1
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
2
|
Tsuda K. Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102594. [PMID: 38943830 DOI: 10.1016/j.pbi.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
3
|
Singh VP, Jaiswal S, Wang Y, Feng S, Tripathi DK, Singh S, Gupta R, Xue D, Xu S, Chen ZH. Evolution of reactive oxygen species cellular targets for plant development. TRENDS IN PLANT SCIENCE 2024; 29:865-877. [PMID: 38519324 DOI: 10.1016/j.tplants.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shouli Feng
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018, China
| | - Shengchun Xu
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
4
|
Kumari P, Bhatia M, Giri P, Uniyal PL. Mycorrhizal association and its relation with pteridophytes. Front Microbiol 2024; 15:1406891. [PMID: 39056010 PMCID: PMC11269221 DOI: 10.3389/fmicb.2024.1406891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Mycorrhizal association is one of the earliest and diversely distributed symbiotic associations on the Earth. This association helped early terrestrial plants to colonize the land by improved supply of nutrients like phosphate, nitrogen and zinc. It also helped plants to tolerate unfavorable soil conditions with increased water retention capacity, resistance to drought and pathogens. In return, fungi benefitted with carbon as their food source from the plants. More than 80% of terrestrial plants including pteridophytes, gymnosperms and angiosperms are reported to form arbuscular mycorrhizal (AM) association. Plants with root systems appeared on land during the Devonian period and many of them like pteridophytes still exist today. Various molecular and fossil studies confirm that the plants belonging to Ordovician-Devonian are associated with fungi, which are very similar to genus Glomus. AM association is very common in pteridophytes and the growth of its sporophyte and gametophyte is directly affected in the presence of AM association. Pteridophytes as early land plants with root systems have a very significant place in the plant kingdom. They have evolved and adapted to fill various habitats and facilitated early terrestrialization of other land plants by providing suitable niche with the help of AM fungi. In spite of pteridophytes being a very important plant group in the land system, very few reports are available on fungal-pteridophyte association. The present review is an effort to gather information about AM association in pteridophytes that might help in unraveling the evolution and significance of plant and fungi association.
Collapse
Affiliation(s)
- Pratibha Kumari
- Department of Botany, Daulat Ram College, University of Delhi, Delhi, India
| | - Meenam Bhatia
- Department of Botany, Daulat Ram College, University of Delhi, Delhi, India
| | - Priti Giri
- Department of Botany, Faculty of Sciences, University of Delhi, Delhi, India
| | - Prem Lal Uniyal
- Department of Botany, Faculty of Sciences, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Zheng J, Freschet GT, Tedersoo L, Li S, Yan H, Jiang L, Wang H, Ma N, Dai X, Fu X, Kou L. A trait-based root acquisition-defence-decomposition framework in angiosperm tree species. Nat Commun 2024; 15:5311. [PMID: 38906891 PMCID: PMC11192760 DOI: 10.1038/s41467-024-49666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
To adapt to the complex belowground environment, plants make trade-offs between root resource acquisition and defence ability. This includes forming partnerships with different types of root associating microorganisms, such as arbuscular mycorrhizal and ectomycorrhizal fungi. These trade-offs, by mediating root chemistry, exert legacy effects on nutrient release during decomposition, which may, in turn, affect the ability of new roots to re-acquire resources, thereby generating a feedback loop. However, the linkages at the basis of this potential feedback loop remain largely unquantified. Here, we propose a trait-based root 'acquisition-defence-decomposition' conceptual framework and test the strength of relevant linkages across 90 angiosperm tree species. We show that, at the plant species level, the root-fungal symbiosis gradient within the root economics space, root chemical defence (condensed tannins), and root decomposition rate are closely linked, providing support to this framework. Beyond the dichotomy between arbuscular mycorrhizal-dominated versus ectomycorrhizal-dominated systems, we suggest a continuous shift in feedback loops, from 'high arbuscular mycorrhizal symbiosis-low defence-fast decomposition-inorganic nutrition' by evolutionarily ancient taxa to 'high ectomycorrhizal symbiosis-high defence-slow decomposition-organic nutrition' by more modern taxa. This 'acquisition-defence-decomposition' framework provides a foundation for testable hypotheses on multidimensional linkages between species' belowground strategies and ecosystem nutrient cycling in an evolutionary context.
Collapse
Affiliation(s)
- Jiajia Zheng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Yan
- Freie Universität Berlin, Institut für Biologie, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Lei Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Huimin Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqin Dai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Kou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Chen JC, Lin HY, Novák O, Strnad M, Lee YI, Fang SC. Diverse geotropic responses in the orchid family. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38809156 DOI: 10.1111/pce.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Pineau RM, Libby E, Demory D, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. Nat Ecol Evol 2024; 8:1010-1020. [PMID: 38486107 PMCID: PMC11090753 DOI: 10.1038/s41559-024-02367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth's ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric Libby
- Integrated Science Lab, Umeå university, Umeå, Sweden.
- Department of Mathematics and Mathematical Statistics, Umeå university, Umeå, Sweden.
| | - David Demory
- CNRS, Sorbonne Université, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Pablo Bravo
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
8
|
Zhang Z, Diao R, Sun J, Liu Y, Zhao M, Wang Q, Xu Z, Zhong B. Diversified molecular adaptations of inorganic nitrogen assimilation and signaling machineries in plants. THE NEW PHYTOLOGIST 2024; 241:2108-2123. [PMID: 38155438 DOI: 10.1111/nph.19508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zilong Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Tian Q, Wang G, Dou J, Niu Y, Li R, An W, Tang Z, Yu J. Melatonin Modulates Tomato Root Morphology by Regulating Key Genes and Endogenous Hormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:383. [PMID: 38337916 PMCID: PMC10857687 DOI: 10.3390/plants13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Melatonin plays a vital role in plant growth and development. In this study, we treated hydroponically grown tomato roots with various concentrations of exogenous melatonin (0, 10, 30, and 50 μmol·L-1). We utilized root scanning and microscopy to examine alterations in root morphology and cell differentiation and elucidated the mechanism by which melatonin regulates these changes through the interplay with endogenous hormones and relevant genes. The results showed that for melatonin at concentrations ranging between 10 and 30 μmol·L-1, the development of lateral roots were significantly stimulated, the root hair growth was enhanced, and biomass accumulation and root activity were increased. Furthermore, we elucidated that melatonin acts as a mediator for the expression of genes, such as SlCDKA1, SlCYCA3;1, SlARF2, SlF3H, and SlKT1, which are involved in the regulation of root morphology changes. Additionally, we observed that melatonin influences the levels of endogenous hormones, including ZT, GA3, IAA, ABA, and BR, which subsequently impact the root morphology development of tomato roots. In summary, this study shows that tomato root morphology can be promoted by the optimal concentration of exogenous melatonin (10-30 μmol·L-1).
