727932. [PMID: 34691108 PMCID: PMC8527181 DOI: 10.3389/fpls.2021.727932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In Populus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation of PtrHCTs reduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenic P. trichocarpa. The Ptr4CL/PtrHCT interactions were then validated in vivo using biomolecular fluorescence complementation (BiFC) and protein pull-down assays in P. trichocarpa SDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jina Song
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Hsi-Chuan Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sermsawat Tunlaya-Anukit
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry, Beihua University, Jilin, China
| | - Philip L. Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - David C. Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Ying-Chung Jimmy Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Vincent L. Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and 13C-Tracer Analysis. mSystems 2021; 6:e0017321. [PMID: 34402644 PMCID: PMC8407350 DOI: 10.1128/msystems.00173-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [13C]bicarbonate and [13C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCENitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.
Collapse
|
7
|
Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, McCormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen JG, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BIODESIGN RESEARCH 2020; 2020:8051764. [PMID: 37849899 PMCID: PMC10521729 DOI: 10.34133/2020/8051764] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 10/19/2023] Open
Abstract
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - June I. Medford
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Henrique C. De Paoli
- Department of Biodesign, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cong T. Trinh
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1858, Frederiksberg, Copenhagen, Denmark
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jessy Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
8
|
Wang Y, Wondisford FE, Song C, Zhang T, Su X. Metabolic Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes. Metabolites 2020; 10:metabo10110447. [PMID: 33172051 PMCID: PMC7694648 DOI: 10.3390/metabo10110447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns. As a result, MFA can tell the relative contributions of converging metabolic pathways only when these pathways make substrates in different labeling patterns for the shared product. This is the fundamental principle guiding the design of isotope labeling experiment for MFA including tracer selection. In addition, we will also discuss the basic biochemical assumptions of MFA, and we will show the flux-solving procedure and result evaluation. Finally, we will highlight the link between isotopically stationary and nonstationary flux analysis.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Fredric E. Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
| | - Teng Zhang
- Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA;
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Correspondence: ; Tel.: +1-732-235-5447
| |
Collapse
|
9
|
Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME JOURNAL 2020; 15:673-687. [PMID: 33082573 PMCID: PMC8027424 DOI: 10.1038/s41396-020-00805-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria mediate a key step in the biogeochemical nitrogen cycle and have been applied worldwide for the energy-efficient removal of nitrogen from wastewater. However, outside their core energy metabolism, little is known about the metabolic networks driving anammox bacterial anabolism and use of different carbon and energy substrates beyond genome-based predictions. Here, we experimentally resolved the central carbon metabolism of the anammox bacterium Candidatus ‘Kuenenia stuttgartiensis’ using time-series 13C and 2H isotope tracing, metabolomics, and isotopically nonstationary metabolic flux analysis. Our findings confirm predicted metabolic pathways used for CO2 fixation, central metabolism, and amino acid biosynthesis in K. stuttgartiensis, and reveal several instances where genomic predictions are not supported by in vivo metabolic fluxes. This includes the use of the oxidative branch of an incomplete tricarboxylic acid cycle for alpha-ketoglutarate biosynthesis, despite the genome not having an annotated citrate synthase. We also demonstrate that K. stuttgartiensis is able to directly assimilate extracellular formate via the Wood–Ljungdahl pathway instead of oxidizing it completely to CO2 followed by reassimilation. In contrast, our data suggest that K. stuttgartiensis is not capable of using acetate as a carbon or energy source in situ and that acetate oxidation occurred via the metabolic activity of a low-abundance microorganism in the bioreactor’s side population. Together, these findings provide a foundation for understanding the carbon metabolism of anammox bacteria at a systems-level and will inform future studies aimed at elucidating factors governing their function and niche differentiation in natural and engineered ecosystems.
