1
|
Oates NC, Nay ER, Cary TJ, Rylott EL, Bruce NC. New weapons explosive exhibits persistent toxicity in plants. NATURE PLANTS 2025; 11:16-22. [PMID: 39609535 DOI: 10.1038/s41477-024-01863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Explosives are widespread, toxic and persistent environmental pollutants. 2,4-Dinitroanisole (DNAN) is being phased in to replace 2,4,6-trinitrotoluene (TNT) in munitions. Here we demonstrate that only low levels of DNAN are detoxified in Arabidopsis, leaving it to remain as a substrate for monodehydroascorbate reductase 6 mediated chronic phytotoxicity. Enhancing the potential for environmental toxicity, DNAN is readily transported to the aerial tissues exposing this toxin to herbivores and the wider food chain.
Collapse
Affiliation(s)
- Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Edward R Nay
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Timothy J Cary
- Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Biogeochemical Sciences Branch, US Army Corps of Engineers, Hanover, NH, USA
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| |
Collapse
|
2
|
Mi H, Zhou Q, Li G, Tao Y, Wang A, Wang P, Yang T, Zhu J, Li Y, Wei C, Liu S. Molecular responses reveal that two glutathione S-transferase CsGSTU8s contribute to detoxification of glyphosate in tea plants (Camellia sinensis). Int J Biol Macromol 2024; 277:134304. [PMID: 39084443 DOI: 10.1016/j.ijbiomac.2024.134304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Tea plant (Camellia sinensis) is an important economical crop that frequently suffers from various herbicides, especially glyphosate. However, the molecular responses and regulatory mechanisms of glyphosate stress in tea plants remain poorly understood. Here, we reported a transcriptome dataset and identified large number of differentially expressed genes (DEGs) under glyphosate exposure. Next, two glutathione S-transferase genes (CsGSTU8-1 and CsGSTU8-2) that upregulated significantly were screened as candidate genes. Tissue-specific expression patterns showed that both CsGSTU8-1 and CsGSTU8-2 had extremely high expression levels in the roots and were predominantly localized in the nucleus and plasma membrane based on subcellular localization. Both were significantly upregulated at different time points under various stressors, including drought, cold, salt, pathogen infections, and SA treatments. An enzymatic activity assay showed that CsGSTU8-1 catalyzes the conjugation of glutathione with 2,4-dinitrochlorobenzene (CDNB). Functional analysis in yeast verified that the two genes significantly contributed to the detoxification of glyphosate, and CsGSTU8-1 had a stronger role in detoxification than CsGSTU8-2. Taken together, these findings provide insights into the molecular responses of tea plants to glyphosate and the functions of CsGSTU8s in glyphosate detoxification, which can be used as a promising genetic resource for improving herbicide resistance in tea cultivars.
Collapse
Affiliation(s)
- Hongzhi Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China.
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
3
|
Feng T, Wang L, Lei T, Wu B, Wu L, Wang J, Sun W, Li F, Li J, Ma H. A natural glutathione S-transferase gene GSTU23 confers metabolic resistance to metamifop in Echinochloa crus-galli. Int J Biol Macromol 2024; 277:134078. [PMID: 39038575 DOI: 10.1016/j.ijbiomac.2024.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Herbicides are essential for farmers to control weed. However, prolonged use of herbicides has caused the development of herbicide resistance in weeds. Here, the resistant Echinochloa crus-galli (RL5) was obtained by continuous treatment with metamifop for five generations in paddy fields. RL5 plants showed a 13.7-fold higher resistance to metamifop compared to susceptible E. crus-galli (SL5) plants. Pre-treatment with GST inhibitor (NBD-Cl) significantly increased the susceptibility of RL5 plants to metamifop. Faster metamifop metabolism and higher GST activity in RL5 plants than in SL5 plants were also confirmed, highlighting the role of GST in metabolic resistance. RNA-Seq analysis identified EcGSTU23 as a candidate gene, and this gene was up-regulated in RL5 and field-resistant E. crus-galli plants. Furthermore, the EcGSTU23 gene was overexpressed in the transgenic EcGSTU23-Maize, and the EcGSTU23-Maize showed resistance to metamifop. In vitro metabolic studies also revealed that the purified EcGSTU23 displayed catalytic activity in glutathione (GSH) conjugation, and metamifop was rapidly metabolized in the co-incubation system containing EcGSTU23 protein. These results provide direct experimental evidence of EcGSTU23's involvement in the metabolic resistance of E. crus-galli to metamifop. Understanding the resistance mechanism can help in devising effective strategies to combat herbicide resistance and breeding of genetically modified herbicide resistant crops.
Collapse
Affiliation(s)
- Tangqi Feng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lei Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tianhong Lei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Biao Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lan Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jian Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenjing Sun
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fengfeng Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jianhong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hongju Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, Hubei, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
4
|
Su K, Wu Z, Liu Y, Wang Y, Wang H, Liu M, Wang Y, Wang H, Fu C. UDP-glycosyltransferase UGT96C10 functions as a novel detoxification factor for conjugating the activated dinitrotoluene sulfonate in switchgrass. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2530-2540. [PMID: 38690830 PMCID: PMC11331779 DOI: 10.1111/pbi.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SO3Na, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SO3Na treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SO3Na-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SO3Na in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.
Collapse
Affiliation(s)
- Kunlong Su
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuchen Liu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Yan Wang
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Han Wang
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meifeng Liu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Yu Wang
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyXiningChina
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyXiningChina
| |
Collapse
|
5
|
Wang H, Su K, Liu M, Liu Y, Wu Z, Fu C. Overexpressing CYP81D11 enhances 2,4,6-trinitrotoluene tolerance and removal efficiency in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14364. [PMID: 38837226 DOI: 10.1111/ppl.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlong Su
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Meifeng Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuchen Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Zhenying Wu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wang W, Xu KW, Wang M, Wu P, Zhang ZR, Gao X, Li YQ, Wu GX, Zhang CS, Zhao DL. Phytotoxic and Antimicrobial Terrein Derivatives and Butenolides Isolated from the Endophytic Fungus Aspergillus terreus HT5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20713-20723. [PMID: 38095326 DOI: 10.1021/acs.jafc.3c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Two new terrein derivatives, aspergilethers A and B (1 and 2), two known analogues (3 and 4), and three known butenolides (5-7) were isolated from the endophyte Aspergillus terreus HT5. Their structures were determined by spectroscopic analysis and ECD and NMR calculations. Interestingly, 1 and 2 had unpresented medium aliphatic side chains in terrein derivatives, with different absolute configurations at C-7, which was very scarce. (+)-Terrein (3) exhibited potent postemergence phytotoxicity toward Amaranthaceae, Portulacaceae, and Fabaceae, with MIC values of 250-1000 μg/mL. Transcriptome analysis and qRT-PCR suggested that (+)-terrein induced the transcriptional expression of aging-related genes to accelerate organ senescence and stimulated plant detoxification response. The conjugated system between keto carbonyl and double bonds in the cyclopentenone ring and side chain, and the configurations of C-2 and C-3, played critical roles in the phytotoxicity of terrein derivatives. Meanwhile, 3 was first reported to display moderate antioomycetes activity toward Phytophthora nicotiana.