Collapse
Affiliation(s)
- Qiang Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Wangwang An
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Q.T.); (G.W.); (J.D.); (Y.N.); (R.L.); (W.A.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
11
|
Liu W, Cai G, Zhai N, Wang H, Tang T, Zhang Y, Zhang Z, Sun L, Zhang Y, Beeckman T, Xu L. Genome and transcriptome of Selaginella kraussiana reveal evolution of root apical meristems in vascular plants. Curr Biol 2023; 33:4085-4097.e5. [PMID: 37716350 DOI: 10.1016/j.cub.2023.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
The evolution of roots allowed vascular plants to adapt to land environments. Fossil evidence indicates that roots evolved independently in euphyllophytes (ferns and seed plants) and lycophytes, the two lineages of extant vascular plants. Based on a high-quality genome assembly, mRNA sequencing (mRNA-seq) data, and single-cell RNA-seq data for the lycophyte Selaginella kraussiana, we show that the two root origin events in lycophytes and euphyllophytes adopted partially similar molecular modules in the regulation of root apical meristem (RAM) development. In S. kraussiana, the RAM initiates from the rhizophore primordium guided by auxin and duplicates itself by dichotomous branching. The auxin signaling pathway directly upregulates euAINTEGUMENTAb (SkeuANTb), and then SkeuANTb directly promotes the expression of SkeuANTa and the WUSCHEL-RELATED HOMEOBOX13b (SkWOX13b) for RAM maintenance, partially similar to the molecular pathway involving the euANT-branch PLETHORA (AtPLT) genes and AtWOX5 in root initiation in the seed plant Arabidopsis thaliana. Other molecular modules, e.g., SHORT-ROOT and SCARECROW, also have partially similar expression patterns in the RAMs of S. kraussiana and A. thaliana. Overall, our study not only provides genome and transcriptome tools of S. kraussiana but also indicates the employment of some common molecular modules in RAMs during root origins in lycophytes and euphyllophytes.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Tengfei Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
12
|
Yang X, Poelmans W, Grones C, Lakehal A, Pevernagie J, Van Bel M, Njo M, Xu L, Nelissen H, De Rybel B, Motte H, Beeckman T. Spatial transcriptomics of a lycophyte root sheds light on root evolution. Curr Biol 2023; 33:4069-4084.e8. [PMID: 37683643 DOI: 10.1016/j.cub.2023.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Plant roots originated independently in lycophytes and euphyllophytes, whereas early vascular plants were rootless. The organization of the root apical meristem in euphyllophytes is well documented, especially in the model plant Arabidopsis. However, little is known about lycophyte roots and their molecular innovations during evolution. In this study, spatial transcriptomics was used to detect 97 root-related genes in the roots of the lycophyte Selaginella moellendorffii. A high number of genes showed expression patterns similar to what has been reported for seed plants, supporting the idea of a highly convergent evolution of mechanisms to control root development. Interaction and complementation data of SHORTROOT (SHR) and SCARECROW (SCR) homologs, furthermore, support a comparable regulation of the ground tissue (GT) between euphyllophytes and lycophytes. Root cap formation, in contrast, appears to be differently regulated. Several experiments indicated an important role of the WUSCHEL-RELATED HOMEOBOX13 gene SmWOX13a in Selaginella root cap formation. In contrast to multiple Arabidopsis WOX paralogs, SmWOX13a is able to induce root cap cells in Arabidopsis and has functionally conserved homologs in the fern Ceratopteris richardii. Lycophytes and a part of the euphyllophytes, therefore, may share a common mechanism regulating root cap formation, which was diversified or lost during seed plant evolution. In summary, we here provide a new spatial data resource for the Selaginella root, which in general advocates for conserved mechanisms to regulate root development but shows a clear divergence in the control of root cap formation, with a novel putative role of WOX genes in root cap formation in non-seed plants.
Collapse
Affiliation(s)
- Xilan Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ward Poelmans
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Carolin Grones
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Abdellah Lakehal
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Julie Pevernagie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Maria Njo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lin Xu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
13
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
14
|
Mitchell RL, Kenrick P, Pressel S, Duckett J, Strullu-Derrien C, Davies N, McMahon WJ, Summerfield R. Terrestrial surface stabilisation by modern analogues of the earliest land plants: A multi-dimensional imaging study. GEOBIOLOGY 2023; 21:454-473. [PMID: 36779552 DOI: 10.1111/gbi.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/13/2023]
Abstract
The evolution of the first plant-based terrestrial ecosystems in the early Palaeozoic had a profound effect on the development of soils, the architecture of sedimentary systems, and shifts in global biogeochemical cycles. In part, this was due to the evolution of complex below-ground (root-like) anchorage systems in plants, which expanded and promoted plant-mineral interactions, weathering, and resulting surface sediment stabilisation. However, little is understood about how these micro-scale processes occurred, because of a lack of in situ plant fossils in sedimentary rocks/palaeosols that exhibit these interactions. Some modern plants (e.g., liverworts, mosses, lycophytes) share key features with the earliest land plants; these include uni- or multicellular rhizoid-like anchorage systems or simple roots, and the ability to develop below-ground networks through prostrate axes, and intimate associations with fungi, making them suitable analogues. Here, we investigated cryptogamic ground covers in Iceland and New Zealand to better understand these interactions, and how they initiate the sediment stabilisation process. We employed multi-dimensional and multi-scale imaging, including scanning electron microscopy (SEM) and X-ray Computed Tomography (μCT) of non-vascular liverworts (Haplomitriopsida and complex thalloids) and mosses, with additional imaging of vascular lycopods. We find that plants interact with their substrate in multiple ways, including: (1) through the development of extensive surface coverings as mats; (2) entrapment of sediment grains within and between networks of rhizoids; (3) grain entwining and adherence by rhizoids, through mucilage secretions, biofilm-like envelopment of thalli on surface grains; and (4) through grain entrapment within upright 'leafy' structures. Significantly, μCT imaging allows us to ascertain that rhizoids are the main method for entrapment and stabilisation of soil grains in the thalloid liverworts. This information provides us with details of how the earliest land plants may have significantly influenced early Palaeozoic sedimentary system architectures, promoted in situ weathering and proto-soil development, and how these interactions diversified over time with the evolution of new plant organ systems. Further, this study highlights the importance of cryptogamic organisms in the early stages of sediment stabilisation and soil formation today.
Collapse
Affiliation(s)
- Ria L Mitchell
- Science Group, The Natural History Museum, London, UK
- Sheffield Tomography Centre (STC), Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | - Paul Kenrick
- Science Group, The Natural History Museum, London, UK
| | | | - Jeff Duckett
- Science Group, The Natural History Museum, London, UK
| | - Christine Strullu-Derrien
- Science Group, The Natural History Museum, London, UK
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR7205, Muséum National d'Histoire naturelle, Sorbonne Université, CNRS, Paris, France
| | - Neil Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - William J McMahon
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
15
|
Hogan JA, Jusino MA, Smith ME, Corrales A, Song X, Hu YH, Yang J, Cao M, Valverde-Barrantes OJ, Baraloto C. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. THE NEW PHYTOLOGIST 2023; 238:1849-1864. [PMID: 36808625 DOI: 10.1111/nph.18821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI, 53726, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Yue-Hua Hu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
16
|
Thomas P, Knox OGG, Powell JR, Sindel B, Winter G. The Hydroponic Rockwool Root Microbiome: Under Control or Underutilised? Microorganisms 2023; 11:microorganisms11040835. [PMID: 37110258 PMCID: PMC10141029 DOI: 10.3390/microorganisms11040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
Land plants have an ancient and intimate relationship with microorganisms, which influences the composition of natural ecosystems and the performance of crops. Plants shape the microbiome around their roots by releasing organic nutrients into the soil. Hydroponic horticulture aims to protect crops from damaging soil-borne pathogens by replacing soil with an artificial growing medium, such as rockwool, an inert material made from molten rock spun into fibres. Microorganisms are generally considered a problem to be managed, to keep the glasshouse clean, but the hydroponic root microbiome assembles soon after planting and flourishes with the crop. Hence, microbe–plant interactions play out in an artificial environment that is quite unlike the soil in which they evolved. Plants in a near-ideal environment have little dependency on microbial partners, but our growing appreciation of the role of microbial communities is revealing opportunities to advance practices, especially in agriculture and human health. Hydroponic systems are especially well-suited to active management of the root microbiome because they allow complete control over the root zone environment; however, they receive much less attention than other host–microbiome interactions. Novel techniques for hydroponic horticulture can be identified by extending our understanding of the microbial ecology of this unique environment.
