1
|
Shasmita, Swain BB, Mishra S, Mohapatra PK, Naik SK, Mukherjee AK. Chemopriming for induction of disease resistance against pathogens in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111769. [PMID: 37328072 DOI: 10.1016/j.plantsci.2023.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Rice is an important grain crop of Asian population. Different fungal, bacterial and viral pathogens cause large reduction in rice grain production. Use of chemical pesticides, to provide protection against pathogens, has become incomplete due to pathogens resistance and is cause of environmental concerns. Therefore, induction of resistance in rice against pathogens via biopriming and chemopriming with safe and novel agents has emerged on a global level as ecofriendly alternatives that provide protection against broad spectrum of rice pathogens without any significant yield penalty. In the past three decades, a number of chemicals such as silicon, salicylic acid, vitamins, plant extract, phytohormones, nutrients etc. have been used to induce defense against bacterial, fungal and viral rice pathogens. From the detailed analysis of abiotic agents used, it has been observed that silicon and salicylic acid are two potential chemicals for inducing resistance against fungal and bacterial diseases in rice, respectively. However, an inclusive evaluation of the potential of different abiotic agents to induce resistance against rice pathogens is lacking due to which the studies on induction of defense against rice pathogens via chemopriming has become disproportionate and discontinuous. The present review deals with a comprehensive analysis of different abiotic agents used to induce defense against rice pathogens, their mode of application, mechanism of defense induction and the effect of defense induction on grain yield. It also provides an account of unexplored areas, which might be taken into attention to efficiently manage rice diseases. DATA AVAILABILITY STATEMENT: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Collapse
Affiliation(s)
- Shasmita
- Molecular Plant Pathology Laboratory, Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India; Department of Botany, Ravenshaw University, Cuttack 753003, Odisha, India
| | | | - Smrutirekha Mishra
- Department of Botany, Ravenshaw University, Cuttack 753003, Odisha, India
| | | | | | - Arup Kumar Mukherjee
- Molecular Plant Pathology Laboratory, Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| |
Collapse
|
2
|
Das S, Kundu S, Meena K, Jha RK, Varma A, Bahuguna RN, Tripathi S. Seed biopriming with potential bioagents influences physiological processes and plant defense enzymes to ameliorate sheath blight induced yield loss in rice (Oryza sativa L.). World J Microbiol Biotechnol 2023; 39:136. [PMID: 36976398 DOI: 10.1007/s11274-023-03576-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Disease management with the use of conventional pesticides has emerged as a major threat to the environment and human health. Moreover, the increasing cost of pesticides and their use in staple crops such as rice is not economically sustainable. The present study utilized a combination of two commercial powder formulations of biocontrol agents, Trichoderma harzianum (Th38) and Pseudomonas fluorescens (Pf28) to induce resistance against sheath blight disease via seed biopriming in basmati rice variety Vasumati and compared the performance with systemic fungicide carbendazim. Sheath blight infection significantly increased the levels of stress indicators such as proline (0.8 to 4.25 folds), hydrogen peroxide (0.89 to 1.61 folds), and lipid peroxidation (2.4 to 2.6 folds) in the infected tissues as compared to the healthy control. On the contrary, biopriming with biocontrol formulation (BCF) significantly reduced the level of stress markers, and substantially enhanced the levels of defense enzymes such as peroxidase (1.04 to 1.18 folds), phenylalanine ammonia lyase (1.02 to 1.17 folds), lipoxygenase (1.2 to 1.6 folds), and total phenolics (74% to 83%) as compared to the infected control. Besides, improved photosynthesis (48% to 59%) and nitrate reductase activity (21% to 42%) showed a positive effect on yield and biomass, which compensated disease induced losses in bio-primed plants. Conversely, the comparative analysis of the efficacy levels of BCF with carbendazim revealed BCF as a potential and eco-friendly alternative for reducing disease impact and maintaining higher yield in rice under sheath blight infection.
Collapse
Affiliation(s)
- Sudeshna Das
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Sayanta Kundu
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Khemraj Meena
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848 125, India
| | - Ratnesh Kumar Jha
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, UP, 201 313, India
| | | | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, UP, 201 313, India.
| |
Collapse
|
3
|
Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant-Microbe Interactions under Abiotic Stresses. Cells 2022; 12:cells12010031. [PMID: 36611825 PMCID: PMC9818225 DOI: 10.3390/cells12010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The plant phytohormone ethylene regulates numerous physiological processes and contributes to plant-microbe interactions. Plants induce ethylene production to ward off pathogens after recognition of conserved microbe-associated molecular patterns (MAMPs). However, plant immune responses against pathogens are essentially not different from those triggered by neutral and beneficial microbes. Recent studies indicate that ethylene is an important factor for beneficial plant-microbial association under abiotic stress such as salt and heat stress. The association of beneficial microbes with plants under abiotic stresses modulates ethylene levels which control the expression of ethylene-responsive genes (ERF), and ERFs further regulate the plant transcriptome, epi-transcriptome, Na+/K+ homeostasis and antioxidant defense mechanisms against reactive oxygen species (ROS). Understanding ethylene-dependent plant-microbe interactions is crucial for the development of new strategies aimed at enhancing plant tolerance to harsh environmental conditions. In this review, we underline the importance of ethylene in beneficial plant-microbe interaction under abiotic stresses.