Collapse
Affiliation(s)
- Wei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Citrus Research Institute of Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Kang-Wen Xu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Wu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Ru Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guo-Xing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Sha Y, Lin N, Zhang G, Zhang Y, Zhao J, Lu J, Zhu T, Zhang X, Li Q, Zhang H, Lin X, Li K, Bao Q, Li D. Identification and characterization of a novel chromosomal aminoglycoside 3'- O-phosphotransferase, APH(3')-Id, from Kluyvera intermedia DW18 isolated from the sewage of an animal farm. Front Microbiol 2023; 14:1224464. [PMID: 37700861 PMCID: PMC10493288 DOI: 10.3389/fmicb.2023.1224464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Background Aminoglycosides, as important clinical antimicrobials, are used as second-line drugs for treating multidrug-resistant tuberculosis or combined with β-lactam drugs for treating severe infections such as sepsis. Aminoglycoside-modifying enzyme (AME) is the most important mechanism of aminoglycoside resistance and deserves more attention. Methods The bacterium Kluyvera intermedia DW18 was isolated from the sewage of an animal farm using the conventional method. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs) of antimicrobials. A novel resistance gene was cloned, and the enzyme was expressed. The kinetic parameters were measured by a SpectraMax M5 multifunctional microplate reader. Bioinformatic analysis was performed to reveal the genetic context of the aph(3')-Id gene and its phylogenetic relationship with other AMEs. Results A novel aminoglycoside 3'-O-phosphotransferase gene designated aph(3')-Id was identified in K. intermedia DW18 and shared the highest amino acid identity of 77.49% with the functionally characterized aminoglycoside 3'-O-phosphotransferase APH(3')-Ia. The recombinant plasmid carrying the novel resistance gene (pMD19-aph(3')-Id/E. coli DH5α) showed 1,024-, 512-, 128- and 16-fold increased MIC levels for kanamycin, ribostamycin, paromomycin and neomycin, respectively, compared with the reference strain DH5α. APH(3')-Id showed the highest catalytic efficiency for ribostamycin [kcat/Km of (4.96 ± 1.63) × 105 M-1/s-1], followed by paromomycin [kcat/Km of (2.18 ± 0.21) × 105 M-1/s-1], neomycin [kcat/Km of (1.73 ± 0.20) × 105 M-1/s-1], and kanamycin [kcat/Km of (1.10 ± 0.18) × 105 M-1/s-1]. Three conserved functional domains of the aminoglycoside phosphotransferase family and ten amino acid residues responsible for the phosphorylation of kanamycin were found in the amino acid sequence of APH(3')-Id. No mobile genetic element (MGE) was discovered surrounding the aph(3')-Id gene. Conclusion In this work, a novel aminoglycoside 3'-O-phosphotransferase gene designated aph(3')-Id encoded in the chromosome of the environmental isolate Kluyvera intermedia DW18 was identified and characterized. These findings will help clinicians select effective antimicrobials to treat infections caused by pathogens with this kind of resistance gene.
Collapse
Affiliation(s)
- Yuning Sha
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Naru Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guozhi Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingxuan Zhao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Dong Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Kumar RS, Sinha H, Datta T, Asif MH, Trivedi PK. microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:837-856. [PMID: 36682886 PMCID: PMC10231396 DOI: 10.1093/plphys/kiad033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in regulating various developmental and biological processes. The expression of miRNAs is differentially modulated in response to various biotic and abiotic stresses. Recent findings have shown that some pri-miRNAs encode small regulatory peptides known as microRNA-encoded peptides (miPEPs). miPEPs regulate the growth and development of plants by modulating corresponding miRNA expression; however, the role of these peptides under different stress conditions remains unexplored. Here, we report that pri-miR408 encodes a small peptide, miPEP408, that regulates the expression of miR408, its targets, and associated phenotype in Arabidopsis. We also report that miR408, apart from Plantacyanin (ARPN) and Laccase3 (LAC3), targets a glutathione S-transferase (GSTU25) that plays a role in sulfur assimilation and exhibits a range of detoxification activities with the environmental pollutant. Plants overexpressing miR408 showed severe sensitivity under low sulfur (LS), arsenite As(III), and LS + As(III) stress, while miR408 mutants developed using the CRISPR/Cas9 approach showed tolerance. Transgenic lines showed phenotypic alteration and modulation in the expression of genes involved in the sulfur reduction pathway and affect sulfate and glutathione accumulation. Similar to miR408 overexpressing lines, the exogenous application of synthetic miPEP408 and miPEP408OX lines led to sensitivity in plants under LS, As(III), and combined LS + As(III) stress compared to the control. This study suggests the involvement of miR408 and miPEP408 in heavy metal and nutrient deficiency responses through modulation of the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Ravi Shankar Kumar
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hiteshwari Sinha
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| |
Collapse
|
9
|
Zhu B, Hu X, You S, Gao J, Fu X, Han H, Li Z, Yao Q. Toxicity and degradation of 2,4,6-trinitrotoluene in transgenic Arabidopsis expressing Citrobacter freundii nitroreductase. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bo Zhu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, PR China
| | - Xiyan Hu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, PR China
| | - Shuanghong You
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Jianjie Gao
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Xiaoyan Fu
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hongjuan Han
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Zhenjun Li
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Quanhong Yao
- Agro-Biotechnology Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| |
Collapse
|
10
|
AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci 2022; 23:ijms231911531. [PMID: 36232831 PMCID: PMC9570173 DOI: 10.3390/ijms231911531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant–pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19–TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24–TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis–TuMV pathosystem.
Collapse
|
11
|
Chen R, Lu Y, Zhang E, Chen Z, Huangfu L, Zuo Z, Zhao Y, Zhu M, Zhang Z, Chuan M, Bu Q, Huang Q, Wang H, Xu Y, Li P, Yao Y, Zhou Y, Xu C, Yang Z. The plant streptolysin S (SLS)-associated gene B confers nitroaromatic tolerance and detoxification. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128779. [PMID: 35364534 DOI: 10.1016/j.jhazmat.2022.128779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Nitroaromatic compounds, as the important chemical feedstock, have caused widespread environmental contaminations, and exhibited high toxicity and mutagenic activity to nearly all living organisms. The clean-up of nitroaromatic-contaminated soil and water has long been a major international concern. Here, we uncovered the role of a novel nitroreductase family gene, streptolysin S (SLS)-associated gene B (SagB), in enhancing nitroaromatic tolerance and detoxification of plants, and its potential application in phytoremediation of nitroaromatic contaminations. The expression of both the Arabidopsis and rice SagB genes is significantly induced by multiple hazardous nitroaromatic substances, including explosive pollutant 2,4,6-trinitrotoluene (TNT), natural compound 1-nitropyrene (1-NP) and herbicide pendimethalin (Pen). In vitro and in vivo evidences revealed that plant SagBs possess activities in degradation of these nitroaromatic substances. Arabidopsis and rice transgenic assays suggested that plant SagB genes increase tolerance and detoxification of nitroaromatic through facilitating its transformation to the amino derivative. More importantly, overexpression of plant SagBs increase their ability in TNT uptake, and remove more TNT from the growth culture. Our findings shed novel insights into a plant endogenous nitroreductase-mediated nitroaromatic tolerance and detoxification, and provide a new gene target for phytoremediation of nitroaromatic-contaminated environments.
Collapse
Affiliation(s)
- Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Enying Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Zhiyang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Liexiang Huangfu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhihao Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yu Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Minyan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zihui Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Huang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hanyao Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Youli Yao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Sun J, Li GS. Identification of genes differentially expressed between prostrate shoots and erect shoots in the lycophyte Selaginella nipponica using an RNA-seq approach. AOB PLANTS 2022; 14:plac018. [PMID: 35694642 PMCID: PMC9179412 DOI: 10.1093/aobpla/plac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Lycophytes are the earliest vascular plants and Selaginella is the most studied genus among them. Prostrate shoots are produced during early growth and erect shoots emerge later in S. nipponica, thus providing an opportunity for exploring the evolution of the mechanism underlying the transition between growth phases. Six libraries were sequenced for the prostrate and the erect shoots, and a total of 206 768 genes were identified. Some genes were differentially expressed in prostate and erect shoot, with relatively high expression in the prostate shoots being related to hormone responses and defence reactions, while higher expression in the erect shoots was related to spore formation and shoot development. Some SPL genes possessed a miR156 binding site and were highly expressed in the erect shoots, while AP2-like genes were more highly expressed in the prostrate shoots but simultaneously lacked any miR172 binding site. MiR156 was detected at a higher concentration in the prostrate shoots. Thus, the mechanism for the vegetative to reproductive transition of sporophytes probably originated in the common ancestor of vascular plants and must have experienced stepwise development during evolution.