Collapse
Affiliation(s)
- Phil Thomas
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Oliver G. G. Knox
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Brian Sindel
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Gal Winter
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
17
|
Pineau RM, Demory D, Libby E, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524803. [PMID: 36711513 PMCID: PMC9882323 DOI: 10.1101/2023.01.19.524803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth’s ecosystems. Yet little is known about how early steps in the evolution of multicellularity transform eco-evolutionary dynamics, e.g., via niche expansion processes that may facilitate coexistence. Using long-term experimental evolution in the snowflake yeast model system, we show that the evolution of multicellularity drove niche partitioning and the adaptive divergence of two distinct, specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subject to selection for rapid growth in rich media, followed by selection favoring larger group size. Both small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations. These small and large sized snowflake yeast lineages specialized on divergent aspects of a trade-off between growth rate and survival, mirroring predictions from ecological theory. Through modeling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically-impactful emergent properties of this evolutionary transition.
Collapse
|
18
|
Boyce CK, Ibarra DE, Nelsen MP, D'Antonio MP. Nitrogen-based symbioses, phosphorus availability, and accounting for a modern world more productive than the Paleozoic. GEOBIOLOGY 2023; 21:86-101. [PMID: 35949039 DOI: 10.1111/gbi.12519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Evolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations. Given this evidence of broadly increased nitrogen availability, we explore via carbon cycle modeling how enhanced phosphorus availability might be sustained without violating mass balance requirements. Volcanism is the dominant carbon input, dictating peaks in weathering outputs up to twice modern values. However, times of weathering rate suppression may be more important for setting system behavior, and the late Paleozoic was the only extended period over which rates are expected to have remained lower than modern. Modeling results are consistent with terrestrial organic matter deposition that accompanied Paleozoic vascular plant evolution having suppressed weathering fluxes by providing an alternative sink of atmospheric CO2 . Suppression would have then been progressively lifted as the crustal reservoir's holding capacity for terrestrial organic matter saturated back toward steady state with deposition of new organic matter balanced by erosion of older organic deposits. Although not an absolute increase, weathering fluxes returning to early Paleozoic conditions would represent a novel regime for the complex land biota that evolved in the interim. Volcanism-based peaks in Mesozoic weathering far surpass the modern rates that sustain a complex diversity of nitrogen-based symbioses; only in the late Paleozoic might these ecologies have been suppressed by significantly lower rates. Thus, angiosperms are posited to be another effect rather than proximal cause of Mesozoic upheaval.
Collapse
Affiliation(s)
- C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| | - Daniel E Ibarra
- Department of Geological Sciences, Stanford University, Stanford, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Institute at Brown for Environment and Society and the Department of Earth, Environmental and Planetary Science, Brown University, Providence, Rhode Island, USA
| | - Matthew P Nelsen
- Negaunee Integrative Research Center, The Field Museum, Chicago, Illinois, USA
| | - Michael P D'Antonio
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Cui J, Zhu Y, Du H, Liu Z, Shen S, Wang T, Cui W, Zhang R, Jiang S, Wu Y, Gu X, Yu H, Liang Z. Chromosome-level reference genome of tetraploid Isoetes sinensis provides insights into evolution and adaption of lycophytes. Gigascience 2022; 12:giad079. [PMID: 37776367 PMCID: PMC10541799 DOI: 10.1093/gigascience/giad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The Lycophyta species are the extant taxa most similar to early vascular plants that were once abundant on Earth. However, their distribution has greatly diminished. So far, the absence of chromosome-level assembled lycophyte genomes has hindered our understanding of evolution and environmental adaption of lycophytes. FINDINGS We present the reference genome of the tetraploid aquatic quillwort, Isoetes sinensis, a lycophyte. This genome represents the first chromosome-level assembled genome of a tetraploid seed-free plant. Comparison of genomes between I. sinensis and Isoetestaiwanensis revealed conserved and different genomic features between diploid and polyploid lycophytes. Comparison of the I. sinensis genome with those of other species representing the evolutionary lineages of green plants revealed the inherited genetic tools for transcriptional regulation and most phytohormones in I. sinensis. The presence and absence of key genes related to development and stress responses provide insights into environmental adaption of lycophytes. CONCLUSIONS The high-quality reference genome and genomic analysis presented in this study are crucial for future genetic and environmental studies of not only I. sinensis but also other lycophytes.
Collapse
Affiliation(s)
- Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
| | - Yunke Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Glbizzia Biosciences, Beijing 102699, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | | | - Siqian Shen
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Tongxin Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Wenwen Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Rong Zhang
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China
| | | | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Ito Y, Fujinami R, Imaichi R, Yamada T. Shared body plans of lycophytes inferred from root formation of Lycopodium clavatum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Late Silurian to early Devonian lycophytes had prostrate aerial axes, while subordinate organs or subterranean axes were formed around the dichotomies of the axes. The subterranean axes are hypothesized to have evolved into root-bearing axes (rhizophores) and roots in extant Selaginellaceae and Lycopodiaceae, respectively. Consistent with this hypothesis, rhizophores are formed on the dichotomies of shoots in Selaginellaceae. However, it has remained unclear whether roots are borne in the same position in Lycopodiaceae. In addition, roots form endogenously in the stem, but no data are available regarding the tissues in stem from which they arise. In this study, we tracked the root development in the clubmoss, Lycopodium clavatum, based on anatomical sections and 3D reconstructed images. The vascular tissue of the stem is encircled by ground meristem, which supplies cortical cells outwardly by periclinal divisions. A linear parenchymatous tissue is present on the ventral side of vascular cylinder, which we call “ventral tissue” in this study. We found that root primordia are formed endogenously on the ventral side of stem, possibly from the ventral tissue. In addition, roots always initiate at positions close to dichotomies of stem. The root-initiating position supports the suggestion that Lycopodium roots share a body plan with the subterranean organs of the hypothesized ancestry.
Collapse
|
21
|
Puginier C, Keller J, Delaux PM. Plant-microbe interactions that have impacted plant terrestrializations. PLANT PHYSIOLOGY 2022; 190:72-84. [PMID: 35642902 PMCID: PMC9434271 DOI: 10.1093/plphys/kiac258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Plants display a tremendous diversity of developmental and physiological features, resulting from gains and losses of functional innovations across the plant phylogeny. Among those, the most impactful have been undoubtedly the ones that allowed plant terrestrializations, the transitions from an aquatic to a terrestrial environment. Although the embryophyte terrestrialization has been particularly scrutinized, others occurred across the plant phylogeny with the involvement of mutualistic symbioses as a common theme. Here, we review the current pieces of evidence supporting that the repeated colonization of land by plants has been facilitated by interactions with mutualistic symbionts. In that context, we detail two of these mutualistic symbioses: the arbuscular mycorrhizal symbiosis in embryophytes and the lichen symbiosis in chlorophyte algae. We suggest that associations with bacteria should be revisited in that context, and we propose that overlooked symbioses might have facilitated the emergence of other land plant clades.
