1
|
Duan Y, Li P, Zhang D, Wang L, Fang Y, Hu H, Mao Q, Zhou X, Zhao P, Li X, Wei J, Tang J, Pan L, Liu H, Chen X, Chen X, Hsiang T, Huang J, Zheng L. S-palmitoylation of MAP kinase is essential for fungal virulence. mBio 2024:e0270424. [PMID: 39470248 DOI: 10.1128/mbio.02704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
S-palmitoylation is an important reversible protein post-translational modification in organisms. However, its role in fungi is uncertain. Here, we found the treatment of the rice false fungus Ustilaginoidea virens with S-palmitoylation inhibitor 2 BP resulted in a significant decrease in fungal virulence. Comprehensive identification of S-palmitoylation sites and proteins in U. virens revealed a total of 4,089 S-palmitoylation sites identified among 2,192 proteins and that S-palmitoylated proteins were involved in diverse biological processes. Among the five palmitoyltransferases, UvPfa3 and UvPfa4 were found to regulate the pathogenicity of U. virens. We then performed quantitative proteomic analysis of ∆UvPfa3 and ∆UvPfa4 mutants. Interestingly, S-palmitoylated proteins were significantly enriched in the mitogen-activated protein kinase and autophagy pathways, and MAP kinase UvSlt2 was confirmed to be an S-palmitoylated protein which was palmitoylated by UvPfa4. Mutations of S-palmitoylation sites in UvSlt2 resulted in significantly reduced fungal virulence and decreased kinase enzymatic activity and phosphorylation levels. Simulations of molecular dynamics demonstrated mutation of S-palmitoylation sites in UvSlt2 causing decreased hydrophobic solvent-accessible surface area, thereby weakening the bonding force with its substrate UvRlm1. Taken together, S-palmitoylation promotes U. virens virulence through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen.IMPORTANCES-palmitoylation is an important post-translational lipid modification of proteins. However, its role in fungi is uncertain. In this study, we found that S-palmitoylation promotes virulence of rice false smut fungus U. virens through palmitoylation of MAP kinase UvSlt2 by palmitoyltransferase UvPfa4. This enhances the enzymatic phosphorylation activity of the kinase, thereby increasing hydrophobic solvent-accessible surface area and binding activity between the UvSlt2 enzyme and its substrate UvRlm1. Our studies provide a framework for dissecting the biological functions of S-palmitoylation and reveal an important role for S-palmitoylation in regulating the virulence of the pathogen. This is the first functional study to reveal the role of S-palmitoylation in fungal virulence.
Collapse
Affiliation(s)
- Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Pingping Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Deyao Zhang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Lili Wang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Fang
- Anhui Province Key Laboratory of Crop Integrated Pest Management/College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Qiulu Mao
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolan Zhou
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhao
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xuechun Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Li Pan
- Life Science and Technology Center, China Seed Group Co,. Ltd, Wuhan, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management/College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Liu F, Lu JY, Li S, Zhang Y. Protein S-acylation, a new panacea for plant fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2102-2108. [PMID: 39056533 DOI: 10.1111/jipb.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Protein S-acylation or palmitoylation is a reversible post-translational modification that influences many proteins encoded in plant genomes. Exciting progress in the past 3 years demonstrates that S-acylation modulates subcellular localization, interacting profiles, activity, or turnover of substrate proteins in plants, participating in developmental processes and responses to abiotic or biotic stresses. In this review, we summarize and discuss the role of S-acylation in the targeting of substrate proteins. We highlight complex roles of S-acylation in receptor signaling. We also point out that feedbacks of protein S-acyl transferase by signaling initiated from their substrate proteins may be a recurring theme. Finally, the reversibility of S-acylation makes it a rapid and efficient way to respond to environmental cues. Future efforts on exploring these important aspects of S-acylation will give a better understanding of how plants enhance their fitness under ever changing and often harsh environments.
Collapse
Affiliation(s)
- Fei Liu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
4
|
Boutin C, Clément C, Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int J Mol Sci 2024; 25:9845. [PMID: 39337338 PMCID: PMC11432348 DOI: 10.3390/ijms25189845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways.
Collapse
Affiliation(s)
- Charlie Boutin
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Camille Clément
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
5
|
Xiang X, Wan ZY, Zhang S, Feng QN, Li SW, Yin GM, Zhi JY, Liang X, Ma T, Li S, Zhang Y. Arabidopsis class A S-acyl transferases modify the pollen receptors LIP1 and PRK1 to regulate pollen tube guidance. THE PLANT CELL 2024; 36:3419-3434. [PMID: 38635962 PMCID: PMC11371148 DOI: 10.1093/plcell/koae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.
Collapse
Affiliation(s)
- Xiaojiao Xiang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Zhi-Yuan Wan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhan Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Qiang-Nan Feng
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Shan-Wei Li
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Gui-Min Yin
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing-Yu Zhi
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Liang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Ma
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yan Zhang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ye Q, Zheng L, Liu P, Liu Q, Ji T, Liu J, Gao Y, Liu L, Dong J, Wang T. The S-acylation cycle of transcription factor MtNAC80 influences cold stress responses in Medicago truncatula. THE PLANT CELL 2024; 36:2629-2651. [PMID: 38552172 PMCID: PMC11218828 DOI: 10.1093/plcell/koae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2024] [Indexed: 07/04/2024]
Abstract
S-acylation is a reversible post-translational modification catalyzed by protein S-acyltransferases (PATs), and acyl protein thioesterases (APTs) mediate de-S-acylation. Although many proteins are S-acylated, how the S-acylation cycle modulates specific biological functions in plants is poorly understood. In this study, we report that the S-acylation cycle of transcription factor MtNAC80 is involved in the Medicago truncatula cold stress response. Under normal conditions, MtNAC80 localized to membranes through MtPAT9-induced S-acylation. In contrast, under cold stress conditions, MtNAC80 translocated to the nucleus through de-S-acylation mediated by thioesterases such as MtAPT1. MtNAC80 functions in the nucleus by directly binding the promoter of the glutathione S-transferase gene MtGSTU1 and promoting its expression, which enables plants to survive under cold stress by removing excess malondialdehyde and H2O2. Our findings reveal an important function of the S-acylation cycle in plants and provide insight into stress response and tolerance mechanisms.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajuan Gao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Tian Y, Zeng H, Wu JC, Dai GX, Zheng HP, Liu C, Wang Y, Zhou ZK, Tang DY, Deng GF, Tang WB, Liu XM, Lin JZ. The zinc finger protein DHHC09 S-acylates the kinase STRK1 to regulate H2O2 homeostasis and promote salt tolerance in rice. THE PLANT CELL 2024; 36:919-940. [PMID: 38180963 PMCID: PMC10980341 DOI: 10.1093/plcell/koae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ji-Cai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Gao-Xing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - He-Ping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Zheng-Kun Zhou
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dong-Ying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Guo-Fu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wen-Bang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Xuan-Ming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Jian-Zhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| |
Collapse
|
8
|
Lampugnani ER, Persson S, Khan GA. Tip Growth Defective1 interacts with the cellulose synthase complex to regulate cellulose synthesis in Arabidopsis thaliana. PLoS One 2024; 19:e0292149. [PMID: 38358988 PMCID: PMC10868759 DOI: 10.1371/journal.pone.0292149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
Plant cells possess robust and flexible cell walls composed primarily of cellulose, a polysaccharide that provides structural support and enables cell expansion. Cellulose is synthesised by the Cellulose Synthase A (CESA) catalytic subunits, which form cellulose synthase complexes (CSCs). While significant progress has been made in unravelling CSC function, the trafficking of CSCs and the involvement of post-translational modifications in cellulose synthesis remain poorly understood. In order to deepen our understanding of cellulose biosynthesis, this study utilised immunoprecipitation techniques with CESA6 as the bait protein to explore the CSC and its interactors. We have successfully identified the essential components of the CSC complex and, notably, uncovered novel interactors associated with CSC trafficking, post-translational modifications, and the coordination of cell wall synthesis. Moreover, we identified TIP GROWTH DEFECTIVE 1 (TIP1) protein S-acyl transferases (PATs) as an interactor of the CSC complex. We confirmed the interaction between TIP1 and the CSC complex through multiple independent approaches. Further analysis revealed that tip1 mutants exhibited stunted growth and reduced levels of crystalline cellulose in leaves. These findings suggest that TIP1 positively influences cellulose biosynthesis, potentially mediated by its role in the S-acylation of the CSC complex.