Collapse
Affiliation(s)
- Jun Sun
- Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou 416000, China
| | | |
Collapse
|
13
|
Zhuge XL, Xie T, Du X, Zhang XX, Hu JP, Yang HL. Non-synonymous substitution of evolutionarily conserved residue in Tau class glutathione transferases alters structural and catalytic features. Int J Biol Macromol 2022; 197:39-48. [PMID: 34896469 DOI: 10.1016/j.ijbiomac.2021.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/05/2022]
Abstract
Plant-specific tau glutathione transferases (GSTs) are basically involved in catalysing γ-glutathione (GSH)-dependent conjugation reactions with pesticides and herbicides, which play an important role in the detoxification of pollutants. Given the lack of systematic biochemical and structural information on tau GSTs, the study of their mediated defence mechanisms against toxic compounds has been greatly hindered. Here, we reveal the importance of the Ile residue closely interacting with GSH for the structural stability and catalytic function of GST. Evolutionary conservation analysis indicated that the crucial G-site Ile55 in the SbGSTU6 was converted to Thr53 of SbGSTU7. The comparative biochemical data on SbGSTU6, SbGSTU7 and their mutants showed that the substitution of Ile by Thr caused significant decrease in the affinity and catalytic efficiency of the GSTs. The unfavourable structural flexibility and pKa distribution of the active cavity residues were also demonstrated. Crystallography studies and molecular dynamics simulations showed that the conversion resulted in the hydrogen bond recombination with GSH and conformational rearrangement of GST active cavity, in which the Ile residue was more conducive to the formation of enzyme substrate complexes. The extensive biochemical and structural data not only reveal the critical role of the conserved G-site Ile residue in catalysing GSH-conjugate reactions but also provide valuable resources for the development of GST engineering in analytical and agricultural biotechnology.
Collapse
Affiliation(s)
- Xiang-Lin Zhuge
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tao Xie
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu 610106, China
| | - Xin Du
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiu-Xing Zhang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian-Ping Hu
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu 610106, China
| | - Hai-Ling Yang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Su K, Wu Z, Liu Y, Jiang S, Ma D, Wang Y, Fu C. Highly efficient detoxification of dinitrotoluene by transgenic switchgrass overexpressing bacterial nitroreductase. PLANT, CELL & ENVIRONMENT 2021; 44:3173-3183. [PMID: 34008171 DOI: 10.1111/pce.14099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Dinitrotoluene (DNT) has been extensively used in manufacturing munitions, polyurethane foams and other important chemical products. However, it is highly toxic and mutagenic to most organisms. Here, we synthesized a codon-optimized bacterial nitroreductase gene, NfsI, for plant expression. The kinetic analysis indicates that the recombinant NfsI can detoxify both 2,4-DNT and its sulfonate (DNTS), while it has a 97.6-fold higher catalytic efficiency for 2,4-DNT than DNTS. Furthermore, we overexpressed NfsI in switchgrass (Panicum virgatum L.), which is a multiple-purpose crop used for fodder and biofuel production as well as phytoremediation. The 2,4-DNT treatment inhibited root elongation of wild-type switchgrass plants and promoted reactive oxygen species (ROS) accumulation in roots. In contrast, overexpression of NfsI in switchgrass significantly alleviated 2,4-DNT-induced root growth inhibition and ROS overproduction. Thus, the NfsI overexpressing transgenic switchgrass plant removed 94.1% 2,4-DNT after 6 days, whose efficiency was 1.7-fold higher than control plants. Moreover, the comparative transcriptome analysis suggests that 22.9% of differentially expressed genes induced by 2,4-DNT may participate in NfsI-mediated 2,4-DNT detoxification in switchgrass. Our work sheds light on the function of NfsI during DNT phytoremediation for the first time, revealing the application potential of switchgrass plants engineered with NfsI.
Collapse
Affiliation(s)
- Kunlong Su
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yuchen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shanshan Jiang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dongmei Ma
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- School of ecology environment, Ningxia University, Yinchuan, China
| | - Yan Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Gao JJ, Peng RH, Zhu B, Tian YS, Xu J, Wang B, Fu XY, Han HJ, Wang LJ, Zhang FJ, Zhang WH, Deng YD, Wang Y, Li ZJ, Yao QH. Enhanced phytoremediation of TNT and cobalt co-contaminated soil by AfSSB transformed plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112407. [PMID: 34119926 DOI: 10.1016/j.ecoenv.2021.112407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application. The present research showed that expressing the Acidithiobacillus ferrooxidans single-strand DNA-binding protein gene (AfSSB) can improve the tolerance of Arabidopsis and tall fescue to TNT and cobalt. Compared to control plants, the AfSSB transformed Arabidopsis and tall fescue exhibited enhanced phytoremediation of TNT and cobalt separately contaminated soil and co-contaminated soil. The comet analysis revealed that the AfSSB transformed Arabidopsis suffer reduced DNA damage than control plants under TNT or cobalt exposure. In addition, the proteomic analysis revealed that AfSSB improves TNT and cobalt tolerance by strengthening the reactive superoxide (ROS) scavenging system and the detoxification system. Results presented here serve as strong theoretical support for the phytoremediation potential of organic and metal pollutants mediated by single-strand DNA-binding protein genes. SUMMARIZES: This is the first report that AfSSB enhances phytoremediation of 2,4,6-trinitrotoluene and cobalt separately contaminated and co-contaminated soil.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Zhu
- Key Laboratory for the Conservation Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong-Juan Han
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Li-Juan Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fu-Jian Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wen-Hui Zhang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yong-Dong Deng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu- Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhen-Jun Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
16
|
Kalita J, Shukla H, Tripathi T. Engineering glutathione S-transferase with a point mutation at conserved F136 residue increases the xenobiotic-metabolizing activity. Int J Biol Macromol 2020; 163:1117-1126. [PMID: 32663558 DOI: 10.1016/j.ijbiomac.2020.07.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes that play major roles in a wide range of biological processes, including cellular detoxification, biosynthesis, metabolism, and transport. The dynamic structural scaffold and diverse functional roles of GSTs make them important for enzyme engineering and for exploring novel biotechnological applications. The present study reported a significant gain-of-function activity in GST caused by a point mutation at the conserved F136 residue. The fluorescence quenching and kinetic data suggested that both binding affinity and catalytic efficiency of the mutant enzyme to the substrates 1-chloro-2,4-dinitrobenzene (CDNB), as well as the glutathione (GSH), is increased. Molecular docking showed that the mutation improves the binding interactions of the GSH with several binding-site residues. The simulation of molecular dynamics revealed that the mutant enzyme gained increased structural rigidity than the wild-type enzyme. The mutation also altered the residue interaction network (RIN) of the GSH-binding residues. These phenomena suggested that mutations led to conformational alterations and dominant differential motions in the enzyme that lead to increased rigidity and modifications in RIN. Collectively, engineering GST with a single point mutation at conserved F136 can significantly increase its xenobiotic activity by increasing the catalytic efficiency that may be exploited for biotechnological applications.