Collapse
Affiliation(s)
- Camille Puginier
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
22
|
Ganesh A, Shukla V, Mohapatra A, George AP, Bhukya DPN, Das KK, Kola VSR, Suresh A, Ramireddy E. Root Cap to Soil Interface: A Driving Force Toward Plant Adaptation and Development. PLANT & CELL PHYSIOLOGY 2022; 63:1038-1051. [PMID: 35662353 DOI: 10.1093/pcp/pcac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed robust roots to grow in diverse soil ecosystems. The distal end of the root tip has a specialized organ called the 'root cap'. The root cap assists the roots in penetrating the ground, absorbing water and minerals, avoiding heavy metals and regulating the rhizosphere microbiota. Furthermore, root-cap-derived auxin governs the lateral root patterning and directs root growth under varying soil conditions. The root cap formation is hypothesized as one of the key innovations during root evolution. Morphologically diversified root caps in early land plant lineage and later in angiosperms aid in improving the adaptation of roots and, thereby, plants in diverse soil environments. This review article presents a retrospective view of the root cap's important morphological and physiological characteristics for the root-soil interaction and their response toward various abiotic and biotic stimuli. Recent single-cell RNAseq data shed light on root cap cell-type-enriched genes. We compiled root cap cell-type-enriched genes from Arabidopsis, rice, maize and tomato and analyzed their transcription factor (TF) binding site enrichment. Further, the putative gene regulatory networks derived from root-cap-enriched genes and their TF regulators highlight the species-specific biological functions of root cap genes across the four plant species.
Collapse
Affiliation(s)
- Alagarasan Ganesh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Shukla
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Ankita Mohapatra
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Abin Panackal George
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Durga Prasad Naik Bhukya
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Krishna Kodappully Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Vijaya Sudhakara Rao Kola
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Aparna Suresh
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| | - Eswarayya Ramireddy
- Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
23
|
Chen S, Wang T, Shu J, Xiang Q, Yang T, Zhang X, Yan Y. Plastid Phylogenomics and Plastomic Diversity of the Extant Lycophytes. Genes (Basel) 2022; 13:genes13071280. [PMID: 35886063 PMCID: PMC9316050 DOI: 10.3390/genes13071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Although extant lycophytes represent the most ancient surviving lineage of early vascular plants, their plastomic diversity has long been neglected. The ancient evolutionary history and distinct genetic diversity patterns of the three lycophyte families, each with its own characteristics, provide an ideal opportunity to investigate the interfamilial relationships of lycophytes and their associated patterns of evolution. To compensate for the lack of data on Lycopodiaceae, we sequenced and assembled 14 new plastid genomes (plastomes). Combined with other lycophyte plastomes available online, we reconstructed the phylogenetic relationships of the extant lycophytes based on 93 plastomes. We analyzed, traced, and compared the plastomic diversity and divergence of the three lycophyte families (Isoëtaceae, Lycopodiaceae, and Selaginellaceae) in terms of plastomic diversity by comparing their plastome sizes, GC contents, substitution rates, structural rearrangements, divergence times, ancestral states, RNA editings, and gene losses. Comparative analysis of plastid phylogenomics and plastomic diversity of three lycophyte families will set a foundation for further studies in biology and evolution in lycophytes and therefore in vascular plants.
Collapse
Affiliation(s)
- Sisi Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jiangping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiaoping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
| | - Tuo Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
- Correspondence: (X.Z.); (Y.Y.)
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- Correspondence: (X.Z.); (Y.Y.)
| |
Collapse
|
24
|
Bowles AMC, Paps J, Bechtold U. Water-related innovations in land plants evolved by different patterns of gene cooption and novelty. THE NEW PHYTOLOGIST 2022; 235:732-742. [PMID: 35048381 PMCID: PMC9303528 DOI: 10.1111/nph.17981] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/25/2021] [Indexed: 05/26/2023]
Abstract
The origin of land plants and their descendants was marked by the evolution of key adaptations to life in terrestrial environments such as roots, vascular tissue and stomata. Though these innovations are well characterized, the evolution of the genetic toolkit underlying their development and function is poorly understood. We analysed molecular data from 532 species to investigate the evolutionary origin and diversification of genes involved in the development and regulation of these adaptations. We show that novel genes in the first land plants led to the single origin of stomata, but the stomatal closure of seed plants resulted from later gene expansions. By contrast, the major mechanism leading to the origin of vascular tissue was cooption of genes that emerged in the first land plants, enabling continuous water transport throughout the ancestral vascular plant. In turn, new key genes in the ancestors of plants with true leaves and seed plants led to the emergence of roots and lateral roots. The analysis highlights the different modes of evolution that enabled plants to conquer land, suggesting that gene expansion and cooption are the most common mechanisms of biological innovation in plant evolutionary history.
Collapse
Affiliation(s)
- Alexander M. C. Bowles
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- School of Geographical SciencesUniversity of BristolUniversity RoadBristolBS8 1RLUK
| | - Jordi Paps
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Ulrike Bechtold
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- Present address:
Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
25
|
Tian J, Jiang W, Si J, Han Z, Li C, Chen D. Developmental Characteristics and Auxin Response of Epiphytic Root in Dendrobium catenatum. FRONTIERS IN PLANT SCIENCE 2022; 13:935540. [PMID: 35812932 PMCID: PMC9260429 DOI: 10.3389/fpls.2022.935540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium catenatum, a traditional precious Chinese herbal medicine, belongs to epiphytic orchids. Its special life mode leads to the specialization of roots, but there is a lack of systematic research. The aerial root in D. catenatum displays diverse unique biological characteristics, and it initially originates from the opposite pole of the shoot meristem within the protocorm. The root development of D. catenatum is not only regulated by internal cues but also adjusts accordingly with the change in growth environments. D. catenatum root is highly tolerant to auxin, which may be closely related to its epiphytic life. Exogenous auxin treatment has dual effects on D. catenatum roots: relatively low concentration promotes root elongation, which is related to the induced expression of cell wall synthesis genes; excessive concentration inhibits the differentiation of velamen and exodermis and promotes the overproliferation of cortical cells, which is related to the significant upregulation of WOX11-WOX5 regeneration pathway genes and cell division regulatory genes. Overexpression of D. catenatum WOX12 (DcWOX12) in Arabidopsis inhibits cell and organ differentiation, but induces cell dedifferentiation and callus production. Therefore, DcWOX12 not only retains the characteristics of ancestors as stem cell regulators, but also obtains stronger cell fate transformation ability than homologous genes of other species. These findings suggest that the aerial root of D. catenatum evolves special structure and developmental characteristics to adapt to epiphytic life, providing insight into ideal root structure breeding of simulated natural cultivation in D. catenatum and a novel target gene for improving the efficiency of monocot plant transformation.