Collapse
Affiliation(s)
- Edwin R. Lampugnani
- School of Biosciences, University of Melbourne, Parkville, Australia
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Australia
- Department of Plant & Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ghazanfar Abbas Khan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
9
|
Liu F, Qu PY, Li JP, Yang LN, Geng YJ, Lu JY, Zhang Y, Li S. Arabidopsis protein S-acyl transferases positively mediate BR signaling through S-acylation of BSK1. Proc Natl Acad Sci U S A 2024; 121:e2322375121. [PMID: 38315835 PMCID: PMC10873554 DOI: 10.1073/pnas.2322375121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.
Collapse
Affiliation(s)
- Fei Liu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Peng-Yu Qu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Ji-Peng Li
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Li-Na Yang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yuan-Jun Geng
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| |
Collapse
|
10
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Zeng Q, Jia H, Ma Y, Xu L, Ming R, Yue J. Genome-Wide Identification and Expression Pattern Profiling of the Aquaporin Gene Family in Papaya ( Carica papaya L.). Int J Mol Sci 2023; 24:17276. [PMID: 38139107 PMCID: PMC10744249 DOI: 10.3390/ijms242417276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.
Collapse
Affiliation(s)
- Qiuxia Zeng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haifeng Jia
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaying Ma
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangwei Xu
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| |
Collapse
|
12
|
Liu X, Chen Z, Huang L, Ouyang Y, Wang Z, Wu S, Ye W, Yu B, Zhang Y, Yang C, Lai J. Salicylic acid attenuates brassinosteroid signaling via protein de-S-acylation. EMBO J 2023; 42:e112998. [PMID: 37211868 PMCID: PMC10308364 DOI: 10.15252/embj.2022112998] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
Brassinosteroids (BRs) are important plant hormones involved in many aspects of development. Here, we show that BRASSINOSTEROID SIGNALING KINASEs (BSKs), key components of the BR pathway, are precisely controlled via de-S-acylation mediated by the defense hormone salicylic acid (SA). Most Arabidopsis BSK members are substrates of S-acylation, a reversible protein lipidation that is essential for their membrane localization and physiological function. We establish that SA interferes with the plasma membrane localization and function of BSKs by decreasing their S-acylation levels, identifying ABAPT11 (ALPHA/BETA HYDROLASE DOMAIN-CONTAINING PROTEIN 17-LIKE ACYL PROTEIN THIOESTERASE 11) as an enzyme whose expression is quickly induced by SA. ABAPT11 de-S-acylates most BSK family members, thus integrating BR and SA signaling for the control of plant development. In summary, we show that BSK-mediated BR signaling is regulated by SA-induced protein de-S-acylation, which improves our understanding of the function of protein modifications in plant hormone cross talk.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Liting Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Youwei Ouyang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Zhiying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Weixian Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Boya Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Yihang Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
13
|
Liu L, Liu J, Xu N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1201805. [PMID: 37396638 PMCID: PMC10311507 DOI: 10.3389/fpls.2023.1201805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lectin receptor-like kinases (LecRKs) locate on the cell membrane and play diverse roles in perceiving environmental factors in higher plants. Studies have demonstrated that LecRKs are involved in plant development and response to abiotic and biotic stresses. In this review, we summarize the identified ligands of LecRKs in Arabidopsis, including extracellular purine (eATP), extracellular pyridine (eNAD+), extracellular NAD+ phosphate (eNADP+) and extracellular fatty acids (such as 3-hydroxydecanoic acid). We also discussed the posttranslational modification of these receptors in plant innate immunity and the perspectives of future research on plant LecRKs.
Collapse
|
14
|
Palmitoyl Transferase FonPAT2-Catalyzed Palmitoylation of the FonAP-2 Complex Is Essential for Growth, Development, Stress Response, and Virulence in Fusarium oxysporum f. sp. niveum. Microbiol Spectr 2023; 11:e0386122. [PMID: 36533963 PMCID: PMC9927311 DOI: 10.1128/spectrum.03861-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein palmitoylation, one of posttranslational modifications, is catalyzed by a group of palmitoyl transferases (PATs) and plays critical roles in the regulation of protein functions. However, little is known about the function and mechanism of PATs in plant pathogenic fungi. The present study reports the function and molecular mechanism of FonPATs in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt. The Fon genome contains six FonPAT genes with distinct functions in vegetative growth, conidiation and conidial morphology, and stress response. FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for Fon virulence on watermelon mainly through regulating in planta fungal growth within host plants. Comparative proteomics analysis identified a set of proteins that were palmitoylated by FonPAT2, and some of them are previously reported pathogenicity-related proteins in fungi. The FonAP-2 complex core subunits FonAP-2α, FonAP-2β, and FonAP-2μ were palmitoylated by FonPAT2 in vivo. FonPAT2-catalyzed palmitoylation contributed to the stability and interaction ability of the core subunits to ensure the formation of the FonAP-2 complex, which is essential for vegetative growth, asexual reproduction, cell wall integrity, and virulence in Fon. These findings demonstrate that FonPAT1, FonPAT2, and FonPAT4 play important roles in Fon virulence and that FonPAT2-catalyzed palmitoylation of the FonAP-2 complex is critical to Fon virulence, providing novel insights into the importance of protein palmitoylation in the virulence of plant fungal pathogens. IMPORTANCE Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt, is one of the most serious threats for the sustainable development of the watermelon industry worldwide. However, little is known about the underlying molecular mechanism of pathogenicity in Fon. Here, we found that the palmitoyl transferase (FonPAT) genes play distinct and diverse roles in basic biological processes and stress response and demonstrated that FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for virulence in Fon. We also found that FonPAT2 palmitoylates the core subunits of the FonAP-2 complex to maintain the stability and the formation of the FonAP-2 complex, which is essential for basic biological processes, stress response, and virulence in Fon. Our study provides new insights into the understanding of the molecular mechanism involved in Fon virulence and will be helpful in the development of novel strategies for disease management.