Collapse
|
10
|
Obata T. Toward an evaluation of metabolite channeling in vivo. Curr Opin Biotechnol 2020; 64:55-61. [DOI: 10.1016/j.copbio.2019.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
|
11
|
Shih ML, Morgan JA. Metabolic flux analysis of secondary metabolism in plants. Metab Eng Commun 2020; 10:e00123. [PMID: 32099803 PMCID: PMC7031320 DOI: 10.1016/j.mec.2020.e00123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
Numerous secondary metabolites from plants are important for their medicinal, nutraceutical or sensory properties. Recently, significant progress has been made in the identification of the genes and enzymes of plant secondary metabolic pathways. Hence, there is interest in using synthetic biology to enhance the production of targeted valuable metabolites in plants. In this article, we examine the contribution that metabolic flux analysis will have on informing the rational selection of metabolic engineering targets as well as analysis of carbon and energy efficiency. Compared to microbes, plants have more complex tissue, cellular and subcellular organization, making precise metabolite concentration measurements more challenging. We review different techniques involved in quantifying flux and provide examples illustrating the application of the techniques. For linear and branched pathways that lead to end products with low turnover, flux quantification is straightforward and doesn’t require isotopic labeling. However, for metabolites synthesized via parallel pathways, there is a requirement for isotopic labeling experiments. If the fed isotopically labeled carbons don’t scramble, one needs to apply transient label balancing methods. In the transient case, it is also necessary to measure metabolite concentrations. While flux analysis is not able to directly identify mechanisms of regulation, it is a powerful tool to examine flux distribution at key metabolic nodes in intermediary metabolism, detect flux to wasteful side pathways, and show how parallel pathways handle flux in wild-type and engineered plants under a variety of physiological conditions. Plant secondary metabolites have high economic value to human health and pleasure. Plant secondary metabolites are synthesized by pathways in subcellular compartments. Metabolic flux analysis can guide the selection of metabolic engineering targets.
Collapse
Key Words
- 13C MFA, Steady state isotopically labeled metabolic flux analysis
- BA, Benzoic acid
- DMAPP, Dimethylallyl diphosphate
- GC, Gas chromatography
- INST-MFA, Isotopically non-steady state metabolic flux analysis
- IP, Isopentenyl phosphate
- IPP, Isopentenyl diphosphate
- LC, Liquid chromatography
- MEP, Methylerythritol 4-phosphate
- MFA, Metabolic flux analysis
- MS, Mass spectrometry
- MVA, Mevalonic acid
- MVAP, Mevalonate 5-phosphate
- MVAPP, Mevalonate 5-diphosphate
- Metabolic channeling
- Metabolic flux analysis
- NMR, Nuclear magnetic resonance
- Phe, Phenylalanine
- Plant secondary metabolites
- Stable isotopic labeling
- Subcellular compartmentation
Collapse
Affiliation(s)
- Meng-Ling Shih
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - John A Morgan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
12
|
Dynamic 13C Labeling of Fast Turnover Metabolites for Analysis of Metabolic Fluxes and Metabolite Channeling. Methods Mol Biol 2019; 1859:301-316. [PMID: 30421238 DOI: 10.1007/978-1-4939-8757-3_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Dynamic or isotopically nonstationary 13C labeling experiments are a powerful tool not only for precise carbon flux quantification (e.g., metabolic flux analysis of photoautotrophic organisms) but also for the investigation of pathway bottlenecks, a cell's phenotype, and metabolite channeling. In general, isotopically nonstationary metabolic flux analysis requires three main components: (1) transient isotopic labeling experiments; (2) metabolite quenching and isotopomer analysis using LC-MS; (3) metabolic network construction and flux quantification. Labeling dynamics of key metabolites from 13C-pulse experiments allow flux estimation of key central pathways by solving ordinary differential equations to fit time-dependent isotopomer distribution data. Additionally, it is important to provide biomass requirements, carbon uptake rates, specific growth rates, and carbon excretion rates to properly and precisely balance the metabolic network. Labeling dynamics through cascade metabolites may also identify channeling phenomena in which metabolites are passed between enzymes without mixing with the bulk phase. In this chapter, we outline experimental protocols to probe metabolic pathways through dynamic labeling. We describe protocols for labeling experiments, metabolite quenching and extraction, LC-MS analysis, computational flux quantification, and metabolite channeling observations.