Collapse
|
4
|
Liu J, Zhang S, Xie P, Wang L, Xue JY, Zhang Y, Lu R, Hang Y, Wang Y, Sun X. Fitness benefits play a vital role in the retention of the Pi-ta susceptible alleles. Genetics 2022; 220:6526399. [PMID: 35143673 PMCID: PMC8982021 DOI: 10.1093/genetics/iyac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Suobing Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Pengfei Xie
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yueyu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
5
|
Yassin M, Ton J, Rolfe SA, Valentine TA, Cromey M, Holden N, Newton AC. The rise, fall and resurrection of chemical-induced resistance agents. PEST MANAGEMENT SCIENCE 2021; 77:3900-3909. [PMID: 33729685 DOI: 10.1002/ps.6370] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustafa Yassin
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- James Hutton Institute, Dundee, UK
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
| | | | - Matthew Cromey
- Department of Plant Health, Royal Horticultural Society, Woking, UK
| | - Nicola Holden
- Scotland's Rural Colleges, Craibstone Estate, Aberdeen, UK
| | | |
Collapse
|
6
|
Dhakarey R, Kodackattumannil Peethambaran P, Riemann M. Functional Analysis of Jasmonates in Rice through Mutant Approaches. PLANTS 2016; 5:plants5010015. [PMID: 27135235 PMCID: PMC4844424 DOI: 10.3390/plants5010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Jasmonic acid, one of the major plant hormones, is, unlike other hormones, a lipid-derived compound that is synthesized from the fatty acid linolenic acid. It has been studied intensively in many plant species including Arabidopsis thaliana, in which most of the enzymes participating in its biosynthesis were characterized. In the past 15 years, mutants and transgenic plants affected in the jasmonate pathway became available in rice and facilitate studies on the functions of this hormone in an important crop. Those functions are partially conserved compared to other plant species, and include roles in fertility, response to mechanical wounding and defense against herbivores. However, new and surprising functions have also been uncovered by mutant approaches, such as a close link between light perception and the jasmonate pathway. This was not only useful to show a phenomenon that is unique to rice but also helped to establish this role in plant species where such links are less obvious. This review aims to provide an overview of currently available rice mutants and transgenic plants in the jasmonate pathway and highlights some selected roles of jasmonate in this species, such as photomorphogenesis, and abiotic and biotic stress.
Collapse
Affiliation(s)
- Rohit Dhakarey
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131 Karlsruhe, Germany.
| | | | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
7
|
Conyers RC, Mazzone JR, Tripathi AK, Sullivan DJ, Posner GH. Antimalarial chemotherapy: orally curative artemisinin-derived trioxane dimer esters. Bioorg Med Chem Lett 2015; 25:245-8. [PMID: 25481079 PMCID: PMC4277730 DOI: 10.1016/j.bmcl.2014.11.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Abstract
Eight new artemisinin-derived trioxane dimer esters 5 have been prepared and tested for antimalarial efficacy in malaria-infected mice. At a single oral dose of only 6mg/kg combined with 18mg/kg of mefloquine, each of the dimer esters 5 outperformed the antimalarial drug artemether (2). The most efficacious dimer, dichlorobenzoate ester 5h, prolonged mouse survival past day 30 of infection with three of the four mice in this group having no detectable parasitemia and appearing and acting healthy on day 30.
Collapse
Affiliation(s)
- Ryan C Conyers
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Jennifer R Mazzone
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Abhai K Tripathi
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - David J Sullivan
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States
| | - Gary H Posner
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, United States.
| |
Collapse
|
8
|
Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang L, Wang Z. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Proteomics 2014; 14:1088-101. [DOI: 10.1002/pmic.201300104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yunfeng Li
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Yanfang Nie
- College of Natural Resources and Environment; South China Agricultural University; Guangzhou P. R. China
| | - Zhihui Zhang
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Zhijian Ye
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Xiaotao Zou
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology; South China Agricultural University; Guangzhou P. R. China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control; South China Agricultural University; Guangzhou P. R. China
| |
Collapse
|
9
|
De Vleesschauwer D, Gheysen G, Höfte M. Hormone defense networking in rice: tales from a different world. TRENDS IN PLANT SCIENCE 2013; 18:555-65. [PMID: 23910453 DOI: 10.1016/j.tplants.2013.07.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 05/08/2023]
Abstract
Recent advances in plant immunity research underpin the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our understanding comes from studies of dicot plants such as Arabidopsis thaliana, new studies in monocots are providing additional insights into the defense-regulatory role of phytohormones. Here, we review the roles of both classical and more recently identified stress hormones in regulating immunity in the model monocot rice (Oryza sativa) and highlight the importance of hormone crosstalk in shaping the outcome of rice-pathogen interactions. We also propose a defense model for rice that does not support a dichotomy between the pathogen lifestyle and the effectiveness of the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA).
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
10
|
Rabe F, Ajami-Rashidi Z, Doehlemann G, Kahmann R, Djamei A. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Mol Microbiol 2013; 89:179-88. [PMID: 23692401 DOI: 10.1111/mmi.12269] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 12/01/2022]
Abstract
Salicylic acid (SA) is a key plant defence hormone which plays an important role in local and systemic defence responses against biotrophic pathogens like the smut fungus Ustilago maydis. Here we identified Shy1, a cytoplasmic U. maydis salicylate hydroxylase which has orthologues in the closely related smuts Ustilago hordei and Sporisorium reilianum. shy1 is transcriptionally induced during the biotrophic stages of development but not required for virulence during seedling infection. Shy1 activity is needed for growth on plates with SA as a sole carbon source. The trigger for shy1 transcriptional induction is SA, suggesting the possibility of a SA sensing mechanism in this fungus.
Collapse
Affiliation(s)
- Franziska Rabe
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043, Marburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:79-87. [PMID: 23602102 DOI: 10.1016/j.plantsci.2013.03.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 05/21/2023]
Abstract
Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have considered a synthesis of positive versus negative interactions among such pathways, or variations in the signaling molecules themselves. This review deals with the interaction trends between salicylic, jasmonic, and abscisic acids in the signaling pathways, as well as exceptions to such trends. Here we focused on antagonistic versus cooperative interactions between salicylic and jasmonic acids, two major disease resistance signaling molecules, and some interactions with abscisic acid, a known abiotic stress hormone, and another player in plant defense mechanisms. We provide a set of examples materializing either antagonism or cooperation for each interaction between two pathways, thereby showing the trends and pinpointing the exceptions. Such analyses are practical for researchers working on the subject and essential for a better exploitation of the data already available in plant disease resistance signaling, both in Arabidopsis and crop species, toward the development of better disease management strategies for economically important crops.