Collapse
|
15
|
Park HJ, Gámez-Arjona FM, Lindahl M, Aman R, Villalta I, Cha JY, Carranco R, Lim CJ, García E, Bressan RA, Lee SY, Valverde F, Sánchez-Rodríguez C, Pardo JM, Kim WY, Quintero FJ, Yun DJ. S-acylated and nucleus-localized SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 stabilizes GIGANTEA to regulate Arabidopsis flowering time under salt stress. THE PLANT CELL 2023; 35:298-317. [PMID: 36135824 PMCID: PMC9806564 DOI: 10.1093/plcell/koac289] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/16/2022] [Indexed: 05/15/2023]
Abstract
The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.
Collapse
Affiliation(s)
| | | | - Marika Lindahl
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Rashid Aman
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Irene Villalta
- Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, 37200 Tours, France
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Raul Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Elena García
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus Program), Research Institute of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, South Korea
| | - Federico Valverde
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | | | - Jose M Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville 41092, Spain
| | - Woe-Yeon Kim
- Author for correspondence: (D.-J.Y.); (F.J.Q.); (W.-Y.K.)
| | | | - Dae-Jin Yun
- Author for correspondence: (D.-J.Y.); (F.J.Q.); (W.-Y.K.)
| |
Collapse
|
16
|
Deng Y, Chen Q, Qu Y. Protein S-Acyl Transferase GhPAT27 Was Associated with Verticillium wilt Resistance in Cotton. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202758. [PMID: 36297782 PMCID: PMC9611673 DOI: 10.3390/plants11202758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 05/16/2023]
Abstract
Protein palmitoylation is an ability of the frame of the cell marker protein is one of the most notable reversible changes after translation. However, studies on protein palmitoylation in cotton have not yet been performed. In our current research, the PAT gene family was systematically identified and bioinformatically analyzed in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, and 211 PAT genes were authenticated and classified into six subfamilies. Sixty-nine PAT genes were identified in upland cotton, mainly at the ends of its the 26 chromosomes of upland cotton. The majority of these genes are located in the nucleus of the plant. Gene structure analysis revealed that each member encodes a protein that which contains at least one DHHC structural domain. Cis-acting element analysis indicated that GhPATs genes are mainly involved in hormone production, light response and stress response. Gene expression pattern analysis indicated that most GhPATs genes were differentially expressed upon induction by pathogenic bacteria, drought, salt, hot and cold stresses, and some GhPATs could be induced by multiple abiotic stresses simultaneously. GhPATs genes showed different expression patterns in tissue-specific assays and were found to be preferentially expressed in roots, followed by expression in stems and leaves. Virus-induced gene silencing (VIGS) experiments showed that cotton was significantly less resistant to Verticillium dahliae when GhPAT27 was silenced. We conclude that the GhPAT27 gene, which mediates S-palmitoylation acetylation, may be involved in the regulation of upland cotton resistance to Verticillium wilt (VW). Overall, this work has provided a fundamental framework for understanding the latent capabilities of GhPATs and a solid foundation for molecular breeding and plant pathogen resistance in cotton.
Collapse
|
17
|
Gao J, Huang G, Chen X, Zhu YX. PROTEIN S-ACYL TRANSFERASE 13/16 modulate disease resistance by S-acylation of the nucleotide binding, leucine-rich repeat protein R5L1 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1789-1802. [PMID: 35778928 DOI: 10.1111/jipb.13324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 05/28/2023]
Abstract
Nucleotide binding, leucine-rich repeat (NB-LRR) proteins are critical for disease resistance in plants, while we do not know whether S-acylation of these proteins plays a role during bacterial infection. We identified 30 Arabidopsis mutants with mutations in NB-LRR encoding genes from the Nottingham Arabidopsis Stock Center and characterized their contribution to the plant immune response after inoculation with Pseudomonas syringae pv tomato DC3000 (Pst DC3000). Of the five mutants that were hyper-susceptible to the pathogen, three (R5L1, R5L2 and RPS5) proteins contain the conserved S-acylation site in the N-terminal coiled-coil (CC) domain. In wild-type (WT) Arabidopsis plants, R5L1 was transcriptionally activated upon pathogen infection, and R5L1 overexpression lines had enhanced resistance. Independent experiments indicated that R5L1 localized at the plasma membrane (PM) via S-acylation of its N-terminal CC domain, which was mediated by PROTEIN S-ACYL TRANSFERASE 13/16 (PAT13, PAT16). Modification of the S-acylation site reduced its affinity for binding the PM, with a consequent significant reduction in bacterial resistance. PM localization of R5L1 was significantly reduced in pat13 and pat16 mutants, similar to what was found for WT plants treated with 2-bromopalmitate, an S-acylation-blocking agent. Transgenic plants expressing R5L1 in the pat13 pat16 double mutant showed no enhanced disease resistance. Overexpression of R5L1 in WT Arabidopsis resulted in substantial accumulation of reactive oxygen species after inoculation with Pst DC3000; this effect was not observed with a mutant R5L1 carrying a mutated S-acylation site. Our data suggest that PAT13- and PAT16-mediated S-acylation of R5L1 is crucial for its membrane localization to activate the plant defense response.
Collapse
Affiliation(s)
- Jin Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Xian Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
18
|
Zhang L, Thapa Magar MS, Wang Y, Cheng Y. Tip growth defective1 interacts with cellulose synthase A3 to regulate cellulose biosynthesis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2022; 110:1-12. [PMID: 35644016 DOI: 10.1007/s11103-022-01283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
AtTIP1 physically and genetically interacts with AtCESA3. AtCESA3 undergoes S-acylation, possibly mediated by AtTIP1, suggesting a specific role of AtTIP1 in cellulose biosynthesis and plant development. S-acylation is a reversible post-translational lipid modification of proteins catalyzed by protein S-acyl transferases (PATs). S-acylation is important for various biological molecular mechanisms including cellulose biosynthesis. Cellulose is synthesized by the cellulose synthase A (CESA) complexes (CSCs) at the plasma membrane. However, specific PAT involving in cellulose biosynthesis has not been identified and the precise mechanism by which PAT regulates the CESAs is largely unknown. Here, we report isolation of tip1-5, an allele of Tip Growth Defective1 (AtTIP1/AtPAT24) with a premature stop codon. tip1-5 genetically interacts with ixr1-2, a point mutant of AtCESA3 which encodes a catalytic subunit of CSC synthesizing primary wall cellulose. We show that AtTIP1 physically interacts with AtCESA3. AtCESA3 undergoes S-acylation, which is possibly mediated by AtTIP1, suggesting a functional relationship between AtTIP1 and AtCESA3. Moreover, the interfascicular fiber cells in the primary inflorescence stems of tip1-5 ixr1-2 double mutant contain thinner cell walls and significantly less crystalline cellulose compared to the single mutants. These results highlight the positive regulation of AtTIP1 in cellulose biosynthesis, and a specific role of AtPAT in plant development.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Madhu Shudan Thapa Magar
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant Resources, Ministry of Forests and Environment, Government of Nepal, Kathmandu, 44600, Nepal
| | - Yanning Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:956231. [PMID: 35968095 PMCID: PMC9363829 DOI: 10.3389/fpls.2022.956231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Protein S-acylation, also known as palmitoylation, is an important lipid post-translational modification of proteins in eukaryotes. S-acylation plays critical roles in a variety of protein functions involved in plant development and responses to abiotic and biotic stresses. The status of S-acylation on proteins is dynamic and reversible, which is catalyzed by protein S-acyltransferases (PATs) and reversed by acyl protein thioesterases. The cycle of S-acylation and de-S-acylation provides a molecular mechanism for membrane-associated proteins to undergo cycling and trafficking between different cell compartments and thus works as a switch to initiate or terminate particular signaling transductions on the membrane surface. In plants, thousands of proteins have been identified to be S-acylated through proteomics. Many S-acylated proteins and quite a few PAT-substrate pairs have been functionally characterized. A recently characterized acyl protein thioesterases family, ABAPT family proteins in Arabidopsis, has provided new insights into the de-S-acylation process. However, our understanding of the regulatory mechanisms controlling the S-acylation and de-S-acylation process is surprisingly incomplete. In this review, we discuss how protein S-acylation level is regulated with the focus on catalyzing enzymes in plants. We also propose the challenges and potential developments for the understanding of the regulatory mechanisms controlling protein S-acylation in plants.