Collapse
|
13
|
Abernathy MH, Czajka JJ, Allen DK, Hill NC, Cameron JC, Tang YJ. Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity. Metab Eng 2019; 54:222-231. [PMID: 31029860 DOI: 10.1016/j.ymben.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Cyanobacterial carboxysomes encapsulate carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Genetic deletion of the major structural proteins encoded within the ccm operon in Synechococcus sp. PCC 7002 (ΔccmKLMN) disrupts carboxysome formation and significantly affects cellular physiology. Here we employed both metabolite pool size analysis and isotopically nonstationary metabolic flux analysis (INST-MFA) to examine metabolic regulation in cells lacking carboxysomes. Under high CO2 environments (1%), the ΔccmKLMN mutant could recover growth and had a similar central flux distribution as the control strain, with the exceptions of moderately decreased photosynthesis and elevated biomass protein content and photorespiration activity. Metabolite analyses indicated that the ΔccmKLMN strain had significantly larger pool sizes of pyruvate (>18 folds), UDPG (uridine diphosphate glucose), and aspartate as well as higher levels of secreted organic acids (e.g., malate and succinate). These results suggest that the ΔccmKLMN mutant is able to largely maintain a fluxome similar to the control strain by changing in intracellular metabolite concentrations and metabolite overflows under optimal growth conditions. When CO2 was insufficient (0.2%), provision of acetate moderately promoted mutant growth. Interestingly, the removal of microcompartments may loosen the flux network and promote RuBisCO side-reactions, facilitating redirection of central metabolites to competing pathways (i.e., pyruvate to heterologous lactate production). This study provides important insights into metabolic regulation via enzyme compartmentation and cyanobacterial compensatory responses.
Collapse
Affiliation(s)
- Mary H Abernathy
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Douglas K Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132, USA
| | - Nicholas C Hill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA.
| |
Collapse
|
14
|
Fernie AR, Zhang Y, Sweetlove LJ. Passing the Baton: Substrate Channelling in Respiratory Metabolism. RESEARCH (WASHINGTON, D.C.) 2018; 2018:1539325. [PMID: 31549022 PMCID: PMC6750097 DOI: 10.1155/2018/1539325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Despite species-specific differences in the pathways of respiratory metabolism are remarkably conserved across the kingdoms of life with glycolysis, the tricarboxylic acid cycle, and mitochondrial electron transport chain representing the major components of the process in the vast majority of organisms. In addition to being of critical importance in fueling life itself these pathways serve as interesting case studies for substrate channelling with research on this theme having been carried out for over 40 years. Here we provide a cross-kingdom review of the ample evidence for protein-protein interaction and enzyme assemblies within the three component pathways as well as describing the scarcer available evidence for substrate channelling itself.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lee J. Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
15
|
Sweetlove LJ, Fernie AR. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 2018; 9:2136. [PMID: 29849027 PMCID: PMC5976638 DOI: 10.1038/s41467-018-04543-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/08/2018] [Indexed: 11/08/2022] Open
Abstract
Transient physical association between enzymes appears to be a cardinal feature of metabolic systems, yet the purpose of this metabolic organisation remains enigmatic. It is generally assumed that substrate channelling occurs in these complexes. However, there is a lack of information concerning the mechanisms and extent of substrate channelling and confusion regarding the consequences of substrate channelling. In this review, we outline recent advances in the structural characterisation of enzyme assemblies and integrate this with new insights from reaction-diffusion modelling and synthetic biology to clarify the mechanistic and functional significance of the phenomenon.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
16
|