Collapse
Affiliation(s)
- Holly Derksen
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
12
|
Abstract
Rice diseases such as blast (Magnaporthe oryzae), sheath blight (Rhizoctonia solani) and bacterial blight (Xanthomonas oryzae pv oryzae) are a major obstacle to achieving optimal yields. To complement conventional breeding method, molecular and transgenic method represents an increasingly important approach for genetic improvement of disease resistance and reduction of pesticide usage. During the past two decades, a wide variety of genes and mechanisms involved in rice defense response have been identified and elucidated. These include components of pathogen recognition, signal transduction, downstream defense-related proteins, and crosstalk among different signaling pathways. In addition, various molecular strategies including use of specialized promoters, modification of target protein structures have been studied and proposed to improve the effectiveness of transgenes. While genetically improving rice for enhanced disease resistance, it is important to consider potential effects of the transgene on rice yield, tolerance to abiotic stresses, and defense against other pathogens.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Pathology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
13
|
Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M, Minami E, Takano M, Yamane H, Iino M. Identification of rice Allene Oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:226-38. [PMID: 23347338 DOI: 10.1111/tpj.12115] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 05/20/2023]
Abstract
Two photomorphogenic mutants of rice, coleoptile photomorphogenesis 2 (cpm2) and hebiba, were found to be defective in the gene encoding allene oxide cyclase (OsAOC) by map-based cloning and complementation assays. Examination of the enzymatic activity of recombinant GST-OsAOC indicated that OsAOC is a functional enzyme that is involved in the biosynthesis of jasmonic acid and related compounds. The level of jasmonate was extremely low in both mutants, in agreement with the fact that rice has only one gene encoding allene oxide cyclase. Several flower-related mutant phenotypes were observed, including morphological abnormalities of the flower and early flowering. We used these mutants to investigate the function of jasmonate in the defence response to the blast fungus Magnaporthe oryzae. Inoculation assays with fungal spores revealed that both mutants are more susceptible than wild-type to an incompatible strain of M. oryzae, in such a way that hyphal growth was enhanced in mutant tissues. The level of jasmonate isoleucine, a bioactive form of jasmonate, increased in response to blast infection. Furthermore, blast-induced accumulation of phytoalexins, especially that of the flavonoid sakuranetin, was found to be severely impaired in cpm2 and hebiba. Together, the present study demonstrates that, in rice, jasmonate mediates the defence response against blast fungus.
Collapse
Affiliation(s)
- Michael Riemann
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, 76131, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. PLANTA 2012; 236:1485-98. [PMID: 22798060 DOI: 10.1007/s00425-012-1698-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors are crucial regulatory components of plant responses to pathogen infection. In the present study, we report isolation and functional characterization of the pathogen-responsive rice WRKY30 gene, whose transcripts accumulate rapidly in response to salicylic acid (SA) and jasmonic acid (JA) treatment. Overexpression of WRKY30 in rice enhanced resistance to rice sheath blight fungus Rhizoctonia solani and blast fungus Magnaporthe grisea. The enhanced resistance in the transgenic lines overexpressing WRKY30 was associated with activated expression of JA synthesis-related genes LOX, AOS2 and pathogenesis-related (PR)3 and PR10, and increased endogenous JA accumulation under the challenge of fungal pathogens. WRKY30 was nuclear-localized and had transcriptional activation ability in yeast cells, supporting that it functions as a transcription factor. Together, our findings indicate that JA plays a crucial role in the WRKY30-mediated defense responses to fungal pathogens, and that the rice WRKY30 seems promising as an important candidate gene to improve disease resistance in rice.
Collapse
Affiliation(s)
- Xixu Peng
- School of Life Sciences, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Colebrook EH, Creissen G, McGrann GRD, Dreos R, Lamb C, Boyd LA. Broad-spectrum acquired resistance in barley induced by the Pseudomonas pathosystem shares transcriptional components with Arabidopsis systemic acquired resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:658-667. [PMID: 22250583 DOI: 10.1094/mpmi-09-11-0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Inducible resistance responses play a central role in the defense of plants against pathogen attack. Acquired resistance (AR) is induced alongside defense toward primary attack, providing broad-spectrum protection against subsequent pathogen challenge. The localization and molecular basis of AR in cereals is poorly understood, in contrast with the well-characterized systemic acquired resistance (SAR) response in Arabidopsis. Here, we use Pseudomonas syringae as a biological inducer of AR in barley, providing a clear frame of reference to the Arabidopsis-P. syringae pathosystem. Inoculation of barley leaf tissue with the nonadapted P. syringae pv. tomato avrRpm1 (PstavrRpm1) induced an active local defense response. Furthermore, inoculation of barley with PstavrRpm1 resulted in the induction of broad-spectrum AR at a distance from the local lesion, "adjacent" AR, effective against compatible isolates of P. syringae and Magnaporthe oryzae. Global transcriptional profiling of this adjacent AR revealed similarities with the transcriptional profile of SAR in Arabidopsis, as well as transcripts previously associated with chemically induced AR in cereals, suggesting that AR in barley and SAR in Arabidopsis may be mediated by analogous pathways.