Collapse
Affiliation(s)
- Jincheng Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Manqi Zhang
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
21
|
Yue N, Jiang Z, Zhang X, Li Z, Wang X, Wen Z, Gao Z, Pi Q, Zhang Y, Wang X, Han C, Yu J, Li D. Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement. EMBO J 2022; 41:e110060. [PMID: 35642376 PMCID: PMC9251889 DOI: 10.15252/embj.2021110060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xueting Wang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhiyan Wen
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zongyu Gao
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
22
|
Li G, Song P, Wang X, Ma Q, Xu J, Zhang Y, Qi B. Genome-Wide Identification of Genes Encoding for Rho-Related Proteins in ' Duli' Pear ( Pyrus betulifolia Bunge) and Their Expression Analysis in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1608. [PMID: 35736759 PMCID: PMC9230837 DOI: 10.3390/plants11121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Twelve Rho-related proteins (ROPs), namely PbROPs, were identified from the genome of the recently sequenced 'Duli' pear (Pyrus betulifolia Bunge), a wild-type pear variety routinely used for rootstocks in grafting in China. The length and molecular weight of these proteins are between 175 and 215 amino acids and 19.46 and 23.45 kDa, respectively. The 12 PbROPs are distributed on 8 of the 17 chromosomes, where chromosome 15 has the highest number of 3 PbROPs. Analysis of the deduced protein sequences showed that they are relatively conserved and all have the G domain, insertion sequence, and HVR motif. The expression profiles were monitored by quantitative RT-PCR, which showed that these 12 PbROP genes were ubiquitously expressed, indicating their involvement in growth and development throughout the life cycle of 'Duli' pear. However, they were altered upon treatments with abscisic acid (ABA, mimicking abiotic stress), polyethylene glycol (PEG, mimicking drought), and sodium chloride (NaCl, mimicking salt) to tissue-cultured seedlings. Further, transgenic Arabidopsis expressing PbROP1, PbROP2, and PbROP9 exhibited enhanced sensitivity to ABA, demonstrating that these 3 PbROPs may play important roles in the abiotic stress of 'Duli' pear. The combined results showed that the 'Duli' genome encodes 12 typical ROPs and they appeared to play important roles in growth, development, and abiotic stress. These preliminary data may guide future research into the molecular mechanisms of these 12 PbROPs and their utility in molecular breeding for abiotic stress-resistant 'Duli' pear rootstocks.
Collapse
Affiliation(s)
- Gang Li
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Pingli Song
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Xiang Wang
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Qingcui Ma
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Jianfeng Xu
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Yuxing Zhang
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Baoxiu Qi
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
- School of Pharmacy and Biomolecular Science, Liverpool John Moors University, Liverpool L3 3AF, UK
| |
Collapse
|
23
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022. [PMID: 35681017 DOI: 10.1101/2020.05.12.090415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Tian Y, Zeng H, Wu J, Huang J, Gao Q, Tang D, Cai L, Liao Z, Wang Y, Liu X, Lin J. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1763-1780. [PMID: 35411551 DOI: 10.1111/tpj.15769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is an important lipid modification that primarily involves DHHC proteins (DHHCs) and associated S-acylated proteins. No DHHC-S-acylated protein pair has been reported so far in rice (Oryza sativa L.) and the molecular mechanisms underlying S-acylation in plants are largely unknown. We constructed an OsDHHC cDNA library for screening corresponding pairs of DHHCs and S-acylated proteins using bimolecular fluorescence complementation assays. Five DHHC-S-acylated protein pairs (OsDHHC30-OsCBL2, OsDHHC30-OsCBL3, OsDHHC18-OsNOA1, OsDHHC13-OsNAC9, and OsDHHC14-GSD1) were identified in rice. Among the pairs, OsCBL2 and OsCBL3 were S-acylated by OsDHHC30 in yeast and rice. The localization of OsCBL2 and OsCBL3 in the endomembrane depended on S-acylation mediated by OsDHHC30. Meanwhile, all four OsDHHCs screened complemented the thermosensitive phenotype of an akr1 yeast mutant, and their DHHC motifs were required for S-acyltransferase activity. Overexpression of OsDHHC30 in rice plants improved their salt and oxidative tolerance. Together, these results contribute to our understanding of the molecular mechanism underlying S-acylation in plants.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jicai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Lipeng Cai
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyi Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
25
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022; 8:670-681. [PMID: 35681017 DOI: 10.1038/s41477-022-01164-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Liu X, Li M, Li Y, Chen Z, Zhuge C, Ouyang Y, Zhao Y, Lin Y, Xie Q, Yang C, Lai J. An ABHD17-like hydrolase screening system to identify de-S-acylation enzymes of protein substrates in plant cells. THE PLANT CELL 2021; 33:3235-3249. [PMID: 34338800 PMCID: PMC8505870 DOI: 10.1093/plcell/koab199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs). A robust system was then established for the screening of de-S-acylation enzymes of protein substrates in plant cells, based on the effects of substrate localization and confirmed via the protein S-acylation levels. Using this system, the ABAPTs, which specifically reduced the S-acylation levels and disrupted the plasma membrane localization of five immunity-related proteins, were identified respectively in Arabidopsis. Further results indicated that the de-S-acylation of RPM1-Interacting Protein 4, which was mediated by ABAPT8, resulted in an increase of cell death in Arabidopsis and Nicotiana benthamiana, supporting the physiological role of the ABAPTs in plants. Collectively, our current work provides a powerful and reliable system to identify the pairs of plant protein substrates and de-S-acylation enzymes for further studies on the dynamic regulation of plant protein S-acylation.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chun Zhuge
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Youwei Ouyang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
28
|
B�rger M. Cutting out the fat: A new screen for de-S-acylases in plants. THE PLANT CELL 2021; 33:3177-3178. [PMID: 35233597 PMCID: PMC8505874 DOI: 10.1093/plcell/koab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 05/11/2023]
Affiliation(s)
- Marco B�rger
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
29
|
S-acylation of P2K1 mediates extracellular ATP-induced immune signaling in Arabidopsis. Nat Commun 2021; 12:2750. [PMID: 33980819 PMCID: PMC8115640 DOI: 10.1038/s41467-021-22854-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
S-acylation is a reversible protein post-translational modification mediated by protein S-acyltransferases (PATs). How S-acylation regulates plant innate immunity is our main concern. Here, we show that the plant immune receptor P2K1 (DORN1, LecRK-I.9; extracellular ATP receptor) directly interacts with and phosphorylates Arabidopsis PAT5 and PAT9 to stimulate their S-acyltransferase activity. This leads, in a time-dependent manner, to greater S-acylation of P2K1, which dampens the immune response. pat5 and pat9 mutants have an elevated extracellular ATP-induced immune response, limited bacterial invasion, increased phosphorylation and decreased degradation of P2K1 during immune signaling. Mutation of S-acylated cysteine residues in P2K1 results in a similar phenotype. Our study reveals that S-acylation effects the temporal dynamics of P2K1 receptor activity, through autophosphorylation and protein degradation, suggesting an important role for this modification in regulating the ability of plants in respond to external stimuli.