Collapse
Affiliation(s)
- Jupitara Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
17
|
Hernández Estévez I, Rodríguez Hernández M. “Plant Glutathione S-transferases: An overview”. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.plgene.2020.100233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Shemer B, Shpigel E, Glozman A, Yagur-Kroll S, Kabessa Y, Agranat AJ, Belkin S. Genome-wide gene-deletion screening identifies mutations that significantly enhance explosives vapor detection by a microbial sensor. N Biotechnol 2020; 59:65-73. [PMID: 32622861 DOI: 10.1016/j.nbt.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022]
Abstract
Genetically engineered microbial biosensors, capable of detecting traces of explosives residues above buried military ordnance and emitting an optical signal in response, may potentially serve for the standoff detection of buried landmines. A promising candidate for such an application is a previously reported Escherichia coli-based reporter strain that employs the yqjF gene promoter as its sensing element; however, for this sensor to be able to detect actual landmines reliably, it was necessary for its detection sensitivity and signal intensity to be enhanced. In this study, a high-throughput approach was employed to screen the effects of individual gene deletions on yqjF activation by 2,4-dinitrotoluene (DNT). Several genes were identified, the deletion of which elicited a significant enhancement of yqjF induction by DNT. The most promising of these mutations were introduced into the sensor strain, individually or in pairs, yielding a considerable increase in signal intensity and a lowering of the detection threshold. A strain harboring two of the identified mutations, ygdD and eutE, appears to be the most sensitive microbial biosensor currently described for the detection of traces of landmine explosives.
Collapse
Affiliation(s)
- Benjamin Shemer
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Etai Shpigel
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Anat Glozman
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Sharon Yagur-Kroll
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Yosssef Kabessa
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Israel
| | - Aharon J Agranat
- Department of Applied Physics and the Brojde Center for Innovative Engineering and Computer Science, The Hebrew University of Jerusalem, Israel
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
19
|
Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani MK. Glutathione S-transferase: a versatile protein family. 3 Biotech 2020; 10:321. [PMID: 32656054 PMCID: PMC7320970 DOI: 10.1007/s13205-020-02312-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Glutathione-S transferase (GST) is a most ancient protein superfamily of multipurpose roles and evolved principally from gene duplication of an ancestral GSH binding protein. They have implemented in diverse plant functions such as detoxification of xenobiotic, secondary metabolism, growth and development, and majorly against biotic and abiotic stresses. The vital structural features of GSTs like highly divergent functional topographies, conserved integrated architecture with separate binding pockets for substrates and ligand, the stringent structural fidelity with high Tm values (50º-60º), and stress-responsive cis-regulatory elements in the promoter region offer this protein as most flexible plant protein for plant breeding approaches, biotechnological applications, etc. This review article summarizes the recent information of GST evolution, and their distribution and structural features with emphasis on the assorted roles of Ser and Cys GSTs with the signature motifs in their active sites, alongside their recent biotechnological application in the area of agriculture, environment, and nanotechnology have been highlighted.
Collapse
Affiliation(s)
- Swati Vaish
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh 225003 India
| | - Divya Gupta
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh 225003 India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 India
| | - Mahesh Kumar Basantani
- Faculty of Bioscience, Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh India
| |
Collapse
|
20
|
Horváth E, Bela K, Gallé Á, Riyazuddin R, Csomor G, Csenki D, Csiszár J. Compensation of Mutation in Arabidopsis glutathione transferase ( AtGSTU) Genes under Control or Salt Stress Conditions. Int J Mol Sci 2020; 21:E2349. [PMID: 32231125 PMCID: PMC7177659 DOI: 10.3390/ijms21072349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferases (GSTs) play a crucial role in detoxification processes due to the fact of their glutathione (GSH) conjugating activity, and through glutathione peroxidase or dehydroascorbate reductase (DHAR) activities, they influence the redox state of GSH and ascorbate (AsA). The plant-specific tau (GSTU) group is the largest class of Arabidopsis GSTs, and their members are involved in responses to different abiotic stresses. We investigated the effect of salt stress on two-week-old Arabidopsis thaliana wild-type (Col-0), Atgstu19 and Atgstu24 mutant plants after applying 150 mM NaCl for two days. The Atgstu19 seedlings had lower GST activity and vitality both under control conditions and after salt stress than the wild-type, but the level of total ROS was similar to the Col-0 plants. The GST activity of the knockout Atgstu24 mutant was even higher under control conditions compared to the Col-0 plants, while the ROS level and its vitality did not differ significantly from the wild-type. Analysis of the AtGSTU expression pattern revealed that the mutation in a single AtGSTU gene was accompanied by the up- and downregulation of several other AtGSTUs. Moreover, elevated AsA and GSH levels, an altered GSH redox potential and increased DHAR and glutathione reductase activities could help to compensate for the mutation of AtGSTU genes. The observed changes in the mutants suggest that the investigated isoenzymes influence the redox homeostasis under control conditions and after NaCl treatment in Arabidopsis seedlings. These data indicate for the first time the more general role of a temporary shift of redox status as part of GST mechanisms and regulation.
Collapse
Affiliation(s)
- Edit Horváth
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary;
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Gábor Csomor
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
| | - Dorottya Csenki
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (K.B.); (R.R.); (G.C.); (D.C.)
| |
Collapse
|
21
|
Badia MB, Maurino VG, Pavlovic T, Arias CL, Pagani MA, Andreo CS, Saigo M, Drincovich MF, Gerrard Wheeler MC. Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:653-665. [PMID: 31626366 DOI: 10.1111/tpj.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 05/29/2023]
Abstract
In acidic soils, aluminum (Al) toxicity is a significant limitation to crop production worldwide. Given its Al-binding capacity, malate allows internal as well as external detoxification strategies to cope with Al stress, but little is known about the metabolic processes involved in this response. Here, we analyzed the relevance of NADP-dependent malic enzyme (NADP-ME), which catalyzes the oxidative decarboxylation of malate, in Al tolerance. Plants lacking NADP-ME1 (nadp-me1) display reduced inhibition of root elongation along Al treatment compared with the wild type (wt). Moreover, wt roots exposed to Al show a drastic decrease in NADP-ME1 transcript levels. Although malate levels in seedlings and root exudates are similar in nadp-me1 and wt, a significant increase in intracellular malate is observed in roots of nadp-me1 after long exposure to Al. The nadp-me1 plants also show a lower H2 O2 content in root apices treated with Al and no inhibition of root elongation when exposed to glutamate, an amino acid implicated in Al signaling. Proteomic studies showed several differentially expressed proteins involved in signal transduction, primary metabolism and protection against biotic and other abiotic stimuli and redox processes in nadp-me1, which may participate directly or indirectly in Al tolerance. The results indicate that NADP-ME1 is involved in adjusting the malate levels in the root apex, and its loss results in an increased content of this organic acid. Furthermore, the results suggest that NADP-ME1 affects signaling processes, such as the generation of reactive oxygen species and those that involve glutamate, which could lead to inhibition of root growth.