Cell-Type Specific Metabolic Flux Analysis: A Challenge for Metabolic Phenotyping and a Potential Solution in Plants. Metabolites 2017; 7:metabo7040059. [PMID: 29137184 PMCID: PMC5746739 DOI: 10.3390/metabo7040059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Stable isotope labelling experiments are used routinely in metabolic flux analysis (MFA) to determine the metabolic phenotype of cells and tissues. A complication arises in multicellular systems because single cell measurements of transcriptomes, proteomes and metabolomes in multicellular organisms suggest that the metabolic phenotype will differ between cell types. In silico analysis of simulated metabolite isotopomer datasets shows that cellular heterogeneity confounds conventional MFA because labelling data averaged over multiple cell types does not necessarily yield averaged flux values. A potential solution to this problem—the use of cell-type specific reporter proteins as a source of cell-type specific labelling data—is proposed and the practicality of implementing this strategy in the roots of Arabidopsis thaliana seedlings is explored. A protocol for the immunopurification of ectopically expressed green fluorescent protein (GFP) from Arabidopsis thaliana seedlings using a GFP-binding nanobody is developed, and through GC-MS analysis of protein hydrolysates it is established that constitutively expressed GFP reports accurately on the labelling of total protein in root tissues. It is also demonstrated that the constitutive expression of GFP does not perturb metabolism. The principal obstacle to the implementation of the method in tissues with cell-type specific GFP expression is the sensitivity of the GC-MS system.
Collapse
|
17
|
Abernathy MH, He L, Tang YJ. Channeling in native microbial pathways: Implications and challenges for metabolic engineering. Biotechnol Adv 2017. [DOI: 10.1016/j.biotechadv.2017.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Zhang Y, Beard KFM, Swart C, Bergmann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe RG, Sweetlove LJ, Fernie AR, Obata T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun 2017; 8:15212. [PMID: 28508886 PMCID: PMC5440813 DOI: 10.1038/ncomms15212] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/09/2017] [Indexed: 11/29/2022] Open
Abstract
Protein complexes of sequential metabolic enzymes, often termed metabolons, may permit direct channelling of metabolites between the enzymes, providing increased control over metabolic pathway fluxes. Experimental evidence supporting their existence in vivo remains fragmentary. In the present study, we test binary interactions of the proteins constituting the plant tricarboxylic acid (TCA) cycle. We integrate (semi-)quantitative results from affinity purification-mass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score for assessing protein–protein interactions. By this approach, we identify 158 interactions including those between catalytic subunits of sequential enzymes and between subunits of enzymes mediating non-adjacent reactions. We reveal channelling of citrate and fumarate in isolated potato mitochondria by isotope dilution experiments. These results provide evidence for a functional TCA cycle metabolon in plants, which we discuss in the context of contemporary understanding of this pathway in other kingdoms. A metabolon is a complex of sequential metabolic enzymes that channels substrates directly between enzymes, thus optimizing metabolic flux. Here Zhang et al. provide protein interaction and isotope dilution data that support the existence of a metabolon that channels both citrate and fumarate in the plant TCA cycle.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Corné Swart
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Susan Bergmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Hollinshead WD, Rodriguez S, Martin HG, Wang G, Baidoo EEK, Sale KL, Keasling JD, Mukhopadhyay A, Tang YJ. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δ pfk mutants. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:212. [PMID: 27766116 PMCID: PMC5057261 DOI: 10.1186/s13068-016-0630-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/28/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. RESULTS Overexpression of edd and eda in E. coli to enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP by phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of E. coli glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). CONCLUSIONS We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E. coli glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the glycolytic pathways, a potentially overlooked mechanism for regulating glucose catabolism and coutilization of other substrates. The presence of channeling in native pathways, if proven true, would affect synthetic biology applications and metabolic modeling.