Collapse
|
26
|
Buatois LA, Davies NS, Gibling MR, Krapovickas V, Labandeira CC, MacNaughton RB, Mángano MG, Minter NJ, Shillito AP. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integr Comp Biol 2022; 62:297-331. [PMID: 35640908 DOI: 10.1093/icb/icac059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation. Temporary incursions by arthropods and worm-like organisms into coastal environments apparently did not result in establishment of continental communities. Contemporaneous lacustrine faunas may have been inhibited by limited nutrient delivery and high sediment loads. The Ordovician appearance of early land plants triggered a shift in the primary locus of the global clay mineral factory, increasing the amount of mudrock on the continents. The Silurian-Devonian rise of vascular land plants, including the first forests and extensive root systems, was instrumental in further retaining fine sediment on alluvial plains. These innovations led to increased architectural complexity of braided and meandering rivers. Landscape changes were synchronous with establishment of freshwater and terrestrial arthropod faunas in overbank areas, abandoned fluvial channels, lake margins, ephemeral lakes, and inland deserts. Silurian-Devonian lakes experienced improved nutrient availability, due to increased phosphate weathering and terrestrial humic matter. All these changes favoured frequent invasions to permament establishment of jawless and jawed fishes in freshwater habitats and the subsequent tetrapod colonization of the land. The Carboniferous saw rapid diversification of tetrapods, mostly linked to aquatic reproduction, and land plants, including gymnosperms. Deeper root systems promoted further riverbank stabilization, contributing to the rise of anabranching rivers and braided systems with vegetated islands. New lineages of aquatic insects developed and expanded novel feeding modes, including herbivory. Late Paleozoic soils commonly contain pervasive root and millipede traces. Lacustrine animal communities diversified, accompanied by increased food-web complexity and improved food delivery which may have favored permanent colonization of offshore and deep-water lake environments. These trends continued in the Permian, but progressive aridification favored formation of hypersaline lakes, which were stressful for colonization. The Capitanian and end-Permian extinctions affected lacustrine and fluvial biotas, particularly the invertebrate infauna, although burrowing may have allowed some tetrapods to survive associated global warming and increased aridification.
Collapse
Affiliation(s)
- Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EQ, UK
| | - Martin R Gibling
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Verónica Krapovickas
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Conrad C Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington DC 20013-7012, USA.,Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 21740, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Robert B MacNaughton
- Geological Survey of Canada (Calgary), Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nicholas J Minter
- School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Anthony P Shillito
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
27
|
Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, Tang N, Toto Nienguesso A, Ziegler J, Imre R, Mechtler K, Dagdas Y, Hoehenwarter W, Sawers G, Quint M, Abel S. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Curr Biol 2022; 32:2189-2205.e6. [PMID: 35472311 PMCID: PMC9168544 DOI: 10.1016/j.cub.2022.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 μM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Carolin Alfs
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Nancy Tang
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Richard Imre
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology, Vienna BioCenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA.
| |
Collapse
|
28
|
Xia Z, Liu L, Wei Z, Wang F, Shen H, Yan Y. Analysis of Comparative Transcriptome and Positively Selected Genes Reveal Adaptive Evolution in Leaf-Less and Root-Less Whisk Ferns. PLANTS 2022; 11:plants11091198. [PMID: 35567199 PMCID: PMC9103481 DOI: 10.3390/plants11091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
While roots and leaves have evolved independently in lycophytes, ferns and seed plants, there is still confusion regarding the morphological evolution of ferns, especially in whisk ferns, which lack true leaves and roots and instead only exhibit leaf-like appendages and absorptive rhizoids. In this study, analyses of comparative transcriptomics on positively selected genes were performed to provide insights into the adaptive evolution of whisk fern morphologies. Significantly clustered gene families specific to whisk ferns were mainly enriched in Gene Ontology (GO) terms “binding proteins” and “transmembrane transporter activity”, and positive selection was detected in genes involved in transmembrane transporter activities and stress response (e.g., sodium/hydrogen exchanger and heat shock proteins), which could be related to the adaptive evolution of tolerance to epiphytic environments. The analysis of TF/TR gene family sizes indicated that some rapidly evolving gene families (e.g., the GRF and the MADS-MIKC families) related to the development of morphological organs were commonly reduced in whisk ferns and ophioglossoid ferns. Furthermore, the WUS homeobox-containing (WOX) gene family and the knotted1-like homeobox (KNOX) gene family, both associated with root and leaf development, were phylogenetically conserved in whisk ferns and ophioglossoid ferns. In general, our results suggested that adaptive evolution to epiphytic environments might have occurred in whisk ferns. We propose that the simplified and reduced leaf and root system in whisk ferns is the result of reduction from the common ancestor of whisk ferns and ophioglossoid ferns, rather than an independent origin.
Collapse
Affiliation(s)
- Zengqiang Xia
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (Z.X.); (Z.W.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
| | - Zuoying Wei
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (Z.X.); (Z.W.)
- College of Life and Sciences, Shanghai Normal University, Shanghai 201602, China
| | - Faguo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Correspondence: (H.S.); (Y.Y.)
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China; (Z.X.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (H.S.); (Y.Y.)
| |
Collapse
|
29
|
Abstract
Geological heritage represents and brings together geological elements of great local and global relevance. It also promotes conservation and sustainable use. This study aims to perform a bibliometric analysis of the contributions that address the topics of geological heritage and geosites, using the Scopus and Web of Science databases for the knowledge of trends and research focuses in this area. The methodology consists of: (i) the preparation of the idea and gathering information from a search on the subjects of interest (geoheritage and geosites); (ii) the merging of the databases and applying automated conversions; and (iii) the analysis of the results and the literature review. The first phase of the work identified 2409 and 1635 documents indexed in Scopus and WoS, respectively. The merged global database (2565 documents) identified the following words as analysis topics: geoconservation, geotourism, geopark, and geodiversity. The analysis also revealed the top five countries in scientific contributions as Italy (12.1%), Spain (8.77%), China (5.67%), Portugal (5.35%), and Brazil (5.31%). Finally, most of the publications focus on the characterisation, assessment, and development of geosite initiatives. The main lines of action and contributions to the topics (7.91%) highlight the fact that geoscientists worldwide value geosites for geoconservation and geotourism strategies.
Collapse
|
30
|
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, Moschou P, Ljung K, Hatzopoulos P, Rigas S. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. PLANT PHYSIOLOGY 2022; 188:1043-1060. [PMID: 34633458 PMCID: PMC8825323 DOI: 10.1093/plphys/kiab472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 05/09/2023]
Abstract
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.
Collapse
Affiliation(s)
- Dimitris Templalexis
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Panagiotis Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR 70 013, Greece
- Department of Biology, University of Crete, Heraklion GR 71 500, Greece
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
- Author for communication:
| |
Collapse
|
31
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
32
|
Fang Y, Chang J, Shi T, Luo W, Ou Y, Wan D, Li J. Evolution of RGF/GLV/CLEL Peptide Hormones and Their Roles in Land Plant Growth and Regulation. Int J Mol Sci 2021; 22:ijms222413372. [PMID: 34948169 PMCID: PMC8708909 DOI: 10.3390/ijms222413372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Rooting is a key innovation during plant terrestrialization. RGFs/GLVs/CLELs are a family of secreted peptides, playing key roles in root stem cell niche maintenance and pattern formation. The origin of this peptide family is not well characterized. RGFs and their receptor genes, RGIs, were investigated comprehensively using phylogenetic and genetic analyses. We identified 203 RGF genes from 24 plant species, representing a variety of land plant lineages. We found that the RGF genes originate from land plants and expand via multiple duplication events. The lineage-specific RGF duplicates are retained due to their regulatory divergence, while a majority of RGFs experienced strong purifying selection in most land plants. Functional analysis indicated that RGFs and their receptor genes, RGIs, isolated from liverwort, tomato, and maize possess similar biological functions with their counterparts from Arabidopsis in root development. RGFs and RGIs are likely coevolved in land plants. Our studies shed light on the origin and functional conservation of this important peptide family in plant root development.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Wenchun Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Dongshi Wan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- Correspondence: (D.W.); (J.L.)