Collapse
Affiliation(s)
- Mariana Beatriz Badia
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Verónica Graciela Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Cintia Lucía Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María Ayelén Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Carlos Santiago Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mariel Claudia Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
22
|
Wei L, Zhu Y, Liu R, Zhang A, Zhu M, Xu W, Lin A, Lu K, Li J. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep 2019; 9:9196. [PMID: 31235772 PMCID: PMC6591421 DOI: 10.1038/s41598-019-45744-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/14/2019] [Indexed: 11/09/2022] Open
Abstract
Glutathione transferases (GSTs) are multifunctional enzymes that play important roles in plant development and responses to biotic and abiotic stress. However, a systematic analysis of GST family members in Brassica napus has not yet been reported. In this study, we identified 179 full-length GST genes in B. napus, 44.2% of which are clustered on various chromosomes. In addition, we identified 141 duplicated GST gene pairs in B. napus. Molecular evolutionary analysis showed that speciation and whole-genome triplication played important roles in the divergence of the B. napus GST duplicated genes. Transcriptome analysis of 21 tissues at different developmental stages showed that 47.6% of duplicated GST gene pairs have divergent expression patterns, perhaps due to structural divergence. We constructed a GST gene coexpression network with genes encoding various transcription factors (NAC, MYB, WRKY and bZIP) and identified six modules, including genes expressed during late seed development (after 40 days; BnGSTU19, BnGSTU20 and BnGSTZ1) and in the seed coat (BnGSTF6 and BnGSTF12), stamen and anther (BnGSTF8), root and stem (BnGSTU21), leaves and funiculus, as well as during the late stage of pericarp development (after 40 days; BnGSTU12 and BnGSTF2) and in the radicle during seed germination (BnGSTF14, BnGSTU1, BnGSTU28, and BnGSTZ1). These findings lay the foundation for elucidating the roles of GSTs in B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yan Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ruiying Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Meicheng Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wen Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ai Lin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
23
|
Rylott EL, Bruce NC. Right on target: using plants and microbes to remediate explosives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1051-1064. [PMID: 31056922 DOI: 10.1080/15226514.2019.1606783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While the immediate effect of explosives in armed conflicts is frequently in the public eye, until recently, the insidious, longer-term corollaries of these toxic compounds in the environment have gone largely unnoticed. Now, increased public awareness and concern are factors behind calls for more effective remediation solutions to these global pollutants. Scientists have been working on bioremediation projects in this area for several decades, characterizing genes, biochemical detoxification pathways, and field-applicable plant species. This review covers the progress made in understanding the fundamental biochemistry behind the detoxification of explosives, including new shock-insensitive explosive compounds; how field-relevant plant species have been characterized and genetically engineered; and the major roles that endophytic and rhizospheric microorganisms play in the detoxification of organic pollutants such as explosives.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| |
Collapse
|
24
|
Zhang L, Rylott EL, Bruce NC, Strand SE. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT. PLANTA 2019; 249:1007-1015. [PMID: 30488285 DOI: 10.1007/s00425-018-3057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Transgenic western wheatgrass degrades the explosive RDX and detoxifies TNT. Contamination, from the explosives, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and 2, 4, 6-trinitrotoluene (TNT), especially on live-fire training ranges, threatens environmental and human health. Phytoremediation is an approach that could be used to clean-up explosive pollution, but it is hindered by inherently low in planta RDX degradation rates, and the high phytotoxicity of TNT. The bacterial genes, xplA and xplB, confer the ability to degrade RDX in plants, and a bacterial nitroreductase gene nfsI enhances the capacity of plants to withstand and detoxify TNT. While the previous studies have used model plant species to demonstrate the efficacy of this technology, trials using plant species able to thrive in the challenging environments found on military training ranges are now urgently needed. Perennial western wheatgrass (Pascopyrum smithii) is a United States native species that is broadly distributed across North America, well-suited for phytoremediation, and used by the US military to re-vegetate military ranges. Here, we present the first report of the genetic transformation of western wheatgrass. Plant lines transformed with xplA, xplB, and nfsI removed significantly more RDX from hydroponic solutions and retained much lower, or undetectable, levels of RDX in their leaf tissues when compared to wild-type plants. Furthermore, these plants were also more resistant to TNT toxicity, and detoxified more TNT than wild-type plants. This is the first study to engineer a field-applicable grass species capable of both RDX degradation and TNT detoxification. Together, these findings present a promising biotechnological approach to sustainably contain, remove RDX and TNT from training range soil and prevent groundwater contamination.
Collapse
Affiliation(s)
- Long Zhang
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA
| | - Elizabeth L Rylott
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Stuart E Strand
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA.
| |
Collapse
|
25
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
26
|
Landa P, Prerostova S, Langhansova L, Marsik P, Vankova R, Vanek T. Transcriptomic response of Arabidopsis thaliana roots to naproxen and praziquantel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:301-310. [PMID: 30273854 DOI: 10.1016/j.ecoenv.2018.09.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Exposition to pharmaceutical compounds released to the environment is considered as a potential risk for various organisms. We exposed Arabidopsis thaliana plants to naproxen (NAP) and praziquantel (PZQ) in 5 µM concentration for 2 days and recorded transcriptomic response in their roots with the aim to estimate ecotoxicity and to identify gene candidates potentially involved in metabolism of both compounds. Nonsteroidal anti-inflammatory drug NAP up-regulated 105 and down-regulated 29 genes (p-value ≤ 0.1, fold change ≥ 2), while anthelmintic PZQ up-regulated 389 and down-regulated 353 genes with more rigorous p-value ≤ 0.001 (fold change ≥ 2). High number of up-regulated genes coding for heat shock proteins and other genes involved in response to biotic and abiotic stresses as well as down-regulation of genes involved in processes such as cell proliferation, transcription and water transport indicates serious negative effect of PZQ. NAP up-regulated mostly genes involved in various biological processes and signal transduction and down-regulated mainly genes involved in signal transduction and electron transport or energy pathways. Further, two cytochrome P450s (demethylation) and one methyltransferase (methylation of carboxyl group) were identified as candidates for phase I and several glutathione- and glycosyltransferases (conjugation) for phase II of NAP metabolism. Cytochrome P450s, glutathione and glycosyltransferases seem to play role also in metabolism of PZQ. Up-regulation of several ABC and MATE transporters by NAP and PZQ indicated their role in transport of both compounds.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Lenka Langhansova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Petr Marsik
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic.
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic.
| |
Collapse
|
27
|
Tzafestas K, Ahmad L, Dani MP, Grogan G, Rylott EL, Bruce NC. Structure-Guided Mechanisms Behind the Metabolism of 2,4,6-Trinitrotoluene by Glutathione Transferases U25 and U24 That Lead to Alternate Product Distribution. FRONTIERS IN PLANT SCIENCE 2018; 9:1846. [PMID: 30631331 PMCID: PMC6315187 DOI: 10.3389/fpls.2018.01846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The explosive xenobiotic 2,4,6-trinitrotoluene (TNT) is a major worldwide environmental pollutant and its persistence in the environment presents health and environmental concerns. The chemical structure of TNT dictates that biological detoxification pathways follow predominantly reductive transformation of the nitro groups, and as a result, TNT is notoriously recalcitrant to mineralization in the environment. Plant-based technologies to remediate this toxic pollutant rely on a solid understanding of the biochemical detoxification pathways involved. Toward this, two Arabidopsis Tau class glutathione transferases, GSTU24 and GSTU25, have been identified that catalyze the formation of three TNT-glutathionylated conjugates. These two GSTs share 79% identity yet only GSTU25 catalyzes the substitution of a nitro group for sulfur to form 2-glutathionyl-4,6-dinitrotoluene. The production of this compound is of interest because substitution of a nitro group could lead to destabilization of the aromatic ring, enabling subsequent biodegradation. To identify target amino acids within GSTU25 that might be involved in the formation of 2-glutathionyl-4,6-dinitrotoluene, the structure for GSTU25 was determined, in complex with oxidized glutathione, and used to inform site-directed mutagenesis studies. Replacement of five amino acids in GSTU24 established a conjugate profile and activity similar to that found in GSTU25. These findings contribute to the development of plant-based remediation strategies for the detoxification of TNT in the environment.