Collapse
Affiliation(s)
- Whitney D. Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO USA
| | - Sarah Rodriguez
- Sandia National Laboratory, Livermore, CA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA USA
| | - George Wang
- Joint BioEnergy Institute, Emeryville, CA USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA USA
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, Emeryville, CA USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA USA
| | - Kenneth L. Sale
- Joint BioEnergy Institute, Emeryville, CA USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, CA USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA USA
- Department of Bioengineering, University of California, Berkeley, CA USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé, DK2970 Hørsholm, Denmark
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA USA
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA USA
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO USA
| |
Collapse
|
20
|
Allen DK. Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis. Curr Opin Biotechnol 2015; 37:45-52. [PMID: 26613198 DOI: 10.1016/j.copbio.2015.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
Abstract
Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations and long metabolic steady states such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other metabolically more dynamic tissues such as leaves in greater detail using novel methods in mass spectrometry, isotope labeling strategies, and transient labeling-based flux analyses. Such studies are necessary for a systems level description of plant function that more closely represents biological reality, and provides insights into the genes that will need to be modified as natural resources become ever more limited and environments change.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| |
Collapse
|
21
|
Fluxes through plant metabolic networks: measurements, predictions, insights and challenges. Biochem J 2015; 465:27-38. [PMID: 25631681 DOI: 10.1042/bj20140984] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the flows of material through metabolic networks are central to cell function, they are not easy to measure other than at the level of inputs and outputs. This is particularly true in plant cells, where the network spans multiple subcellular compartments and where the network may function either heterotrophically or photoautotrophically. For many years, kinetic modelling of pathways provided the only method for describing the operation of fragments of the network. However, more recently, it has become possible to map the fluxes in central carbon metabolism using the stable isotope labelling techniques of metabolic flux analysis (MFA), and to predict intracellular fluxes using constraints-based modelling procedures such as flux balance analysis (FBA). These approaches were originally developed for the analysis of microbial metabolism, but over the last decade, they have been adapted for the more demanding analysis of plant metabolic networks. Here, the principal features of MFA and FBA as applied to plants are outlined, followed by a discussion of the insights that have been gained into plant metabolic networks through the application of these time-consuming and non-trivial methods. The discussion focuses on how a system-wide view of plant metabolism has increased our understanding of network structure, metabolic perturbations and the provision of reducing power and energy for cell function. Current methodological challenges that limit the scope of plant MFA are discussed and particular emphasis is placed on the importance of developing methods for cell-specific MFA.
Collapse
|
22
|
Schmidt HL, Robins RJ, Werner RA. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:155-199. [PMID: 25894429 DOI: 10.1080/10256016.2015.1014355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many physical and chemical processes in living systems are accompanied by isotope fractionation on H, C, N, O and S. Although kinetic or thermodynamic isotope effects are always the basis, their in vivo manifestation is often modulated by secondary influences. These include metabolic branching events or metabolite channeling, metabolite pool sizes, reaction mechanisms, anatomical properties and compartmentation of plants and animals, and climatological or environmental conditions. In the present contribution, the fundamentals of isotope effects and their manifestation under in vivo conditions are outlined. The knowledge about and the understanding of these interferences provide a potent tool for the reconstruction of physiological events in plants and animals, their geographical origin, the history of bulk biomass and the biosynthesis of defined representatives. It allows the use of isotope characteristics of biomass for the elucidation of biochemical pathways and reaction mechanisms and for the reconstruction of climatic, physiological, ecological and environmental conditions during biosynthesis. Thus, it can be used for the origin and authenticity control of food, the study of ecosystems and animal physiology, the reconstruction of present and prehistoric nutrition chains and paleaoclimatological conditions. This is demonstrated by the outline of fundamental and application-orientated examples for all bio-elements. The aim of the review is to inform (advanced) students from various disciplines about the whole potential and the scope of stable isotope characteristics and fractionations and to provide them with a comprehensive introduction to the literature on fundamental aspects and applications.