Collapse
Affiliation(s)
- E H Colebrook
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. PLANT MOLECULAR BIOLOGY 2011; 77:355-70. [PMID: 21830145 DOI: 10.1007/s11103-011-9815-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/25/2011] [Indexed: 05/18/2023]
Abstract
Fusarium head blight (FHB) is an economically important disease of the family Triticeae, as, apart from yield reduction it also causes quality deterioration by producing mycotoxins. Host resistance is the most promising way to control the disease. Metabolic profiling was applied to identify resistance related (RR) metabolites against Fusarium graminearum in five FHB-resistant genotypes ('Chevron', 'H5277-44', 'H5277-164', 'M92-513' and 'M122') relative to one FHB-susceptible genotype ('Stander'). The disease severity was assessed in greenhouse to group the genotypes based on FHB-resistance. The disease was quantified as the proportion of diseased spikelets (PSD) and the area under the disease progress curve (AUDPC). Spikelets were collected at 72 h post inoculation. Metabolites were extracted into an aqueous solution of methanol and analyzed using a LC-hybrid-MS system. Metabolite abundances were subjected to a resistant versus susceptible pair-wise analysis, using a t test. Resistance related (RR) metabolites, both constitutive (RRC) and induced (RRI), were identified amongst metabolites whose levels were significantly higher in resistant genotype than in susceptible. Among 1,430 RR metabolites, 115 were putatively identified. These RR metabolites belonged to different chemical groups: fatty acids: linolenic acid; phenylpropanoids: p-coumaric, sinapic acid; flavonoids: naringenin, kaempferol glucoside, catechol glucoside. In addition, resistance indicator metabolites, such as deoxynivalenol (DON) and DON-3-O-glucoside (D3G) were also detected. The amount of total DON synthesized converted to D3G (PDC) was the greatest in resistant genotype 'Chevron' (PDC = 0.76). The role of the resistance-related and resistance-indicator metabolites on plant defense, and their use as potential biomarkers to screen barley genotypes for FHB resistance is discussed.
Collapse
Affiliation(s)
- Venkatesh Bollina
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | | | | | | |
Collapse
|
17
|
De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. PLANT PHYSIOLOGY 2008; 148:1996-2012. [PMID: 18945932 PMCID: PMC2593667 DOI: 10.1104/pp.108.127878] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/17/2008] [Indexed: 05/20/2023]
Abstract
Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple blast-effective resistance pathways.
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
18
|
Cheung MY, Zeng NY, Tong SW, Li WYF, Xue Y, Zhao KJ, Wang C, Zhang Q, Fu Y, Sun Z, Sun SSM, Lam HM. Constitutive expression of a rice GTPase-activating protein induces defense responses. THE NEW PHYTOLOGIST 2008; 179:530-545. [PMID: 19086295 DOI: 10.1111/j.1469-8137.2008.02473.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
G-proteins (guanine nucleotide-binding proteins that usually exhibit GTPase activities) and related signal transduction processes play important roles in mediating plant defense responses; here, a rice (Oryza sativa) cDNA clone, OsGAP1, encoding a GTPase-activating protein (GAP) that also contains a protein kinase C conserved region 2 (C2) domain is reported. An interacting G-protein partner for the OsGAP1 protein was identified by yeast two-hybrid library screening and confirmed by co-immunoprecipitation; the GTPase-activation activity of OsGAP1 on this interacting G-protein was demonstrated using in vitro assays. OsGAP1 was induced by wounding in rice and the presence of the R locus Xa14 enhances such induction. Gain-of-function tests in transgenic rice and Arabidopsis thaliana showed that constitutive expression of OsGAP1 led to increased resistance to bacterial pathogens in both monocots and dicots.
Collapse
Affiliation(s)
- Ming-Yan Cheung
- Department of Biology and
- State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | | | - Suk-Wah Tong
- Department of Biology and
- State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Wing-Yen Francisca Li
- Department of Biology and
- State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Xue
- State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Kai-Jun Zhao
- Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaping Fu
- China National Rice Research Institute, Hangzhou, China
| | - Zongxiu Sun
- China National Rice Research Institute, Hangzhou, China
| | - Samuel Sai-Ming Sun
- Department of Biology and
- State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Hon-Ming Lam
- Department of Biology and
- State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
19
|
Val F, Desender S, Bernard K, Potin P, Hamelin G, Andrivon D. A culture filtrate of Phytophthora infestans primes defense reaction in potato cell suspensions. PHYTOPATHOLOGY 2008; 98:653-658. [PMID: 18944288 DOI: 10.1094/phyto-98-6-0653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Priming of defense reactions by an elicitor results in an enhanced ability of the plant to respond to subsequent pathogen challenges. We previously showed that application of lipopolysaccharides (LPS) to potato cell suspensions causes apoplastic acidification, but does not stimulate lipoxygenase (LOX) activity. Here, we tested the ability of various elicitors to prime and elicit defense reactions in potato cell suspensions. Adding 20 microg ml(1) LPS, laminarin, harpin N, or a concentrated culture filtrate (CCF) of Phytophthora infestans to cell cultures 18 h before a second elicitation with LPS did not alter the intensity of apoplastic acidification compared with a single LPS application. Conversely, high concentrations (200 or 400 microg ml(1)) of LPS, laminarin, and harpin N activated LOX in cells pretreated with 1 microg ml(1) CCF, but not in cells pretreated with LPS, laminarin, or harpin N. LOX response was maximal in pretreated cells of potato cv. Bintje when the second elicitation occurred 18 to 24 h after CCF application. These results showed that LOX activation is primed in potato cells by CCF, but not by LPS, harpin N, or laminarin. Finally, bioassays showed a slightly greater reduction of rot weight in half tubers treated with CCF followed by LPS before inoculation with Pectobacterium atrosepticum than in half tubers treated with either preparation alone, indicating a priming effect of CCF on both LOX induction and disease suppression.