Collapse
Affiliation(s)
- Kyriakos Tzafestas
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Laziana Ahmad
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - M. Paulina Dani
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Elizabeth L. Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
28
|
Nisar N, Cheema KJ, Powell G, Bennett M, Chaudhary SU, Qadri R, Yang Y, Azam M, Rossiter JT. Reduced metabolites of nitroaromatics are distributed in the environment via the food chain. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:170-179. [PMID: 29800911 DOI: 10.1016/j.jhazmat.2018.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Increased industrial processes have introduced emerging toxic pollutants into the environment. Phytoremediation is considered to be a very useful, economical and ecofriendly way of controlling these pollutants, however, certain pollutants can potentially travel through the food chain and accumulate at hazardous levels. Four isomers of dinitrotoluenes (DNT) were investigated and observed their potential toxicity towards A. thaliana. Two different aphid species (generalist and specialist) were allowed to feed on plants treated with DNTs and toxicity to aphids determined. Reduced metabolites of DNT (in both plant and aphids) were recovered and quantified through GC-MS analyses. 2,6-DNT was observed to be the toxic of the DNTs tested. Complete metabolism of DNTs to their reduced products was never achieved for higher concentrations. Regioselectivity was observed in the case of 2,4-DNT, with 4A2NT as the dominant isomer. Feeding aphids showed a similar toxicity pattern for DNT isomers as host plants. Metabolites were recovered from the body of aphids, demonstrating the potential transport of metabolites through the food chain. Plants show varied toxicity responses towards the DNT isomers. Aphids fed on A. thaliana plants treated with DNTs were shown to have ANTs present, which reflects the propagation of DNT metabolites through the food chain.
Collapse
Affiliation(s)
- Numrah Nisar
- Imperial College London, UK; Lahore College for Women University, Lahore, Pakistan(1).
| | | | - Glen Powell
- Imperial College London, UK; NIAB EMR, East Malling, UK.
| | | | | | - Rashad Qadri
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan, China.
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan, China
| | - Muhammad Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
29
|
Thijs S, Sillen W, Truyens S, Beckers B, van Hamme J, van Dillewijn P, Samyn P, Carleer R, Weyens N, Vangronsveld J. The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1134. [PMID: 30123233 PMCID: PMC6085565 DOI: 10.3389/fpls.2018.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/13/2018] [Indexed: 05/23/2023]
Abstract
Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.
Collapse
Affiliation(s)
- Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sascha Truyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram Beckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Pieter van Dillewijn
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Pieter Samyn
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
30
|
Schroer HW, Li X, Lehmler HJ, Just CL. Metabolism and Photolysis of 2,4-Dinitroanisole in Arabidopsis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13714-13722. [PMID: 29131608 PMCID: PMC5839145 DOI: 10.1021/acs.est.7b04220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
New insensitive munitions explosives, including 2,4-dinitroanisole (DNAN), are replacing traditional explosive compounds to protect soldiers and simplify transport logistics. Despite the occupational safety benefits of these new explosives, feasible strategies for cleaning up DNAN from soil and water have not been developed. Here, we evaluate the metabolism of DNAN by the model plant Arabidopsis to determine whether phytoremediation can be used to clean up contaminated sites. Furthermore, we evaluate the role of photodegradation of DNAN and its plant metabolites within Arabidopsis leaves to determine the potential impact of photolysis on the phytoremediation of contaminants. When exposed to DNAN for three days, Arabidopsis took up and metabolized 67% of the DNAN in hydroponic solution. We used high resolution and tandem mass spectrometry in combination with stable-isotope labeled DNAN to confirm ten phase II DNAN metabolites in Arabidopsis. The plants separately reduced both the para- and ortho-nitro groups and produced glycosylated products that accumulated within plant tissues. Both DNAN and a glycosylated metabolite were subsequently photolyzed within leaf tissue under simulated sunlight, and [15N2]DNAN yielded 15NO2- in leaves. Therefore, photolysis inside leaves may be an important, yet under-explored, phytoremediation mechanism.
Collapse
Affiliation(s)
- Hunter W. Schroer
- Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Occupational & Environmental Health, The University of Iowa, Iowa City, Iowa 52246, United States
| | - Hans-Joachim Lehmler
- Occupational & Environmental Health, The University of Iowa, Iowa City, Iowa 52246, United States
| | - Craig L. Just
- Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- . Phone: 319-335-5051. Fax: 319-335-5660
| |
Collapse
|
31
|
Tognetti VB, Bielach A, Hrtyan M. Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. PLANT, CELL & ENVIRONMENT 2017; 40:2586-2605. [PMID: 28708264 DOI: 10.1111/pce.13021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/17/2017] [Accepted: 06/24/2017] [Indexed: 05/18/2023]
Abstract
To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.
Collapse
Affiliation(s)
- Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
32
|
Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Biotechnol 2017; 38:511-528. [PMID: 28936894 DOI: 10.1080/07388551.2017.1375890] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.
Collapse
Affiliation(s)
- Fereniki Perperopoulou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Fotini Pouliou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Nikolaos E Labrou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| |
Collapse
|
33
|
Zhang L, Rylott EL, Bruce NC, Strand SE. Phytodetoxification of TNT by transplastomic tobacco (Nicotiana tabacum) expressing a bacterial nitroreductase. PLANT MOLECULAR BIOLOGY 2017; 95:99-109. [PMID: 28762129 DOI: 10.1007/s11103-017-0639-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT. The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.
Collapse
Affiliation(s)
- Long Zhang
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA
| | | | - Neil C Bruce
- CNAP, Department of Biology, University of York, York, YO10 5DD, UK
| | - Stuart E Strand
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA.
| |
Collapse
|
34
|
Landa P, Prerostova S, Langhansova L, Marsik P, Vanek T. Transcriptomic response of Arabidopsis thaliana (L.) Heynh. roots to ibuprofen. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:695-700. [PMID: 28398082 DOI: 10.1080/15226514.2016.1267697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface waters in urban areas are contaminated by ibuprofen (IBP), a popular and extensively used anti-inflammatory drug. In this study, we investigated the transcriptomic response in Arabidopsis thaliana (L.) Heynh. roots with the aim of revealing genes that are potentially involved in IBP detoxification and elucidating the effect of IBP on plants. IBP upregulated 63 and downregulated 38 transcripts (p-value < 0.1, fold change ≥2) after 2-day exposure to a 5-µM (1.03 mg/L) concentration of IBP under hydroponic conditions. Although the IBP concentration used in the experiment was highly relative to the concentrations found in rivers and wastewater, the number of genes with transcriptional changes was relatively low. The upregulation of cytochrome P450s, glutathione S-transferases, and UDP-glycosyltransferases indicates the occurrence of IBP oxidation in the first phase, followed by conjugation with glutathione and sugar in the second detoxification phase. ABC transporters could be involved in the transport of IBP and its metabolites. The identification of genes potentially involved in IBP detoxification could be useful in an IBP phytoremediation approach.
Collapse
Affiliation(s)
- Premysl Landa
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Sylva Prerostova
- b Laboratory of Hormonal Regulations in Plants , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
- c Department of Experimental Plant Biology, Faculty of Science , Charles University in Prague , Prague , Czech Republic
| | - Lenka Langhansova
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Petr Marsik
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Tomas Vanek
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| |
Collapse
|
35
|
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. PLANT CELL REPORTS 2017; 36:791-805. [PMID: 28391528 DOI: 10.1007/s00299-017-2139-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.