Collapse
|
30
|
Jiang H, Ma QJ, Zhong MS, Gao HN, Li YY, Hao YJ. The apple palmitoyltransferase MdPAT16 influences sugar content and salt tolerance via an MdCBL1-MdCIPK13-MdSUT2.2 pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:689-705. [PMID: 33548154 DOI: 10.1111/tpj.15191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 05/21/2023]
Abstract
Protein S-acyltransferases (PATs) are a category of eukaryotic transmembrane proteins that mediate the S-acylation of their target proteins. S-acylation, commonly known as palmitoylation, is a reversible protein modification that regulates the membrane association and function of target proteins. However, the functions and mechanisms of PATs in apple (Malus domestica) remain poorly understood. In this study, an MdPAT family member, MdPAT16, was identified and shown to have palmitoyltransferase activity. We demonstrated that this gene responds to salt stress and that its expression improves plant salt stress resistance. In addition, its overexpression significantly promotes the accumulation of soluble sugars. The same phenotypes were observed in transgenic tissue culture seedlings, transgenic roots, and Arabidopsis thaliana that ectopically expressed MdPAT16. MdPAT16 was shown to interact with MdCBL1 and stabilize MdCBL1 protein levels through palmitoylation. The N-terminal sequence of MdCBL1 contains a palmitoylation site, and its N-terminal deletion led to changes in MdCBL1 protein stability and subcellular localization. The phenotypes of MdCBL1 transgenic roots and transiently injected apple fruits were fully consistent with the sugar accumulation phenotype of MdPAT16. Mutation of the palmitoylation site interfered with this phenotype. These findings suggest that MdPAT16 palmitoylates its downstream target proteins, improving their stability. This may be a missing link in the plant salt stress response pathway and have an important impact on fruit quality.
Collapse
Affiliation(s)
- Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi-Jun Ma
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming-Shuang Zhong
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
31
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
32
|
Villalta I, García E, Hornero-Mendez D, Carranco R, Tello C, Mendoza I, De Luca A, Andrés Z, Schumacher K, Pardo JM, Quintero FJ. Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3. FRONTIERS IN PLANT SCIENCE 2021; 12:691124. [PMID: 34630451 PMCID: PMC8494787 DOI: 10.3389/fpls.2021.691124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/23/2021] [Indexed: 05/07/2023]
Abstract
The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7-11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.
Collapse
Affiliation(s)
- Irene Villalta
- Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, Tours, France
| | - Elena García
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | - Dámaso Hornero-Mendez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Raúl Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | | | - Imelda Mendoza
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | - Anna De Luca
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | - Zaida Andrés
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
- *Correspondence: José M. Pardo,
| | - Francisco J. Quintero
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
- Francisco J. Quintero,
| |
Collapse
|
33
|
Henri P, Rumeau D. Ectopic expression of human apolipoprotein D in Arabidopsis plants lacking chloroplastic lipocalin partially rescues sensitivity to drought and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:265-274. [PMID: 33262014 DOI: 10.1016/j.plaphy.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The chloroplastic lipocalin (LCNP) is induced in response to various abiotic stresses including high light, dehydration and low temperature. It contributes to protection against oxidative damage promoted by adverse conditions by preventing accumulation of fatty acid hydroperoxides and lipid peroxidation. In contrast to animal lipocalins, LCNP is poorly characterized and the molecular mechanism by which it exerts protective effects during oxidative stress is largely unknown. LCNP is considered the ortholog of human apolipoprotein D (APOD), a protein whose lipid antioxidant function has been characterized. Here, we investigated whether APOD could functionally replace LCNP in Arabidopsis thaliana. We introduced APOD cDNA fused to a chloroplast transit peptide encoding sequence in an Arabidopsis LCNP KO mutant line and challenged the transgenic plants with different abiotic stresses. We demonstrated that expression of human APOD in Arabidopsis can partially compensate for the lack of the plastid lipocalin. The results are consistent with a conserved function of APOD and LCNP under stressful conditions. However, if the results obtained with the drought and oxidative stresses point to the protective effect of constitutive expression of APOD in plants lacking LCNP, this effect is not as effective as that conferred by LCNP overexpression. Moreover, when investigating APOD function in thylakoids after high light stress at low temperature, it appeared that APOD could not contribute to qH, a slowly reversible form of non-photochemical chlorophyll fluorescence quenching, as described for LCNP. This work provides a base of understanding the molecular mechanism underlying LCNP protective function.
Collapse
Affiliation(s)
- Patricia Henri
- Aix-Marseille Université, CEA, CNRS, UMR 7265, Institut Biosciences et Biotechnologies d'Aix-Marseille, Plant Protein Protection Laboratory, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Dominique Rumeau
- Aix-Marseille Université, CEA, CNRS, UMR 7265, Institut Biosciences et Biotechnologies d'Aix-Marseille, Plant Protein Protection Laboratory, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
34
|
Knockout of the S-acyltransferase Gene, PbPAT14, Confers the Dwarf Yellowing Phenotype in First Generation Pear by ABA Accumulation. Int J Mol Sci 2019; 20:ijms20246347. [PMID: 31888281 PMCID: PMC6941133 DOI: 10.3390/ijms20246347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
The development of dwarf fruit trees with smaller and compact characteristics leads to significantly increased fruit production, which is a major objective of pear (Pyrus bretschneideri) breeding. We identified the S-acylation activity of PbPAT14, an S-acyltransferase gene related to plant development, using a yeast (Saccharomyces cerevisiae) complementation assay, and also PbPAT14 could rescue the growth defect of the Arabidopsis mutant atpat14. We further studied the function of PbPAT14 by designing three guide RNAs for PbPAT14 to use in the CRISPR/Cas9 system. We obtained 22 positive transgenic pear lines via Agrobacterium-mediated transformation using cotyledons from seeds of Pyrus betulifolia (‘Duli’). Six of these lines exhibited the dwarf yellowing phenotype and were homozygous mutations according to sequencing analysis. Ultrastructure analysis suggested that this dwarfism was manifested by shorter, thinner stems due to a reduction in cell number. A higher level of endogenous abscisic acid (ABA) and a higher transcript level of the ABA pathway genes in the mutant lines revealed that the PbPAT14 function was related to the ABA pathway. Overall, our experimental results increase the understanding of how PATs function in plants and help elucidate the mechanism of plant dwarfism.