Collapse
Affiliation(s)
- F Val
- INRA, Agrocampus Rennes, UMR1099 BiO3P (Biology of Organisms and Populations applied to Plant Protection), F-35000 Rennes, France.
| | | | | | | | | | | |
Collapse
|
20
|
Yara A, Yaeno T, Montillet JL, Hasegawa M, Seo S, Kusumi K, Iba K. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid. Biochem Biophys Res Commun 2008; 370:344-7. [DOI: 10.1016/j.bbrc.2008.03.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/19/2008] [Indexed: 11/15/2022]
|
21
|
Karban R, Chen Y. Induced resistance in rice against insects. BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:327-35. [PMID: 17645814 DOI: 10.1017/s0007485307005056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Vaccinations are the mainstay of western preventive medicine, and they have been used to protect some crops against disease and insect pests. We consider rice as a model for protection using induced resistance since it is one of the most important staple crops and there have been significant new developments in: cross-resistance among rice insects, chemical pathways involved in induced resistance, sequencing the rice genome and expression of genes conferring resistance against rice insect pests. Insect attack has been found to cause lesions that kill planthopper eggs and early stages of gall midges. Damaged plants released volatiles that made them less likely to be chosen by planthoppers and more attractive to parasitoids. Chemical elicitors have been developed for dicotyledonous plants and these can induce resistance in rice, although rice does not fit models developed to explain signalling in dicots. For example, salicylic acid did not increase in rice after infection by pathogens and did not appear to be the mobile signal for induced resistance against pathogens although it was involved in induced responses to phloem-feeding insects. Jasmonic acid acted as a signal in some induced responses to pathogens as well as chewing insects. Many of the genes associated with induced resistance in rice have recently been mapped, and techniques are being developed to incorporate them into the genome of cultivated varieties. Attempts to control insect pests of rice will affect interactions with pathogens, predators and parasites, and other organisms in this agroecosystem.
Collapse
Affiliation(s)
- R Karban
- Department of Entomology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
22
|
Kawahigashi H, Hirose S, Iwai T, Ohashi Y, Sakamoto W, Maekawa M, Ohkawa Y. Chemically induced expression of rice OSB2 under the control of the OsPR1.1 promoter confers increased anthocyanin accumulation in transgenic rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1241-7. [PMID: 17253710 DOI: 10.1021/jf062339w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Anthocyanin pigmentation provides an excellent system with which to study the regulation of gene expression in higher plants. In this study, OsPR1.1 promoter was isolated and the promoter activity was monitored using a reporter gene OSB2, which encodes a transcription factor for anthocyanin synthesis in rice plants. We introduced PR::OSB2 plasmid into an isogenic Taichung 65, no. 99-962 T-65 CBA B9F5 (T65 CBA), rice line (Oryza sativa L.) and found that the transgenic rice plants exhibited anthocyanin accumulation by the induced expression of OSB2 after chemical treatments with methyl jasmonate (MeJA) and 2,6-dichloroisonicotinic acid (DCINA). The shoots of the PR::OSB2 transgenic rice plants changed color to red after application of the chemicals accompanying with the increased anthocyanin content to approximately 5-fold by MeJA and 2-fold by DCINA, respectively. The anthocyanin accumulation was consistent with the increase of the expression of OSB2 and anthocyanidin synthase (ANS). This color change system could provide a useful and easy way to produce transgenic plants for monitoring of chemicals in the environment.
Collapse
Affiliation(s)
- Hiroyuki Kawahigashi
- National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
De Vleesschauwer D, Cornelis P, Höfte M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1406-19. [PMID: 17153925 DOI: 10.1094/mpmi-19-1406] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyanin production led to a significant decrease in induced systemic resistance (ISR) to M. grisea, and in trans complementation for pyocyanin production restored the ability to elicit ISR. Intriguingly, pyocyanin-deficient mutants, unlike the wild type, triggered ISR against R. solani. Hence, bacterial pyocyanin plays a differential role in 7NSK2-mediated ISR in rice. Application of purified pyocyanin to hydroponically grown rice seedlings increased H202 levels locally on the root surface as well as a biphasic H202 generation pattern in distal leaves. Co-application of pyocyanin and the antioxidant sodium ascorbate alleviated the opposite effects of pyocyanin on rice blast and sheath blight development, suggesting that the differential effectiveness of pyocyanin with respect to 7NSK2-triggered ISR is mediated by transiently elevated H202 levels in planta. The cumulative results suggest that reactive oxygen species act as a double-edged sword in the interaction of rice with the hemibiotroph M. grisea and the necrotroph R. solani.
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure links, 653, B-9000 Gent, Belgium
| | | | | |
Collapse
|
24
|
Mei C, Qi M, Sheng G, Yang Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1127-37. [PMID: 17022177 DOI: 10.1094/mpmi-19-1127] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many studies in dicotyledonous plants have shown that jasmonates, including jasmonic acid (JA) and methyl jasmonate, are important signal molecules involved in induced resistance to pathogen infection and insect herbivory. However, very little genetic and molecular evidence is available to demonstrate their role in host defense response of rice and other economically important monocot plants. In this study, we have shown that exogenous application of JA was able to activate defense gene expression and local induced resistance in rice seedlings against the rice blast fungus (Magnaporthe grisea). Furthermore, we have characterized a pathogen-inducible rice OsAOS2 gene (which encodes allene oxide synthase, a key enzyme in the JA biosynthetic pathway) and examined the role of endogenous JA in rice defense response through transgenic manipulation of the JA biosynthesis. Sequence analysis indicated that OsAOS2 contains four common domains of the cytochrome P450 enzyme, but does not have the signal peptide for chloroplast targeting. The basal level of OsAOS2 expression is very low in leaves but relatively high in the sheath, culm, and flower of rice plants. Interestingly, the expression of OsAOS2 in rice leaves can be induced significantly upon M. grisea infection. Transgenic rice lines carrying the OsAOS2 transgene under the control of a strong, pathogen-inducible PBZ1 promoter accumulated abundant OsAOS2 transcripts and higher levels of JA, especially after the pathogen infection. These transgenic lines also exhibited enhanced activation of pathogenesis-related (PR) genes such as PR1a, PR3, and PR5 and increased resistance to M. grisea infection. Our results suggest that JA plays a significant role in PR gene induction and blast resistance in rice plants.