Collapse
Affiliation(s)
- Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Christos Kissoudis
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Georgia Voulgari
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| |
Collapse
|
36
|
Zhang L, Routsong R, Nguyen Q, Rylott EL, Bruce NC, Strand SE. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:624-633. [PMID: 27862819 PMCID: PMC5399000 DOI: 10.1111/pbi.12661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 05/13/2023]
Abstract
The deposition of toxic munitions compounds, such as hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), on soils around targets in live-fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co-contaminating explosive 2, 4, 6-trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild-type plants. Soil columns planted with the best-performing switchgrass line were able to prevent leaching of RDX through a 0.5-m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater.
Collapse
Affiliation(s)
- Long Zhang
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| | - Ryan Routsong
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| | - Quyen Nguyen
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| | | | | | - Stuart E. Strand
- Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
37
|
Tzafestas K, Razalan MM, Gyulev I, Mazari AMA, Mannervik B, Rylott EL, Bruce NC. Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6-trinitrotoluene. THE NEW PHYTOLOGIST 2017; 214:294-303. [PMID: 27924627 DOI: 10.1111/nph.14326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
The explosive 2,4,6-trinitrotoluene (TNT) is a significant, global environmental pollutant that is both toxic and recalcitrant to degradation. Given the sheer scale and inaccessible nature of contaminated areas, phytoremediation may be a viable clean-up approach. Here, we have characterized a Drosophila melanogaster glutathione transferase (DmGSTE6) which has activity towards TNT. Recombinantly expressed, purified DmGSTE6 produces predominantly 2-glutathionyl-4,6-dinitrotoluene, and has a 2.5-fold higher Maximal Velocity (Vmax ), and five-fold lower Michaelis Constant (Km ) than previously characterized TNT-active Arabidopsis thaliana (Arabidopsis) GSTs. Expression of DmGSTE6 in Arabidopsis conferred enhanced resistance to TNT, and increased the ability to remove TNT from contaminated soil relative to wild-type plants. Arabidopsis lines overexpressing TNT-active GSTs AtGST-U24 and AtGST-U25 were compromised in biomass production when grown in the absence of TNT. This yield drag was not observed in the DmGSTE6-expressing Arabidopsis lines. We hypothesize that increased levels of endogenous TNT-active GSTs catalyse excessive glutathionylation of endogenous substrates, depleting glutathione pools, an activity that DmGST may lack. In conclusion, DmGSTE6 has activity towards TNT, producing a compound with potential for further biodegradation. Selecting or manipulating plants to confer DmGSTE6-like activity could contribute towards development of phytoremediation strategies to clean up TNT from polluted military sites.
Collapse
Affiliation(s)
- Kyriakos Tzafestas
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Maria M Razalan
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Ivan Gyulev
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Aslam M A Mazari
- Department of Neurochemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
38
|
Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G. Structural evidence for Arabidopsis glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. FEBS Open Bio 2016; 7:122-132. [PMID: 28174680 PMCID: PMC5292665 DOI: 10.1002/2211-5463.12168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 02/02/2023] Open
Abstract
Glutathione transferases (GSTs) are involved in many processes in plant biochemistry, with their best characterised role being the detoxification of xenobiotics through their conjugation with glutathione. GSTs have also been implicated in noncatalytic roles, including the binding and transport of small heterocyclic ligands such as indole hormones, phytoalexins and flavonoids. Although evidence for ligand binding and transport has been obtained using gene deletions and ligand binding studies on purified GSTs, there has been no structural evidence for the binding of relevant ligands in noncatalytic sites. Here we provide evidence of noncatalytic ligand‐binding sites in the phi class GST from the model plant Arabidopsis thaliana, AtGSTF2, revealed by X‐ray crystallography. Complexes of the AtGSTF2 dimer were obtained with indole‐3‐aldehyde, camalexin, the flavonoid quercetrin and its non‐rhamnosylated analogue quercetin, at resolutions of 2.00, 2.77, 2.25 and 2.38 Å respectively. Two symmetry‐equivalent‐binding sites (L1) were identified at the periphery of the dimer, and one more (L2) at the dimer interface. In the complexes, indole‐3‐aldehyde and quercetrin were found at both L1 and L2 sites, but camalexin was found only at the L1 sites and quercetin only at the L2 site. Ligand binding at each site appeared to be largely determined through hydrophobic interactions. The crystallographic studies support previous conclusions made on ligand binding in noncatalytic sites by AtGSTF2 based on isothermal calorimetry experiments (Dixon et al. (2011) Biochem J 438, 63–70) and suggest a mode of ligand binding in GSTs commensurate with a possible role in ligand transport.
Collapse
Affiliation(s)
- Laziana Ahmad
- York Structural Biology Laboratory Department of Chemistry University of York UK; Department of Biology Centre for Novel Agricultural Products University of York UK
| | - Elizabeth L Rylott
- Department of Biology Centre for Novel Agricultural Products University of York UK
| | - Neil C Bruce
- Department of Biology Centre for Novel Agricultural Products University of York UK
| | - Robert Edwards
- School of Agriculture, Food & Rural Development Newcastle University UK
| | - Gideon Grogan
- York Structural Biology Laboratory Department of Chemistry University of York UK
| |
Collapse
|
39
|
Transcriptional reprogramming of genes related to ascorbate and glutathione biosynthesis, turnover and translocation in aphid-challenged maize seedlings. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2016; 92:643-659. [PMID: 27796720 DOI: 10.1007/s11103-016-0531-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/19/2016] [Indexed: 05/20/2023]
Abstract
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.
Collapse
Affiliation(s)
- Chih-Wei Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Madhunita Bakshi
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Michael Reichelt
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Khan BR, Wherritt DJ, Huhman D, Sumner LW, Chapman KD, Blancaflor EB. Malonylation of Glucosylated N-Lauroylethanolamine: A NEW PATHWAY THAT DETERMINES N-ACYLETHANOLAMINE METABOLIC FATE IN PLANTS. J Biol Chem 2016; 291:27112-27121. [PMID: 27856641 DOI: 10.1074/jbc.m116.751065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/02/2016] [Indexed: 11/06/2022] Open
Abstract
N-Acylethanolamines (NAEs) are bioactive fatty acid derivatives present in trace amounts in many eukaryotes. Although NAEs have signaling and physiological roles in animals, little is known about their metabolic fate in plants. Our previous microarray analyses showed that inhibition of Arabidopsis thaliana seedling growth by exogenous N-lauroylethanolamine (NAE 12:0) was accompanied by the differential expression of multiple genes encoding small molecule-modifying enzymes. We focused on the gene At5g39050, which encodes a phenolic glucoside malonyltransferase 1 (PMAT1), to better understand the biological significance of NAE 12:0-induced gene expression changes. PMAT1 expression was induced 3-5-fold by exogenous NAE 12:0. PMAT1 knockouts (pmat1) had reduced sensitivity to the growth-inhibitory effects of NAE 12:0 compared with wild type leading to the hypothesis that PMAT1 might be a previously uncharacterized regulator of NAE metabolism in plants. To test this hypothesis, metabolic profiling of wild-type and pmat1 seedlings treated with NAE 12:0 was conducted. Wild-type seedlings treated with NAE 12:0 accumulated glucosylated and malonylated forms of this NAE species, and structures were confirmed using nuclear magnetic resonance (NMR) spectroscopy. By contrast, only the peak corresponding to NAE 12:0-glucoside was detected in pmat1 Recombinant PMAT1 catalyzed the reaction converting NAE 12:0-glucoside to NAE 12:0-mono- or -dimalonylglucosides providing direct evidence that this enzyme is involved in NAE 12:0-glucose malonylation. Taken together, our results indicate that glucosylation of NAE 12:0 by a yet to be determined glucosyltransferase and its subsequent malonylation by PMAT1 could represent a mechanism for modulating the biological activities of NAEs in plants.