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (D.W.); (J.L.)
| |
Collapse
|
33
|
Abstract
There can be no doubt that early land plant evolution transformed the planet but, until recently, how and when this was achieved was unclear. Coincidence in the first appearance of land plant fossils and formative shifts in atmospheric oxygen and CO2 are an artefact of the paucity of earlier terrestrial rocks. Disentangling the timing of land plant bodyplan assembly and its impact on global biogeochemical cycles has been precluded by uncertainty concerning the relationships of bryophytes to one another and to the tracheophytes, as well as the timescale over which these events unfolded. New genome and transcriptome sequencing projects, combined with the application of sophisticated phylogenomic modelling methods, have yielded increasing support for the Setaphyta clade of liverworts and mosses, within monophyletic bryophytes. We consider the evolution of anatomy, genes, genomes and of development within this phylogenetic context, concluding that many vascular plant (tracheophytes) novelties were already present in a comparatively complex last common ancestor of living land plants (embryophytes). Molecular clock analyses indicate that embryophytes emerged in a mid-Cambrian to early Ordovician interval, compatible with hypotheses on their role as geoengineers, precipitating early Palaeozoic glaciations.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| |
Collapse
|
34
|
Zhu F, Fernie AR. Plants upcycle gene functions to suit their roots. TRENDS IN PLANT SCIENCE 2021; 26:996-998. [PMID: 34284955 DOI: 10.1016/j.tplants.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The plant root is a crucial organ for adaptation to dynamic environments, but to date the degree of functional conservation of root developmental programs has remained unknown. A recent report by Kajala et al. sheds light on the cross-species conservation and repurposing of root gene functions in a manner pertinent to attempts to ensure future yield stability.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
35
|
Innovation, conservation, and repurposing of gene function in root cell type development. Cell 2021; 184:3333-3348.e19. [PMID: 34010619 DOI: 10.1016/j.cell.2021.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.
Collapse
|
36
|
The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9051036. [PMID: 34065848 PMCID: PMC8151373 DOI: 10.3390/microorganisms9051036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.
Collapse
|
37
|
Sønderholm F, Bjerrum CJ. Minimum levels of atmospheric oxygen from fossil tree roots imply new plant-oxygen feedback. GEOBIOLOGY 2021; 19:250-260. [PMID: 33608990 PMCID: PMC8248171 DOI: 10.1111/gbi.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/16/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The appearance and subsequent evolution of land plants is among the most important events in the earth system. Plant resulted in a change of earth surface albedo and the hydrological cycle, as well as increased rock weatherability thereby causing a persistent change in atmospheric CO2 and O2 . Land plants are, however, themselves dependent on O2 for respiration and long-term survival, something not considered in current geochemical models. In this perspective, we highlight two aspects of land plants' dependency on O2 relevant for the geobiological community: (a) fossil root systems can be used as a proxy for minimum levels of past atmospheric O2 consistent with a given fossil root depth; and (b) by identifying a positive feedback mechanism involving atmospheric O2 , root intensity, terrestrial primary production and organic carbon burial. As an example, we consider archaeopterid fossil root systems, resembling those of modern mature conifers. Our soil-plant model suggest that atmospheric O2 with 1 SD probably reached pressures of 18.2 ± 1.9 kPa and 16.8 ± 2.1 kPa by the Middle and Late Devonian, respectively, that is 86 ± 9% and 79 ± 10% of the present-day 21.2 kPa.
Collapse
Affiliation(s)
- Fredrik Sønderholm
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Christian J. Bjerrum
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
- Nordic Center for Earth Evolution, Department of Geoscience and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
38
|
Mitchell RL, Strullu-Derrien C, Sykes D, Pressel S, Duckett JG, Kenrick P. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated proto-soils. GEOBIOLOGY 2021; 19:292-306. [PMID: 33569915 DOI: 10.1111/gbi.12431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 05/29/2023]
Abstract
Modern cryptogamic ground covers (CGCs), comprising assemblages of bryophytes (hornworts, liverworts, mosses), fungi, bacteria, lichens and algae, are thought to resemble early divergent terrestrial communities. However, limited in situ plant and other fossils in the rock record, and a lack of CGC-like soils reported in the pre-Silurian sedimentological record, have hindered understanding of the structure, composition and interactions within the earliest CGCs. A key question is how the earliest CGC-like organisms drove weathering on primordial terrestrial surfaces (regolith), leading to the early stages of soil development as proto-soils, and subsequently contributing to large-scale biogeochemical shifts in the Earth System. Here, we employed a novel qualitative, quantitative and multi-dimensional imaging approach through X-ray micro-computed tomography, scanning electron, and optical microscopy to investigate whether different combinations of modern CGC organisms from primordial-like settings in Iceland develop organism-specific soil forming features at the macro- and micro-scales. Additionally, we analysed CGCs growing on hard rocky substrates to investigate the initiation of weathering processes non-destructively in 3D. We show that thalloid CGC organisms (liverworts, hornworts) develop thin organic layers at the surface (<1 cm) with limited subsurface structural development, whereas leafy mosses and communities of mixed organisms form profiles that are thicker (up to ~ 7 cm), structurally more complex, and more organic-rich. We term these thin layers and profiles proto-soils. Component analyses from X-ray micro-computed tomography data show that thickness and structure of these proto-soils are determined by the type of colonising organism(s), suggesting that the evolution of more complex soils through the Palaeozoic may have been driven by a shift in body plan of CGC-like organisms from flattened and appressed to upright and leafy. Our results provide a framework for identifying CGC-like proto-soils in the rock record and a new proxy for understanding organism-soil interactions in ancient terrestrial biospheres and their contribution to the early stages of soil formation.
Collapse
Affiliation(s)
- Ria L Mitchell
- Earth Sciences Department, The Natural History Museum, London, UK
- Sheffield Tomography Centre (STC), Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | - Christine Strullu-Derrien
- Earth Sciences Department, The Natural History Museum, London, UK
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR7205, Muséum National d'Histoire naturelle, Sorbonne Université, CNRS, Paris, France
| | - Dan Sykes
- Imaging and Analysis Centre (IAC), The Natural History Museum, London, UK
- Henry Moseley X-ray Imaging Facility, School of Materials, The Royce Institute, The University of Manchester, Manchester, UK
| | - Silvia Pressel
- Life Sciences Department, The Natural History Museum, London, UK
| | | | - Paul Kenrick
- Earth Sciences Department, The Natural History Museum, London, UK
| |
Collapse
|
39
|
Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, White JF. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol 2021; 131:2161-2177. [PMID: 33893707 DOI: 10.1111/jam.15111] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Plants associate with communities of microbes (bacteria and fungi) that play critical roles in plant development, nutrient acquisition and oxidative stress tolerance. The major share of plant microbiota is endophytes which inhabit plant tissues and help them in various capacities. In this article, we have reviewed what is presently known with regard to how endophytic microbes interact with plants to modulate root development, branching, root hair formation and their implications in overall plant development. Endophytic microbes link the interactions of plants, rhizospheric microbes and soil to promote nutrient solubilization and further vectoring these nutrients to the plant roots making the soil-plant-microbe continuum. Further, plant roots internalize microbes and oxidatively extract nutrients from microbes in the rhizophagy cycle. The oxidative interactions between endophytes and plants result in the acquisition of nutrients by plants and are also instrumental in oxidative stress tolerance of plants. It is evident that plants actively cultivate microbes internally, on surfaces and in soils to acquire nutrients, modulate development and improve health. Understanding this continuum could be of greater significance in connecting endophytes with the hidden half of the plant that can also be harnessed in applied terms to enhance nutrient acquisition through the development of favourable root system architecture for sustainable production under stress conditions.