Collapse
Affiliation(s)
- Chuansheng Mei
- Department of Plant Pathology and Program in Cell and Molecular Biology, University of Arkansas, Fayetteville 72071, USA
| | | | | | | |
Collapse
|
25
|
Allwood JW, Ellis DI, Heald JK, Goodacre R, Mur LAJ. Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:351-68. [PMID: 16623898 DOI: 10.1111/j.1365-313x.2006.02692.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metabolomic approaches were used to elucidate some key metabolite changes occurring during interactions of Magnaporthe grisea--the cause of rice blast disease--with an alternate host, Brachypodium distachyon. Fourier-transform infrared (FT-IR) spectroscopy provided a high-throughput metabolic fingerprint of M. grisea interacting with the B. distachyon accessions ABR1 (susceptible) and ABR5 (resistant). Principal component-discriminant function analysis (PC-DFA) allowed the differentiation between developing disease symptoms and host resistance. Alignment of projected 'test-set' on to 'training-set' data indicated that our experimental approach produced highly reproducible data. Examination of PC-DFA loading plots indicated that fatty acids were one chemical group that discriminated between responses by ABR1 and ABR5 to M. grisea. To identify these, non-polar extracts of M. grisea-challenged B. distachyon were directly infused into an electrospray ionization mass spectrometer (ESI-MS). PC-DFA indicated that M. grisea-challenged ABR1 and ABR5 were differentially clustered away from healthy material. Subtraction spectra and PC-DFA loadings plots revealed discriminatory analytes (m/z) between each interaction and seven metabolites were subsequently identified as phospholipids (PLs) by ESI-MS-MS. Phosphatidyl glycerol (PG) PLs were suppressed during both resistant and susceptible responses. By contrast, different phosphatidic acid PLs either increased or were reduced during resistance or during disease development. This suggests considerable and differential PL processing of membrane lipids during each interaction which may be associated with the elaboration/suppression of defence mechanisms or developing disease symptoms.
Collapse
Affiliation(s)
- J William Allwood
- Institute of Biological Sciences, University of Wales, Aberystwyth, Edward Llwyd Building Ceredigion, Wales SY23 3DA, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
Disease resistance strategies reduce chemical input into the environment and are therefore powerful approaches to sustainable agriculture. Induced resistance (IR) has emerged as a potential alternative, or a complementary strategy, for crop protection. IR signifies the control of pathogens and pests by prior activation of plant defence pathways. A molecular understanding of IR in cereals, including the most important global crops wheat and rice, has been largely missing. Evidence indicating that central elements of IR pathways are conserved among Di- and Monocotyledoneae has only recently been presented, although their regulation and interaction with other plant pathways may be quite divergent. We present here a synopsis of current molecular knowledge of cereal IR mechanisms.
Collapse
Affiliation(s)
- Karl-Heinz Kogel
- Interdisciplinary Research Centre for Environmental Sciences, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany.
| | | |
Collapse
|
27
|
Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance. PLANT PHYSIOLOGY 2005; 138:1505-15. [PMID: 15980201 PMCID: PMC1176421 DOI: 10.1104/pp.104.058693] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/28/2005] [Accepted: 04/04/2005] [Indexed: 05/03/2023]
Abstract
Vitamin B(1) (thiamine) is an essential nutrient for humans. Vitamin B(1) deficiency causes beriberi, which disturbs the central nervous and circulatory systems. In countries in which rice (Oryza sativa) is a major food, thiamine deficiency is prevalent because polishing of rice removes most of the thiamine in the grain. We demonstrate here that thiamine, in addition to its nutritional value, induces systemic acquired resistance (SAR) in plants. Thiamine-treated rice, Arabidopsis (Arabidopsis thaliana), and vegetable crop plants showed resistance to fungal, bacterial, and viral infections. Thiamine treatment induces the transient expression of pathogenesis-related (PR) genes in rice and other plants. In addition, thiamine treatment potentiates stronger and more rapid PR gene expression and the up-regulation of protein kinase C activity. The effects of thiamine on disease resistance and defense-related gene expression mobilize systemically throughout the plant and last for more than 15 d after treatment. Treatment of Arabidopsis ecotype Columbia-0 plants with thiamine resulted in the activation of PR-1 but not PDF1.2. Furthermore, thiamine prevented bacterial infection in Arabidopsis mutants insensitive to jasmonic acid or ethylene but not in mutants impaired in the SAR transduction pathway. These results clearly demonstrate that thiamine induces SAR in plants through the salicylic acid and Ca(2+)-related signaling pathways. The findings provide a novel paradigm for developing alternative strategies for the control of plant diseases.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
28
|
Abebe T, Skadsen RW, Kaeppler HF. A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. PLANTA 2005; 221:170-183. [PMID: 15605240 DOI: 10.1007/s00425-004-1429-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/12/2004] [Indexed: 05/24/2023]
Abstract
The lemma and palea (lemma/palea), which form the husk of barley (Hordeum vulgare L.) seeds, constitutively express high levels of defense-related genes, relative to leaves [Abebe et al. (2004) Crop Sci 44:942-950]. One of these genes, Lem2, is expressed mainly in the lemma/palea and coleoptile and is strongly upregulated by salicylic acid (SA) and its functional analog 2,6-dichloroisonicotinic acid . Induction by SA was rapid, occurring within 4 h of treatment. However, Lem2 is not responsive to methyl jasmonate (MeJA) or wounding and is downregulated by drought, dehydration, and abscisic acid. These results suggest that Lem2 is involved in systemic acquired resistance. Sequence analysis showed that LEM2 is a jacalin-related lectin (JRL)-like protein with two domains. Consistent with northern and western blot data, transient expression analyses using Lem2::gfp constructs showed strong expression in lemmas and a trace expression in leaves. Successive 5' deletions of the 1,414 bp upstream region gradually weakened promoter strength, as measured by real-time PCR. Promoter deletion studies also revealed that the -75/+70 region (containing the TATA box, 5' UTR, and a SA-response element) determines tissue specificity and that the distal promoter region simply enhances expression. Southern analysis indicated that Morex barley has at least three copies of the Lem2 gene arranged in tandem on chromosome 5(1H) Bin 02, near the short arm telomere. Lem2 is not present in the barley cultivars Steptoe, Harrington, Golden Promise, and Q21861.