Collapse
|
35
|
Li Y, Li HJ, Morgan C, Bomblies K, Yang W, Qi B. Both male and female gametogenesis require a fully functional protein S-acyl transferase 21 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:754-767. [PMID: 31369173 DOI: 10.1111/tpj.14475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
S-Acylation is a reversible post-translational lipid modification in which a long chain fatty acid covalently attaches to specific cysteine(s) of proteins via a thioester bond. It enhances the hydrophobicity of proteins, contributes to their membrane association and plays roles in protein trafficking, stability and signalling. A family of Protein S-Acyl Transferases (PATs) is responsible for this reaction. PATs are multi-pass transmembrane proteins that possess a catalytic Asp-His-His-Cys cysteine-rich domain (DHHC-CRD). In Arabidopsis, there are currently 24 such PATs, five having been characterized, revealing their important roles in growth, development, senescence and stress responses. Here, we report the functional characterization of another PAT, AtPAT21, demonstrating the roles it plays in Arabidopsis sexual reproduction. Loss-of-function mutation by T-DNA insertion in AtPAT21 results in the complete failure of seed production. Detailed studies revealed that the sterility of the mutant is caused by defects in both male and female sporogenesis and gametogenesis. To determine if the sterility observed in atpat21-1 was caused by upstream defects in meiosis, we assessed meiotic progression in pollen mother cells and found massive chromosome fragmentation and the absence of synapsis in the initial stages of meiosis. Interestingly, the fragmentation phenotype was substantially reduced in atpat21-1 spo11-1 double mutants, indicating that AtPAT21 is required for repair, but not for the formation, of SPO11-induced meiotic DNA double-stranded breaks (DSBs) in Arabidopsis. Our data highlight the importance of protein S-acylation in the early meiotic stages that lead to the development of male and female sporophytic reproductive structures and associated gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hong-Ju Li
- Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, China Academy of Science, Lincui East Road, Chaoyang District, Beijing, 100101, China
| | - Chris Morgan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Weicai Yang
- Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, China Academy of Science, Lincui East Road, Chaoyang District, Beijing, 100101, China
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
36
|
Li Y, Xu J, Li G, Wan S, Batistič O, Sun M, Zhang Y, Scott R, Qi B. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5205-5216. [PMID: 31199467 DOI: 10.1093/jxb/erz282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Seeds of Arabidopsis contain ~40% oil, which is primarily in the form of triacylglycerol and it is converted to sugar to support post-germination growth. We identified an Arabidopsis T-DNA knockout mutant that is sugar-dependent during early seedling establishment and determined that the β-oxidation process involved in catabolising the free fatty acids released from the seed triacylglycerol is impaired. The mutant was confirmed to be transcriptional null for Protein Acyl Transferase 15, AtPAT15 (At5g04270), one of the 24 protein acyl transferases in Arabidopsis. Although it is the shortest, AtPAT15 contains the signature 'Asp-His-His-Cys cysteine-rich domain' that is essential for the enzyme activity of this family of proteins. The function of AtPAT15 was validated by the fact that it rescued the growth defect of the yeast protein acyl transferase mutant akr1 and it was also auto-acylated in vitro. Transient expression in Arabidopsis and tobacco localised AtPAT15 in the Golgi apparatus. Taken together, our data demonstrate that AtPAT15 is involved in β-oxidation of triacylglycerol, revealing the importance of protein S-acylation in the breakdown of seed-storage lipids during early seedling growth of Arabidopsis.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Xu
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Si Wan
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Muenster, Germany
| | - Meihong Sun
- College of Horticulture, Shandong Agricultural University, Tai'an, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rod Scott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Pharmacy and Biomolecular Sciences, James Parsons Building, Byrom Street, Liverpool, UK
| |
Collapse
|
37
|
Toruño TY, Shen M, Coaker G, Mackey D. Regulated Disorder: Posttranslational Modifications Control the RIN4 Plant Immune Signaling Hub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:56-64. [PMID: 30418084 PMCID: PMC6501815 DOI: 10.1094/mpmi-07-18-0212-fi] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RIN4 is an intensively studied immune regulator in Arabidopsis and is involved in perception of microbial features outside and bacterial effectors inside plant cells. Furthermore, RIN4 is conserved in land plants and is targeted for posttranslational modifications by several virulence proteins from the bacterial pathogen Pseudomonas syringae. Despite the important roles of RIN4 in plant immune responses, its molecular function is not known. RIN4 is an intrinsically disordered protein (IDP), except at regions where pathogen-induced posttranslational modifications take place. IDP act as hubs for protein complex formation due to their ability to bind to multiple client proteins and, thus, are important players in signal transduction pathways. RIN4 is known to associate with multiple proteins involved in immunity, likely acting as an immune-signaling hub for the formation of distinct protein complexes. Genetically, RIN4 is a negative regulator of immunity, but diverse posttranslational modifications can either enhance its negative regulatory function or, on the contrary, render it a potent immune activator. In this review, we describe the structural domains of RIN4 proteins, their intrinsically disordered regions, posttranslational modifications, and highlight the implications that these features have on RIN4 function. In addition, we will discuss the potential role of plasma membrane subdomains in mediating RIN4 protein complex formations.
Collapse
Affiliation(s)
- Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Mingzhe Shen
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, U.S.A
- Corresponding author: D. Mackey;
| |
Collapse
|
38
|
Li H, Zeng R, Chen Z, Liu X, Cao Z, Xie Q, Yang C, Lai J. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4459-4468. [PMID: 29931348 PMCID: PMC6093331 DOI: 10.1093/jxb/ery228] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/08/2018] [Indexed: 05/11/2023]
Abstract
Geminiviruses, such as beet severe curly top virus (BSCTV), are a group of DNA viruses that cause severe plant diseases and agricultural losses. The C4 protein is a major symptom determinant in several geminiviruses; however, its regulatory mechanism and molecular function in plant cells remain unclear. Here, we show that BSCTV C4 is S-acylated in planta, and that this post-translational lipid modification is necessary for its membrane localization and functions, especially its regulation of shoot development of host plants. Furthermore, the S-acylated form of C4 interacts with CLAVATA 1 (CLV1), an important receptor kinase in meristem maintenance, and consequentially affects the expression of WUSCHEL, a major target of CLV1. The abnormal development of siliques in Arabidopsis thaliana infected with BSCTV is also dependent on the S-acylation of C4, implying a potential role of CLAVATA signaling in this process. Collectively, our results show that S-acylation is essential for BSCTV C4 function, including the regulation of the CLAVATA pathway, during geminivirus infection.
Collapse
Affiliation(s)
- Huiyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Runxiu Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zhendan Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Correspondence:
| |
Collapse
|
39
|
Peng D, Tan X, Zhang L, Yuan D, Lin J, Liu X, Jiang Y, Zhou B. Increasing branch and seed yield through heterologous expression of the novel rice S-acyl transferase gene OsPAT15 in Brassica napus L. BREEDING SCIENCE 2018; 68:326-335. [PMID: 30100799 PMCID: PMC6081303 DOI: 10.1270/jsbbs.17126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Branching is a predominant element in the plant architecture of Brassica napus L. and represents an important determinant of seed yield. OsPAT15 (OsDHHC1), a novel DHHC-type zinc finger protein gene, was reported to regulate rice plant architecture by altering the tillering. However, whether heterologous overexpression of the OsPAT15 gene from the monocot rice into the dicot B. napus L. would have the same effect on branching or seed yield is unknown. In this study, the DHHC-type zinc finger protein gene OsPAT15 was determined to have sulfur acyl transferase activity in the akr1Δ yeast mutant in a complementation experiment. Heterologously expressing OsPAT15 transgenic B. napus L. plants were obtained using the Agrobacterium-mediated floral-dip transformation method. As anticipated, OsPAT15 transgenic plants exhibited branching and seed yield. Compared with non-transgenic plants, OsPAT15 transgenic plants had increased primary branches (1.58-1.76-fold) and siliques (1.86-1.89-fold), resulting in a significant increase in seed yield (around 2.39-2.51-fold). Therefore, overexpression of the sulfur acyl transferase gene OsPAT15 in B. napus L. could be used to increase seed yield and produce excellent varieties.