Collapse
Affiliation(s)
- S K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P K Sahu
- National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - K Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - G Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S K Gond
- Botany Section, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - R N Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - J F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
40
|
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey FP, Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X, Hochholdinger F. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. NATURE PLANTS 2021; 7:481-499. [PMID: 33833418 DOI: 10.1038/s41477-021-00897-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 05/06/2023]
Abstract
Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.
Collapse
Affiliation(s)
- Peng Yu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Xiaoming He
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marcel Baer
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Stien Beirinckx
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture Fisheries and Food, Merelbeke, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yudelsy A T Moya
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Xuechen Zhang
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
| | - Marion Deichmann
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Felix P Frey
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Verena Bresgen
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chunjian Li
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Frank Hochholdinger
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China.
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
| |
Collapse
|
41
|
Yu J, Zhang Y, Liu W, Wang H, Wen S, Zhang Y, Xu L. Molecular Evolution of Auxin-Mediated Root Initiation in Plants. Mol Biol Evol 2021; 37:1387-1393. [PMID: 31504735 DOI: 10.1093/molbev/msz202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The root originated independently in euphyllophytes (ferns and seed plants) and lycophytes; however, the molecular evolutionary route of root initiation remains elusive. By analyses of the fern Ceratopteris richardii and seed plants, here we show that the molecular pathway involving auxin, intermediate-clade WUSCHEL-RELATED HOMEOBOX (IC-WOX) genes, and WUSCHEL-clade WOX (WC-WOX) genes could be conserved in root initiation. We propose that the "auxin>IC-WOX>WC-WOX" module in root initiation might have arisen in the common ancestor of euphyllophytes during the second origin of roots, and that this module has further developed during the evolution of different root types in ferns and seed plants.
Collapse
Affiliation(s)
- Jie Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shaoting Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
43
|
Fujinami R, Nakajima A, Imaichi R, Yamada T. Lycopodium root meristem dynamics supports homology between shoots and roots in lycophytes. THE NEW PHYTOLOGIST 2021; 229:460-468. [PMID: 32696978 DOI: 10.1111/nph.16814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Roots have played a pivotal role in the conquest of land by vascular plants, yet their origin has remained enigmatic. Palaeobotanical evidence suggests that roots may have originated from subterranean shoots in some lycophyte species. If this hypothesis is correct, it would follow that the roots and shoots of extant lycophytes share fundamental developmental mechanisms. We tracked meristem dynamics in root and shoot apices of Lycopodium clavatum using a thymidine analogue and expression patterns of histone H4, respectively. Then we compared the meristem dynamics of roots and shoots to identify developmental similarities. Both apical meristems contained a quiescent tissue characterised by a low frequency of cell division. Actively dividing cells appeared in the quiescent tissue during dichotomous branching of both roots and shoots. As a result, the parental meristem divides into two daughter meristems, which give rise to new root or shoot apices. These striking similarities in meristem dynamics provide new neobotanical data that support the shoot-origin hypothesis of lycophyte roots. Although Lycopodium roots may have originated from subterranean shoots of Devonian lycophytes, these shoots may have changed into root-bearing axes in other extant lycophyte lineages.
Collapse
Affiliation(s)
- Rieko Fujinami
- Faculty of Education, Kyoto University of Education, 1 Fujinomori-cho, Fukakusa, Kyoto, 612-8522, Japan
| | - Atsuko Nakajima
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Ryoko Imaichi
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Toshihiro Yamada
- Botanical Gardens, Faculty of Science, Osaka City University, Kisaichi, Katano, Osaka, 576-0004, Japan
| |
Collapse
|
44
|
Aragón-Raygoza A, Vasco A, Blilou I, Herrera-Estrella L, Cruz-Ramírez A. Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii. Genes (Basel) 2020; 11:E1455. [PMID: 33291610 PMCID: PMC7761924 DOI: 10.3390/genes11121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris. We followed early stages and emergence of the root meristem in sporelings. While assessing root growth, the first shoot-borne root ceases its elongation between the emergence of the fifth and sixth roots, suggesting Ceratopteris roots follow a determinate developmental program. We report cell division frequencies in the stem cell niche after detecting labeled nuclei in the root apical cell (RAC) and derivatives after 8 h of exposure. These results demonstrate the RAC has a continuous mitotic activity during root development. Detection of cell cycle activity in the RAC at early times suggests this cell acts as a non-quiescent organizing center. Overall, our results provide a framework to study root function and development in ferns and to better understand the evolutionary history of this organ.
Collapse
Affiliation(s)
- Alejandro Aragón-Raygoza
- Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico;
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico;
| | - Alejandra Vasco
- Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA;
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico;
| |
Collapse
|
45
|
Coate JE, Farmer AD, Schiefelbein JW, Doyle JJ. Expression Partitioning of Duplicate Genes at Single Cell Resolution in Arabidopsis Roots. Front Genet 2020; 11:596150. [PMID: 33240334 PMCID: PMC7670048 DOI: 10.3389/fgene.2020.596150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
Gene duplication is a key evolutionary phenomenon, prevalent in all organisms but particularly so in plants, where whole genome duplication (WGD; polyploidy) is a major force in genome evolution. Much effort has been expended in attempting to understand the evolution of duplicate genes, addressing such questions as why some paralog pairs rapidly return to single copy status whereas, in other pairs, both paralogs are retained and may diverge in expression pattern or function. The effect of a gene - its site of expression and thus the initial locus of its function - occurs at the level of a cell comprising a single cell type at a given state of the cell's development. Using Arabidopsis thaliana single cell transcriptomic data we categorized patterns of expression for 11,470 duplicate gene pairs across 36 cell clusters comprising nine cell types and their developmental states. Among these 11,470 pairs, 10,187 (88.8%) had at least one copy expressed in at least one of the 36 cell clusters. Pairs produced by WGD more often had both paralogs expressed in root cells than did pairs produced by small scale duplications. Three quarters of gene pairs expressed in the 36 cell clusters (7,608/10,187) showed extreme expression bias in at least one cluster, including 352 cases of reciprocal bias, a pattern consistent with expression subfunctionalization. More than twice as many pairs showed reciprocal expression bias between cell states than between cell types or between roots and leaves. A group of 33 gene pairs with reciprocal expression bias showed evidence of concerted divergence of gene networks in stele vs. epidermis. Pairs with both paralogs expressed without bias were less likely to have paralogs with divergent mutant phenotypes; such bias-free pairs showed evidence of preservation by maintenance of dosage balance. Overall, we found considerable evidence of shifts in gene expression following duplication, including in >80% of pairs encoding 7,653 genes expressed ubiquitously in all root cell types and states for which we inferred the polarity of change.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, OR, United States
| | - Andrew D. Farmer
- National Center for Genome Resources, Santa Fe, NM, United States
| | - John W. Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jeff J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
| |
Collapse
|
46
|