Collapse
Affiliation(s)
- Tilahun Abebe
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
29
|
Mur LAJ, Xu R, Casson SA, Stoddart WM, Routledge APM, Draper J. Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. MOLECULAR PLANT PATHOLOGY 2004; 5:267-80. [PMID: 20565595 DOI: 10.1111/j.1364-3703.2004.00225.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SUMMARY Proteinase inhibitors (PIs) are established markers for wound- and especially jasmonate-mediated signalling in dicot species such as tomato and potato. Differential screening of a cDNA library constructed from RNA isolated from wounded leaves of the grass Brachypodium distachyon led to the identification of a proteinase inhibitor gene (Bdpin1). Bdpin1 exhibited the highest homology to the subtilisin/chymotrypsin-inhibiting subgroup of the pin1 class of plant PIs. Northern analyses indicated that Bdpin1 was induced within 6 h at the site of wounding and systemically, by 24 h, thereby providing evidence for long-distance signalling in grasses. Bdpin1 also proved to be more rapidly induced in susceptible than in resistant ecotypes of B. distachyon following challenge with the Rice blast pathogen, Magnaporthe grisea. Screening with chemical signals indicated that Bdpin1 could be induced with MeJA but not with the putative mimic of salicylic acid, benzothiadiazole. Genomic Southern hybridization was consistent with Bdpin1 existing at a single locus, which was isolated following screening of a genomic cosmid library. DNA upstream of the Bdpin1 coding sequence was characterized via fusion to a GUS reporter and was found to confer wound-responsive transcription in B. distachyon and other cereals following biolistic bombardment. Both wound- and TMV-activated Bdpin1-GUS activity was detected in transgenic tobacco. Given that B. distachyon represents an ancestral grass species, our data suggest that there is considerable conservation in defence-associated signalling between dicots and grasses.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological Sciences, Edward Llwyd Building, University of Wales, Aberystwyth, Ceredigion, SY23 3DA, UK
| | | | | | | | | | | |
Collapse
|
30
|
Kuhn E, Schaller A. DNA microarrays: methodology, data evaluation and application in the analysis of plant defense signaling. GENETIC ENGINEERING 2004; 26:49-84. [PMID: 15387293 DOI: 10.1007/978-0-306-48573-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- E Kuhn
- University of Hohenheim, Institute of Plant Physiology and Biotechnology (260), D-70593 Stuttgart, Germany
| | | |
Collapse
|
31
|
Kim JS, Kim YO, Ryu HJ, Kwak YS, Lee JY, Kang H. Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. PLANT & CELL PHYSIOLOGY 2003; 44:412-4. [PMID: 12721382 DOI: 10.1093/pcp/pcg058] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Two rubber particle protein genes and one latex gene in fig tree (Ficus carica) have been isolated and their expression following various abiotic stress treatments have been investigated. The two major proteins that are tightly associated with the catalytically active rubber particles have been sequenced to be peroxidase (POX) and trypsin inhibitor (TRI). A cDNA encoding a basic class I chitinase (CHI) has also been isolated from the fig tree latex. Wounding treatment strongly induced the expression of the three stress-related genes. Among the abiotic stresses investigated, drought treatment greatly induced the expression of POX, whereas the expression of CHI and TRI decreased after the same treatment. Cold treatment reduced slightly the transcript levels of the thee genes, and NaCl reduced marginally the expression of CHI. The expression of POX, CHI, and TRI was induced by jasmonic acid and abscisic acid, by jasmonic acid, and by salicylic acid, respectively. Different expression of the stress-related genes following various abiotic stress or plant hormone treatments suggests that a crosstalk exists between the signal transduction pathways elicited by abiotic stresses and hormones in plants. Our present results showing the expression of stress-related proteins on the surface of rubber particles and latex in F. carica also imply the possible role of rubber particles and latex in defense in rubber-producing plant species.
Collapse
Affiliation(s)
- Jin Sun Kim
- Division of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 Korea
| | | | | | | | | | | |
Collapse
|
32
|
Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:887-98. [PMID: 12609030 DOI: 10.1046/j.1365-313x.2003.01675.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brassinolide (BL), considered to be the most important brassinosteroid (BR) and playing pivotal roles in the hormonal regulation of plant growth and development, was found to induce disease resistance in plants. To study the potentialities of BL activity on stress responding systems, we analyzed its ability to induce disease resistance in tobacco and rice plants. Wild-type tobacco treated with BL exhibited enhanced resistance to the viral pathogen tobacco mosaic virus (TMV), the bacterial pathogen Pseudomonas syringae pv. tabaci (Pst), and the fungal pathogen Oidium sp. The measurement of salicylic acid (SA) in wild-type plants treated with BL and the pathogen infection assays using NahG transgenic plants indicate that BL-induced resistance does not require SA biosynthesis. BL treatment did not induce either acidic or basic pathogenesis-related (PR) gene expression, suggesting that BL-induced resistance is distinct from systemic acquired resistance (SAR) and wound-inducible disease resistance. Analysis using brassinazole 2001, a specific inhibitor for BR biosynthesis, and the measurement of BRs in TMV-infected tobacco leaves indicate that steroid hormone-mediated disease resistance (BDR) plays part in defense response in tobacco. Simultaneous activation of SAR and BDR by SAR inducers and BL, respectively, exhibited additive protective effects against TMV and Pst, indicating that there is no cross-talk between SAR- and BDR-signaling pathway downstream of BL. In addition to the enhanced resistance to a broad range of diseases in tobacco, BL induced resistance in rice to rice blast and bacterial blight diseases caused by Magnaporthe grisea and Xanthomonas oryzae pv. oryzae, respectively. Our data suggest that BDR functions in the innate immunity system of higher plants including dicotyledonous and monocotyledonous species.