Collapse
Affiliation(s)
- Dan Peng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology,
410004, Changsha,
China
- Forestry Biotechnology Hunan Key Laboratories,
410004, Changsha,
China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology,
410004, Changsha,
China
- Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology,
410004, Changsha,
China
- Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology,
410004, Changsha,
China
- Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Jianzhong Lin
- Key Laboratory of Plant Function Genomic for Development and Regulation, Hunan University,
410082, Changsha,
China
| | - Xuanming Liu
- Key Laboratory of Plant Function Genomic for Development and Regulation, Hunan University,
410082, Changsha,
China
| | - Yueqiao Jiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Bo Zhou
- Faculty of Life Science and Technology, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Plant Function Genomic for Development and Regulation, Hunan University,
410082, Changsha,
China
- Forestry Biotechnology Hunan Key Laboratories,
410004, Changsha,
China
| |
Collapse
|
40
|
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, Muto J, Noguchi H, Yamauchi S, Tozawa Y, Ueda M, Hashimoto K, Köster P, Dong Q, Held K, Kudla J, Utsumi T, Uozumi N. N-myristoylation and S-acylation are common modifications of Ca 2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. THE NEW PHYTOLOGIST 2018; 218:1504-1521. [PMID: 29498046 DOI: 10.1111/nph.15053] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Aiko Matsuura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoko Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Jun Muto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Hiroto Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Seiji Yamauchi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aramaki-Aza Aoba 6-3, Aoba-ku, Sendai, 980-8579, Japan
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Katrin Held
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| |
Collapse
|
41
|
Nagy M, Kéki S, Rácz D, Mathur J, Vereb G, Garda T, M-Hamvas M, Chaumont F, Bóka K, Böddi B, Freytag C, Vasas G, Máthé C. Novel fluorochromes label tonoplast in living plant cells and reveal changes in vacuolar organization after treatment with protein phosphatase inhibitors. PROTOPLASMA 2018; 255:829-839. [PMID: 29230547 DOI: 10.1007/s00709-017-1190-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The recently synthesized isocyanonaphtalene derivatives ACAIN and CACAIN are fluorochromes excitable at wavelengths of around 366 nm and bind cysteine-rich proteins with hydrophobic motifs. We show that these compounds preferentially label tonoplasts in living Arabidopsis and tobacco (Nicotiana tabacum SR1) cells. ACAIN-labeled membranes co-localized with the GFP signal in plants expressing GFP-δ-TIP (TIP2;1) (a tonoplast aquaporin) fusion protein. ACAIN preserved the dynamics of vacuolar structures. tip2;1 and triple tip1;1-tip1;2-tip2;1 knockout mutants showed weaker ACAIN signal in tonoplasts. The fluorochrome is also suitable for the labeling and detection of specific (cysteine-rich, hydrophobic) proteins from crude cell protein extracts following SDS-PAGE and TIP mutants show altered labeling patterns; however, it appears that ACAIN labels a large variety of tonoplast proteins. ACAIN/CACAIN could be used for the detection of altered vacuolar organization induced by the heptapeptide natural toxin microcystin-LR (MCY-LR), a potent inhibitor of both type 1 and 2A protein phosphatases and a ROS inducer. As revealed both in plants with GFP-TIP2;1 fusions and in wild-type (Columbia) plants labeled with ACAIN/CACAIN, MCY-LR induces the formation of small vesicles, concomitantly with the absence of the large vegetative vacuoles characteristic for differentiated cells. TEM studies of MCY-LR-treated Arabidopsis cells proved the presence of multimembrane vesicles, with characteristics of lytic vacuoles or autophagosomes. Moreover, MCY-LR is a stronger inducer of small vesicle formation than okadaic acid (which inhibits preferentially PP2A) and tautomycin (which inhibits preferentially PP1). ACAIN and CACAIN emerge as useful novel tools to study plant vacuole biogenesis and programmed cell death.
Collapse
Affiliation(s)
- Miklós Nagy
- Faculty of Science and Technology, Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Sándor Kéki
- Faculty of Science and Technology, Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Dávid Rácz
- Faculty of Science and Technology, Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, Laboratory of Plant Development and Interactions, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - György Vereb
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Tamás Garda
- Faculty of Science and Technology, Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Márta M-Hamvas
- Faculty of Science and Technology, Department of Botany, University of Debrecen, Debrecen, Hungary
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Károly Bóka
- ELTE Eötvös Loránd University, Department of Plant Anatomy, Institute of Biology, Faculty of Science, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Béla Böddi
- ELTE Eötvös Loránd University, Department of Plant Anatomy, Institute of Biology, Faculty of Science, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Csongor Freytag
- Faculty of Science and Technology, Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Faculty of Science and Technology, Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Csaba Máthé
- Faculty of Science and Technology, Department of Botany, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
42
|
Mahesh HB, Subba P, Advani J, Shirke MD, Loganathan RM, Chandana SL, Shilpa S, Chatterjee O, Pinto SM, Prasad TSK, Gowda M. Multi-Omics Driven Assembly and Annotation of the Sandalwood ( Santalum album) Genome. PLANT PHYSIOLOGY 2018; 176:2772-2788. [PMID: 29440596 PMCID: PMC5884603 DOI: 10.1104/pp.17.01764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Indian sandalwood (Santalum album) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees.