Wu Z, Huang W, Qin E, Liu S, Liu H, Grennan AK, Liu H, Qin R. Comprehensive Identification and Expression Profiling of Circular RNAs During Nodule Development in Phaseolus vulgaris. FRONTIERS IN PLANT SCIENCE 2020; 11:587185. [PMID: 33193538 PMCID: PMC7655914 DOI: 10.3389/fpls.2020.587185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen fixation by legume nodules provides an abundant nitrogen source for plants, and understanding this process is key for developing green agriculture. Circular RNA (circRNA), a type of endogenous RNA produced by reverse splicing of mRNA precursors, plays important regulatory roles in plants at the transcriptional and post-transcriptional levels. However, the relationship between circRNAs and legume-rhizobium is unknown. Here, we performed comprehensive identification and expression profiling of circRNAs during nodulation in common bean (Phaseolus vulgaris) compared to uninoculated roots of corresponding ages by constructing circRNA-seq and mRNA-seq libraries. We identified 8,842 high-confident circRNAs, 3,448 of which were specifically produced during symbiosis, with the highest number at the nitrogen-fixing stage. Significantly, more circRNAs were derived from exons than from intergenic regions or introns in all samples. The lengths and GC contents of the circRNAs were similar in roots and nodules. However, circRNAs showed specific spatiotemporal expression patterns during nodule and root development. GO and other functional annotation of parental genes of differentially expressed circRNAs indicated their potential involvement in different biological processes. The expression of major circRNAs during symbiosis is independent of parental genes' expression to a certain degree, while expression of the remaining minor circRNAs showed positive correlation to parental genes. Functional annotation of the targeted mRNAs in the circRNA-miRNA-mRNA network showed that circRNAs may be involved in transmembrane transport and positive regulation of kinase activity during nodulation and nitrogen fixation as miRNA sponges. Our comprehensive analysis of the expression profile of circRNAs and their potential functions suggests that circRNAs may function as new post-transcriptional regulators in legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen Huang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Huan Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Aleel K. Grennan
- Biology Department, Worcester State University, Worcester, MA, United States
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
47
|
Mhimdi M, Pérez-Pérez JM. Understanding of Adventitious Root Formation: What Can We Learn From Comparative Genetics? FRONTIERS IN PLANT SCIENCE 2020; 11:582020. [PMID: 33123185 PMCID: PMC7573222 DOI: 10.3389/fpls.2020.582020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 05/23/2023]
Abstract
Adventitious root (AR) formation is a complex developmental process controlled by a plethora of endogenous and environmental factors. Based on fossil evidence and genomic phylogeny, AR formation might be considered the default state of plant roots, which likely evolved independently several times. The application of next-generation sequencing techniques and bioinformatics analyses to non-model plants provide novel approaches to identify genes putatively involved in AR formation in multiple species. Recent results uncovered that the regulation of shoot-borne AR formation in monocots is an adaptive response to nutrient and water deficiency that enhances topsoil foraging and improves plant performance. A hierarchy of transcription factors required for AR initiation has been identified from genetic studies, and recent results highlighted the key involvement of additional regulation through microRNAs. Here, we discuss our current understanding of AR formation in response to specific environmental stresses, such as nutrient deficiency, drought or waterlogging, aimed at providing evidence for the integration of the hormone crosstalk required for the activation of root competent cells within adult tissues from which the ARs develop.
Collapse
|
48
|
Spencer V, Nemec Venza Z, Harrison CJ. What can lycophytes teach us about plant evolution and development? Modern perspectives on an ancient lineage. Evol Dev 2020; 23:174-196. [PMID: 32906211 DOI: 10.1111/ede.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
All Evo-Devo studies rely on representative sampling across the tree of interest to elucidate evolutionary trajectories through time. In land plants, genetic resources are well established in model species representing lineages including bryophytes (mosses, liverworts, and hornworts), monilophytes (ferns and allies), and seed plants (gymnosperms and flowering plants), but few resources are available for lycophytes (club mosses, spike mosses, and quillworts). Living lycophytes are a sister group to the euphyllophytes (the fern and seed plant clade), and have retained several ancestral morphological traits despite divergence from a common ancestor of vascular plants around 420 million years ago. This sister relationship offers a unique opportunity to study the conservation of traits such as sporophyte branching, vasculature, and indeterminacy, as well as the convergent evolution of traits such as leaves and roots which have evolved independently in each vascular plant lineage. To elucidate the evolution of vascular development and leaf formation, molecular studies using RNA Seq, quantitative reverse transcription polymerase chain reaction, in situ hybridisation and phylogenetics have revealed the diversification and expression patterns of KNOX, ARP, HD-ZIP, KANADI, and WOX gene families in lycophytes. However, the molecular basis of further trait evolution is not known. Here we describe morphological traits of living lycophytes and their extinct relatives, consider the molecular underpinnings of trait evolution and discuss future research required in lycophytes to understand the key evolutionary innovations enabling the growth and development of all vascular plants.
Collapse
Affiliation(s)
- Victoria Spencer
- School of Biological Sciences, The University of Bristol, Bristol, UK
| | - Zoe Nemec Venza
- School of Biological Sciences, The University of Bristol, Bristol, UK
| | | |
Collapse
|
49
|
Delaux PM, Hetherington AJ, Coudert Y, Delwiche C, Dunand C, Gould S, Kenrick P, Li FW, Philippe H, Rensing SA, Rich M, Strullu-Derrien C, de Vries J. Reconstructing trait evolution in plant evo-devo studies. Curr Biol 2020; 29:R1110-R1118. [PMID: 31689391 DOI: 10.1016/j.cub.2019.09.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our planet is teeming with an astounding diversity of plants. In a mere single group of closely related species, tremendous diversity can be observed in their form and function - the colour of petals in flowering plants, the shape of the fronds in ferns, and the branching pattern of the gametophyte in mosses. Diversity can also be found in subtler traits, such as the resistance to pathogens or the ability to recruit symbiotic microbes from the environment. Plant traits can also be highly conserved - at the cellular and metabolic levels, entire biosynthetic pathways are present in all plant groups, and morphological characteristics such as vascular tissues have been conserved for hundreds of millions of years. The research community that seeks to understand these traits - both the diverse and the conserved - by taking an evolutionary point-of-view on plant biology is growing. Here, we summarize a subset of the different aspects of plant evolutionary biology, provide a guide for structuring comparative biology approaches and discuss the pitfalls that (plant) researchers should avoid when embarking on such studies.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France.
| | | | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, INRIA, 46 Allée d'Italie, Lyon, 69007, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sven Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA; Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Hervé Philippe
- Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Écologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France; Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University Freiburg, Germany; SYNMIKRO Research Center, University of Marburg, 35043 Marburg, Germany
| | - Mélanie Rich
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; Institut de Systématique, Évolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle, Paris, France
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Institute of Microbiology, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany; Institute for Microbiology and Genetics, Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Vanneste S, Beeckman T. Pericyclic versus Endodermal Lateral Roots: Which Came First? TRENDS IN PLANT SCIENCE 2020; 25:727-729. [PMID: 32507522 DOI: 10.1016/j.tplants.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Digging into the limited literature on lateral root (LR) formation in early vascular plants, we came to the novel conclusion that the pericycle, rather than the endodermis as commonly assumed, represents the ancestral tissue that was evolutionarily recruited to form LRs.
Collapse
Affiliation(s)
- Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|