Collapse
Affiliation(s)
- Hanns-Ludwig Schmidt
- a Lehrstuhl für Biologische Chemie , Technische Universität München , Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
23
|
Sun J, Feng Z, Ort DR. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:147-61. [PMID: 25113460 DOI: 10.1016/j.plantsci.2014.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/07/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3.
Collapse
Affiliation(s)
- Jindong Sun
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States.
| | - Zhaozhong Feng
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States
| | - Donald R Ort
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, United States; Global Change and Photosynthesis Research Unit, USDA/ARS, University of Illinois, Urbana, IL 61801, United States
| |
Collapse
|
24
|
Masakapalli SK, Bryant FM, Kruger NJ, Ratcliffe RG. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a flexible balance between the cytosolic and plastidic contributions to carbohydrate oxidation in response to phosphate limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:964-977. [PMID: 24674596 DOI: 10.1111/tpj.12522] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 05/29/2023]
Abstract
Understanding the mechanisms that allow plants to respond to variable and reduced availability of inorganic phosphate is of increasing agricultural importance because of the continuing depletion of the rock phosphate reserves that are used to combat inadequate phosphate levels in the soil. Changes in gene expression, protein levels, enzyme activities and metabolite levels all point to a reconfiguration of the central metabolic network in response to reduced availability of inorganic phosphate, but the metabolic significance of these changes can only be assessed in terms of the fluxes supported by the network. Steady-state metabolic flux analysis was used to define the metabolic phenotype of a heterotrophic Arabidopsis thaliana cell culture grown on a Murashige and Skoog medium containing 0, 1.25 or 5 mm inorganic phosphate. Fluxes through the central metabolic network were deduced from the redistribution of (13) C into metabolic intermediates and end products when cells were labelled with [1-(13) C], [2-(13) C], or [(13) C6 ]glucose, in combination with (14) C measurements of the rates of biomass accumulation. Analysis of the flux maps showed that reduced levels of phosphate in the growth medium stimulated flux through phosphoenolpyruvate carboxylase and malic enzyme, altered the balance between cytosolic and plastidic carbohydrate oxidation in favour of the plastid, and increased cell maintenance costs. We argue that plant cells respond to phosphate deprivation by reconfiguring the flux distribution through the pathways of carbohydrate oxidation to take advantage of better phosphate homeostasis in the plastid.
Collapse
Affiliation(s)
- Shyam K Masakapalli
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | |
Collapse
|
25
|
You L, Zhang B, Tang YJ. Application of stable isotope-assisted metabolomics for cell metabolism studies. Metabolites 2014; 4:142-65. [PMID: 24957020 PMCID: PMC4101500 DOI: 10.3390/metabo4020142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/28/2023] Open
Abstract
The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other "omics" analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research.
Collapse
Affiliation(s)
- Le You
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Baichen Zhang
- Plant Metabolomics Group, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, CAS, Shanghai 20032, China.
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
26
|
Fernie AR, Morgan JA. Analysis of metabolic flux using dynamic labelling and metabolic modelling. PLANT, CELL & ENVIRONMENT 2013; 36:1738-1750. [PMID: 23421750 DOI: 10.1111/pce.12083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms that control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches have been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences, is reviewed, and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives, and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed.
Collapse
Affiliation(s)
- A R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
27
|
Fernie AR, Bauwe H, Eisenhut M, Florian A, Hanson DT, Hagemann M, Keech O, Mielewczik M, Nikoloski Z, Peterhänsel C, Roje S, Sage R, Timm S, von Cammerer S, Weber APM, Westhoff P. Perspectives on plant photorespiratory metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:748-753. [PMID: 23231538 DOI: 10.1111/j.1438-8677.2012.00693.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
Being intimately intertwined with (C3) photosynthesis, photorespiration is an incredibly high flux-bearing pathway. Traditionally, the photorespiratory cycle was viewed as closed pathway to refill the Calvin-Benson cycle with organic carbon. However, given the network nature of metabolism, it hence follows that photorespiration will interact with many other pathways. In this article, we review current understanding of these interactions and attempt to define key priorities for future research, which will allow us greater fundamental comprehension of general metabolic and developmental consequences of perturbation of this crucial metabolic process.