Collapse
Affiliation(s)
- Hirehally Basavarajegowda Mahesh
- Center for Functional Genomics and Bioinformatics, TransDisciplinary University, Institute of Trans-Disciplinary Health Sciences and Technology, Bengaluru 560064, India
- Center for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru 560065, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Meghana Deepak Shirke
- Center for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru 560065, India
| | - Ramya Malarini Loganathan
- Center for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru 560065, India
| | - Shankara Lingu Chandana
- Center for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru 560065, India
| | - Siddappa Shilpa
- Center for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru 560065, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Sneha Maria Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
| | - Malali Gowda
- Center for Functional Genomics and Bioinformatics, TransDisciplinary University, Institute of Trans-Disciplinary Health Sciences and Technology, Bengaluru 560064, India
| |
Collapse
|
43
|
Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. THE PLANT CELL 2018; 30:543-562. [PMID: 29453228 PMCID: PMC5894833 DOI: 10.1105/tpc.17.00523] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 05/05/2023]
Abstract
N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Pierre Le Caer
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
44
|
Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. MOLECULAR PLANT 2018; 11:269-287. [PMID: 29229567 DOI: 10.1016/j.molp.2017.11.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turnover of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREM1. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
Collapse
Affiliation(s)
- Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
45
|
The Absence of DHHC3 Affects Primary and Latent Herpes Simplex Virus 1 Infection. J Virol 2018; 92:JVI.01599-17. [PMID: 29187538 DOI: 10.1128/jvi.01599-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
UL20, an essential herpes simplex virus 1 (HSV-1) protein, is involved in cytoplasmic envelopment of virions and virus egress. We reported recently that UL20 can bind to a host protein encoded by the zinc finger DHHC-type containing 3 (ZDHHC3) gene (also known as Golgi-specific DHHC zinc finger protein [GODZ]). Here, we show for the first time that HSV-1 replication is compromised in murine embryonic fibroblasts (MEFs) isolated from GODZ-/- mice. The absence of GODZ resulted in blocking palmitoylation of UL20 and altered localization and expression of UL20 and glycoprotein K (gK); the expression of gB and gC; and the localization and expression of tegument and capsid proteins within HSV-1-infected MEFs. Electron microscopy revealed that the absence of GODZ limited the maturation of virions at multiple steps and affected the localization of virus and endoplasmic reticulum morphology. Virus replication in the eyes of ocularly HSV-1-infected GODZ-/- mice was significantly lower than in HSV-1-infected wild-type (WT) mice. The levels of UL20, gK, and gB transcripts in the corneas of HSV-1-infected GODZ-/- mice on day 5 postinfection were markedly lower than in WT mice, whereas only UL20 transcripts were reduced in trigeminal ganglia (TG). In addition, HSV-1-infected GODZ-/- mice showed notably lower levels of corneal scarring, and HSV-1 latency reactivation was also reduced. Thus, normal HSV-1 infectivity and viral pathogenesis are critically dependent on GODZ-mediated palmitoylation of viral UL20.IMPORTANCE HSV-1 infection is widespread. Ocular infection can cause corneal blindness; however, approximately 70 to 90% of American adults exposed to the virus show no clinical symptoms. In this study, we show for the first time that the absence of a zinc finger protein called GODZ affects primary and latent infection, as well as reactivation, in ocularly infected mice. The reduced virus infectivity is due to the absence of the GODZ interaction with HSV-1 UL20. These results strongly suggest that binding of UL20 to GODZ promotes virus infectivity in vitro and viral pathogenesis in vivo.
Collapse
|
46
|
N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6. FEBS Lett 2017; 591:3745-3756. [DOI: 10.1002/1873-3468.12880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
47
|
Binding of Herpes Simplex Virus 1 UL20 to GODZ (DHHC3) Affects Its Palmitoylation and Is Essential for Infectivity and Proper Targeting and Localization of UL20 and Glycoprotein K. J Virol 2017; 91:JVI.00945-17. [PMID: 28724772 DOI: 10.1128/jvi.00945-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) UL20 plays a crucial role in the envelopment of the cytoplasmic virion and its egress. It is a nonglycosylated envelope protein that is regulated as a γ1 gene. Two-hybrid and pulldown assays demonstrated that UL20, but no other HSV-1 gene-encoded proteins, binds specifically to GODZ (also known as DHHC3), a cellular Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein. A catalytically inactive dominant-negative GODZ construct significantly reduced HSV-1 replication in vitro and affected the localization of UL20 and glycoprotein K (gK) and their interactions but not glycoprotein C (gC). GODZ is involved in palmitoylation, and we found that UL20 is palmitoylated by GODZ using a GODZ dominant-negative plasmid. Blocking of palmitoylation using 2-bromopalmitate (2-BP) affected the virus titer and the interaction of UL20 and gK but did not affect the levels of these proteins. In conclusion, we have shown that binding of UL20 to GODZ in the Golgi apparatus regulates trafficking of UL20 and its subsequent effects on gK localization and virus replication. We also have demonstrated that GODZ-mediated UL20 palmitoylation is critical for UL20 membrane targeting and thus gK cell surface expression, providing new mechanistic insights into how UL20 palmitoylation regulates HSV-1 infectivity.IMPORTANCE HSV-1 UL20 is a nonglycosylated essential envelope protein that is highly conserved among herpesviruses. In this study, we show that (i) HSV-1 UL20 binds to GODZ (also known as DHHC3), a Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger protein; (ii) a GODZ dominant-negative mutant and an inhibitor of palmitoylation reduced HSV-1 titers and altered the localization of UL20 and glycoprotein K; and (iii) UL20 is palmitoylated by GODZ, and this UL20 palmitoylation is required for HSV-1 infectivity. Thus, blocking of the interaction of UL20 with GODZ, using a GODZ dominant-negative mutant or possibly GODZ shRNA, should be considered a potential alternative therapy in not only HSV-1 but also other conditions in which GODZ processing is an integral component of pathogenesis.
Collapse
|
48
|
Protein S-palmitoylation in cellular differentiation. Biochem Soc Trans 2017; 45:275-285. [PMID: 28202682 PMCID: PMC5310721 DOI: 10.1042/bst20160236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes.
Collapse
|
49
|
Feng QN, Song SJ, Yu SX, Wang JG, Li S, Zhang Y. Adaptor Protein-3-Dependent Vacuolar Trafficking Involves a Subpopulation of COPII and HOPS Tethering Proteins. PLANT PHYSIOLOGY 2017; 174:1609-1620. [PMID: 28559361 PMCID: PMC5490925 DOI: 10.1104/pp.17.00584] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/25/2017] [Indexed: 05/20/2023]
Abstract
Plant vacuoles are versatile organelles critical for plant growth and responses to environment. Vacuolar proteins are transported from the endoplasmic reticulum via multiple routes in plants. Two classic routes bear great similarity to other phyla with major regulators known, such as COPII and Rab5 GTPases. By contrast, vacuolar trafficking mediated by adaptor protein-3 (AP-3) or that independent of the Golgi has few recognized cargos and none of the regulators. In search of novel regulators for vacuolar trafficking routes and by using a fluorescence-based forward genetic screen, we demonstrated that the multispan transmembrane protein, Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is an AP-3-mediated vacuolar cargo. We show that the tonoplast targeting of PAT10 is mediated by the AP-3 complex but independent of the Rab5-mediated post-Golgi trafficking route. We also report that AP-3-mediated vacuolar trafficking involves a subpopulation of COPII and requires the vacuolar tethering complex HOPS. In addition, we have identified two novel mutant alleles of AP-3δ, whose point mutations interfered with the formation of the AP-3 complex as well as its membrane targeting. The results presented here shed new light on the vacuolar trafficking route mediated by AP-3 in plant cells.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
50
|
Hemsley PA. An outlook on protein S-acylation in plants: what are the next steps? JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3155-3164. [PMID: 28158736 DOI: 10.1093/jxb/erw497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
S-acylation, also known as palmitoylation, is the reversible post-translational addition of fatty acids to proteins. Historically thought primarily to be a means for anchoring otherwise soluble proteins to membranes, evidence now suggests that reversible S-acylation may be an important dynamic regulatory mechanism. Importantly S-acylation affects the function of many integral membrane proteins, making it an important factor to consider in understanding processes such as cell wall synthesis, membrane trafficking, signalling across membranes and regulating ion, hormone and metabolite transport through membranes. This review summarises the latest thoughts, ideas and findings in the field as well discussing future research directions to gain a better understanding of the role of this enigmatic regulatory protein modification.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| |
Collapse
|