Collapse
Affiliation(s)
- Bibi Rafeiza Khan
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Daniel J Wherritt
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249
| | - David Huhman
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Lloyd W Sumner
- the Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, and
| | - Kent D Chapman
- the Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220
| | - Elison B Blancaflor
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401,
| |
Collapse
|
42
|
Erinle KO, Jiang Z, Li M, Su G, Ma B, Ma Y, Zhang Y. Oxidative stress response induced in an atrazine phytoremediating plant: physiological responses of Pennisetum glaucum to high atrazine concentrations. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1187-1194. [PMID: 27258006 DOI: 10.1080/15226514.2016.1193464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This research presented here, for the first time, elucidates the responses of several antioxidants in Pennisetum leaves exposed to varying concentrations of atrazine (0 - 200 mg•kg-1). Pennisetum has been reported to be resistant to atrazine; however, its physiological response to high concentrations (≥ 50 mg•kg-1) of atrazine is not well documented. The contents of reduced (AsA) and oxidized (DHA) ascorbate increased significantly with increase in atrazine concentration and exposure time; but the increase was more evident under higher (50 and 100 mg•kg-1) atrazine concentrations. Increase in atrazine concentration to 200 mg•kg-1 significantly decreased AsA, but increased DHA content, throughout the experiment. Seedlings treated with 200 mg•kg-1 atrazine showed significantly lowest reduced glutathione (GSH) content; while oxidized glutathione (GSSG) was not significantly affected, after 68d. Seedlings treated with 100 mg•kg-1 atrazine showed increased Glutathione-S-Transferase (GST) activity after 48 d and 68 d; while treatment with 200 mg•kg-1 atrazine significantly increased Glutathione reductase (GR) after 58d. This result suggests that Pennisetum may tolerate lower atrazine concentrations; However, higher concentrations (≥50 mg•kg-1) which could have longer residency period in the soil, could induce more physiological damage to the plant.
Collapse
Affiliation(s)
- Kehinde Olajide Erinle
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Zhao Jiang
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Mengyuan Li
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Guangxia Su
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Bingbing Ma
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yuheng Ma
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Ying Zhang
- a School of Resources & Environment, Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
43
|
Mazari AMA, Mannervik B. Drosophila GSTs display outstanding catalytic efficiencies with the environmental pollutants 2,4,6-trinitrotoluene and 2,4-dinitrotoluene. Biochem Biophys Rep 2015; 5:141-145. [PMID: 28955816 PMCID: PMC5600427 DOI: 10.1016/j.bbrep.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) and the related 2,4-dinitrotoluene (DNT) are toxic environmental pollutants. The biotransformation and detoxication of these persistent compounds in higher organisms are of great significance from a health perspective as well as for the biotechnological challenge of bioremediation of contaminated soil. We demonstrate that different human glutathione transferases (GSTs) and GSTs from the fruit fly Drosophila melanogaster are catalysts of the biotransformation of TNT and DNT. The human GSTs had significant but modest catalytic activities with both DNT and TNT. However, D. melanogaster GSTE6 and GSTE7 displayed outstanding high activities with both substrates. The explosive TNT is a carcinogenic environmental pollutant spread world-wide. TNT and the related DNT can be detoxified by conjugation with cellular glutathione. Previously studied plant glutathione transferases display modest activity with TNT. We found that human GSTs from four classes have low activity with TNT and DNT. By contrast Drosophila GSTE6 and GSTE7 displayed outstanding TNT and DNT activities.
Collapse
Affiliation(s)
- Aslam M A Mazari
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
44
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
45
|
Affiliation(s)
- Graham Noctor
- Institute of Plant Sciences Paris Saclay (IPS2), UMR 9213/UMR1403, Université Paris Sud, CNRS, INRA, Université d'Evry, Université Paris Diderot, Sorbonne Paris Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
46
|
Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC. Monodehydroascorbate reductase mediates TNT toxicity in plants. Science 2015; 349:1072-5. [DOI: 10.1126/science.aab3472] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Musdal Y, Mannervik B. Substrate specificities of two tau class glutathione transferases inducible by 2,4,6-trinitrotoluene in poplar. Biochim Biophys Acta Gen Subj 2015; 1850:1877-83. [PMID: 26026470 DOI: 10.1016/j.bbagen.2015.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The genome of poplar (Populus trichocarpa) encodes 81 glutathione transferases (GSTs) annotated in eight distinct classes. The tau class is considered the most versatile in the biotransformation of xenobiotics and is composed of 58 GSTs. Two of the enzymes, GSTU16 and GSTU45, have particular interest since their expression is induced by exposure of poplar tissues to 2,4,6-trinitrotoluene (TNT) and could potentially be involved in the metabolism of this toxic environmental contaminant. RESULTS DNA encoding these GSTs was synthesized and the proteins were heterologously expressed in Escherichia coli and the purified enzymes were characterized. MAJOR CONCLUSIONS GSTU16 assayed with a number of conventional GST substrates showed the highest specific activity (60μmolmin⁻¹ mg⁻¹) with phenethyl isothiocyanate, 150-fold higher than that with CDNB. By contrast, GSTU45 showed CDNB as the most active substrate (3.3μmolmin⁻¹ mg⁻¹) whereas all of the 16 alternative substrates tested yielded significantly lower activities. Homology modeling suggested that the aromatic residues Phe10 and Tyr107 in the active site of GSTU16 are promoting the high activity with PEITC and other substrates with aromatic side-chains. Nonetheless, TNT was a poor substrate for GSTU16 as well as for GSTU45 with a specific activity of 0.05nmolmin⁻¹ mg⁻¹ for both enzymes. GENERAL SIGNIFICANCE GSTU16 and GSTU45 do not play a major role in the degradation of TNT in poplar.
Collapse
Affiliation(s)
- Yaman Musdal
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
48
|
Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. PHYTOCHEMISTRY 2015; 112:33-53. [PMID: 25306398 DOI: 10.1016/j.phytochem.2014.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/20/2023]
Abstract
Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France.
| | | | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France
| |
Collapse
|
49
|
Rylott EL, Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Bruce NC. Phytodetoxification of the environmental pollutant and explosive 2,4,6-trinitrotoluene. PLANT SIGNALING & BEHAVIOR 2015; 10:e977714. [PMID: 25654165 PMCID: PMC5154393 DOI: 10.4161/15592324.2014.977714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our recent study highlights the role of 2 glutathione transferases (GSTs) in the detoxification of the environmental pollutant, 2,4,6-trinitrotoluene (TNT) in Arabidopsis thaliana. TNT is toxic and highly resistant to biodegradation in the environment, raising both health and environmental concerns. Two GSTs, GST-U24 and GST-U25, are upregulated in response to TNT treatment, and expressed predominantly in the root tissues; the site of TNT location following uptake. Plants overexpressing GST-U24 and GST-U25 exhibited significantly enhanced ability to withstand and detoxify TNT, and remove TNT from contaminated soil. Analysis of the catalytic activities of these 2 enzymes revealed that they form 3 TNT-glutathionyl products. Of particular interest is 2-glutathionyl-4,6-dinitrotoluene as this represents a potentially favorable step toward subsequent degradation and mineralization of TNT. We demonstrate how GSTs fit into what is already known about pathways for TNT detoxification, and discuss the short and longer-term fate of TNT conjugates in planta.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
- Correspondence to: Elizabeth L Rylott;
| | - Vanda Gunning
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | - Kyriakos Tzafestas
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | - Helen Sparrow
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | | | | | - Neil C Bruce
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| |
Collapse
|