Collapse
Affiliation(s)
- A R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Masakapalli SK, Kruger NJ, Ratcliffe RG. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:569-82. [PMID: 23406511 DOI: 10.1111/tpj.12142] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 05/25/2023]
Abstract
The extent to which individual plants utilise nitrate and ammonium, the two principal nitrogen sources in the rhizosphere, is variable and many species require a balance between the two forms for optimal growth. The effects of nitrate and ammonium on gene expression, enzyme activity and metabolite composition have been documented extensively with the aim of understanding the way in which plant cells respond to the different forms of nitrogen, but ultimately the impact of these changes on the organisation and operation of the central metabolic network can only be addressed by analysing the fluxes supported by the network. Accordingly steady-state metabolic flux analysis was used to define the metabolic phenotype of a heterotrophic Arabidopsis thaliana cell culture grown in Murashige and Skoog and ammonium-free media, treatments that influenced growth and biomass composition. Fluxes through the central metabolic network were deduced from the redistribution of label into metabolic intermediates and end products observed when cells were labelled with [1-(13) C]-, [2-(13) C]- or [(13) C6 ]glucose, in tandem with (14) C-measurements of the net accumulation of biomass. Analysis of the flux maps showed that: (i) flux through the oxidative pentose phosphate pathway varied independently of the reductant demand for biosynthesis, (ii) non-plastidic processes made a significant and variable contribution to the provision of reducing power for the plastid, and (iii) the inclusion of ammonium in the growth medium increased cell maintenance costs, in agreement with the futile cycling model of ammonium toxicity. These conclusions highlight the complexity of the metabolic response to a change in nitrogen nutrition.
Collapse
Affiliation(s)
- Shyam K Masakapalli
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | |
Collapse
|
29
|
Sweetlove LJ, Fernie AR. The spatial organization of metabolism within the plant cell. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:723-46. [PMID: 23330793 DOI: 10.1146/annurev-arplant-050312-120233] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Identifying the correct subcellular locations for all enzymes and metabolites in plant metabolic networks is a major challenge, but is critically important for the success of the new generation of large-scale metabolic models that are driving a network-level appreciation of metabolic behavior. Even though the subcellular compartmentation of many central metabolic processes is thought to be well understood, recent gene-by-gene studies have revealed several unexpected enzyme localizations. Metabolite transport between subcellular compartments is crucial because it fundamentally affects the metabolic network structure. Although new metabolite transporters are being steadily identified, modeling work suggests that we have barely scratched the surface of the catalog of intracellular metabolite transporter proteins. In addition to compartmentation among organelles, it is increasingly apparent that microcompartment formation via the interactions of enzyme groups with intracellular membranes, the cytoskeleton, or other proteins is an important regulatory mechanism. In particular, this mechanism can promote metabolite channeling within the metabolic microcompartment, which can help control reaction specificity as well as dictate flux routes through the network. This has clear relevance for both synthetic biology in general and the engineering of plant metabolic networks in particular.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| | | |
Collapse
|
30
|
Albertin W, Marullo P, Bely M, Aigle M, Bourgais A, Langella O, Balliau T, Chevret D, Valot B, da Silva T, Dillmann C, de Vienne D, Sicard D. Linking post-translational modifications and variation of phenotypic traits. Mol Cell Proteomics 2012; 12:720-35. [PMID: 23271801 DOI: 10.1074/mcp.m112.024349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits.
Collapse
Affiliation(s)
- Warren Albertin
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Toubiana D, Fernie AR, Nikoloski Z, Fait A. Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol 2012; 31:29-36. [PMID: 23245943 DOI: 10.1016/j.tibtech.2012.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 10/18/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022]
Abstract
Incomplete knowledge of biochemical pathways makes the holistic description of plant metabolism a non-trivial undertaking. Sensitive analytical platforms, which are capable of accurately quantifying the levels of the various molecular entities of the cell, can assist in tackling this task. However, the ever-increasing amount of high-throughput data, often from multiple technologies, requires significant computational efforts for integrative analysis. Here we introduce the application of network analysis to study plant metabolism and describe the construction and analysis of correlation-based networks from (time-resolved) metabolomics data. By investigating the interactions between metabolites, network analysis can help to interpret complex datasets through the identification of key network components. The relationship between structural and biological roles of network components can be evaluated and employed to aid metabolic engineering.
Collapse
Affiliation(s)
- David Toubiana
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
32
|
Tang JKH, You L, Blankenship RE, Tang YJ. Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints. J R Soc Interface 2012; 9:2767-80. [PMID: 22896564 DOI: 10.1098/rsif.2012.0396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After feeding microbes with a defined (13)C substrate, unique isotopic patterns (isotopic fingerprints) can be formed in their metabolic products. Such labelling information not only can provide novel insights into functional pathways but also can determine absolute carbon fluxes through the metabolic network via metabolic modelling approaches. This technique has been used for finding pathways that may have been mis-annotated in the past, elucidating new enzyme functions, and investigating cell metabolisms in microbial communities. In this review paper, we summarize the applications of (13)C approaches to analyse novel cell metabolisms for the past 3 years. The isotopic fingerprints (defined as unique isotopomers useful for pathway identifications) have revealed the operations of the Entner-Doudoroff pathway, the reverse tricarboxylic acid cycle, new enzymes for biosynthesis of central metabolites, diverse respiration routes in phototrophic metabolism, co-metabolism of carbon nutrients and novel CO(2) fixation pathways. This review also discusses new isotopic methods to map carbon fluxes in global metabolisms, as well as potential factors influencing the metabolic flux quantification (e.g. metabolite channelling, the isotopic purity of (13)C substrates and the isotopic effect). Although (13)C labelling is not applicable to all biological systems (e.g. microbial communities), recent studies have shown that this method has a significant value in functional characterization of poorly understood micro-organisms, including species relevant for biotechnology and human health.
Collapse
Affiliation(s)
- Joseph Kuo-Hsiang Tang
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | | | | |
Collapse
|
33
|
Park J, Khuu N, Howard ASM, Mullen RT, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:251-62. [PMID: 22404138 DOI: 10.1111/j.1365-313x.2012.04985.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.
Collapse
Affiliation(s)
- Joonho Park
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
34
|
Kruger NJ, Masakapalli SK, Ratcliffe RG. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2309-23. [PMID: 22140245 DOI: 10.1093/jxb/err382] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Steady-state (13)C metabolic flux analysis (MFA) is currently the experimental method of choice for generating flux maps of the compartmented network of primary metabolism in heterotrophic and mixotrophic plant tissues. While statistically robust protocols for the application of steady-state MFA to plant tissues have been developed by several research groups, the implementation of the method is still far from routine. The effort required to produce a flux map is more than justified by the information that it contains about the metabolic phenotype of the system, but it remains the case that steady-state MFA is both analytically and computationally demanding. This article provides an overview of principles that underpin the implementation of steady-state MFA, focusing on the definition of the metabolic network responsible for redistribution of the label, experimental considerations relating to data collection, the modelling process that allows a set of metabolic fluxes to be deduced from the labelling data, and the interpretation of flux maps. The article draws on published studies of Arabidopsis cell cultures and other systems, including developing oilseeds, with the aim of providing practical guidance and strategies for handling the issues that arise when applying steady-state MFA to the complex metabolic networks encountered in plants.
Collapse
Affiliation(s)
- N J Kruger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | |
Collapse
|