Collapse
Affiliation(s)
- Hideo Nakashita
- Plant Functions Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jarosch B, Jansen M, Schaffrath U. Acquired resistance functions in mlo barley, which is hypersusceptible to Magnaporthe grisea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:107-14. [PMID: 12575744 DOI: 10.1094/mpmi.2003.16.2.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Barley plants carrying a mutation in the Mlo (barley [Hordeum vulgare L.] cultivar Ingrid) locus conferring a durable resistance against powdery mildew are hypersusceptible to the rice blast fungus Magnaporthe grisea. It has been speculated that a functional Mlo gene is required for the expression of basic pathogen resistance and that the loss of Mlo function mediating powdery mildew resistance is an exception for this particular disease. Here, we report that the onset of acquired resistance (AR) after chemical as well as biological treatments is sufficient to overcome the hypersusceptible phenotype of backcross line BCIngridmlo5 (mlo) barley plants against M. grisea. Moreover, even barley plants bearing a functional Mlo gene and thus showing a moderate infection phenotype against rice blast exhibit a further enhanced resistance after induction of AR. Cytological investigations reveal that acquired resistance in mlo genotypes is manifested by the restoration of the ability to form an effective papilla at sites of attempted penetration, similarly to wild-type Mlo plants. In addition, the rate of effective papillae formation in Mlo plants was further enhanced after the onset of AR. These results demonstrate that treatments leading to the AR state in barley function independently of the Mlo/mlo phenotype and suggest that the Mlo protein is not a component of the AR signaling network. Moreover, it seems that only concomitant action of Mlo together with AR permits high level resistance in barley against blast. Higher steady state levels of PR1 and barley chemically induced mRNA correlate with higher disease severity rather than with the degree of resistance observed in this particular interaction.
Collapse
Affiliation(s)
- Birgit Jarosch
- Institute for Biology III (Plant Physiology), RWTH Aachen, D-52056 Aachen, Germany
| | | | | |
Collapse
|
34
|
Abstract
Plants can acquire enhanced resistance to pathogens after treatment with necrotizing attackers, nonpathogenic root-colonizing pseudomonads, salicylic acid, beta-aminobutyric acid and many other natural or synthetic compounds. The induced resistance is often associated with an enhanced capacity to mobilize infection-induced cellular defence responses - a process called 'priming'. Although the phenomenon has been known for years, most progress in our understanding of priming has been made only recently. These studies show that priming often depends on the induced disease resistance key regulator NPR1 (also known as NIM1 or SAI1) and that priming has a major effect on the regulation of cellular plant defence responses.
Collapse
Affiliation(s)
- Uwe Conrath
- Plant Physiology, Dept Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | | | | |
Collapse
|
35
|
Lee SC, Kim YJ, Hwang BK. A pathogen-induced chitin-binding protein gene from pepper: its isolation and differential expression in pepper tissues treated with pathogens, ethephon, methyl jasmonate or wounding. PLANT & CELL PHYSIOLOGY 2001; 42:1321-30. [PMID: 11773524 DOI: 10.1093/pcp/pce168] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A chitin-binding protein (CBP) cDNA (CACBP1) was isolated from a cDNA library of pepper (Capsicum annuum L.) leaves infected with Xanthomonas campestris pv. vesicatoria. The deduced amino acid sequence of the CACBP1 gene which has chitin-binding domain and hinge region shares a high level of identity with CBP sequences from tomato, potato and tobacco. The CACBP1 gene was organ-specifically regulated in pepper plants, and differentially induced during the compatible and incompatible interactions of pepper with X. campestris pv. vesicatoria or Phytophthora capsici. Expression of the CACBP1 gene was rapidly induced in the incompatible interactions upon pathogen infection. Transcripts of the CACBP1 gene was highly inducible in the leaves of matured pepper plants by Colletotrichum coccodes infection. In situ hybridization results showed that CACBP1 mRNA was expressed in the phloem area of vascular bundles in C. coccodes-infected leaf tissues. The pathogen-inducible CACBP1 gene was also strongly induced and accumulated in pepper leaves by ethephon, methyl jasmonate or wounding. These data suggest that ethylene and jasmonate may act as signal molecules in the signal transduction pathways of the CBP gene induction during the pepper defense- or pathogenesis-related plant responses.
Collapse
Affiliation(s)
- S C Lee
- Laboratory of Molecular Plant Pathology, College of Life and Environmental Sciences, Korea University, Seoul, 136-701 Korea
| | | | | |
Collapse
|
36
|
Zheng Z, Uchacz TM, Taylor JL. Isolation and characterization of novel defence-related genes induced by copper, salicylic acid, methyl jasmonate, abscisic acid and pathogen infection in Brassica carinata. MOLECULAR PLANT PATHOLOGY 2001; 2:159-169. [PMID: 20573003 DOI: 10.1046/j.1364-3703.2001.00063.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary To examine the defence response in Brassica carinata we differentially screened a cDNA library made from CuCl(2)-treated (Cu) leaves. The sequence of 17 of the 27 cDNA clones examined that showed Cu-induction had a high similarity to defence genes from other plant species. Among other clones that showed higher expression in the Cu leaves were two cDNAs encoding polypeptides of 351 and 250 amino acids, designated BcCJS1 and BcCJAS1. BcCJS1 had similarity to S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase from Clarkia breweri. However, the enzyme activity was not found in extracts from E. coli expressing BcCJS1. BcCJAS1 did not show extensive similarity to any genes with known function in the databases but it did contain three regions of amino acid sequence that are frequently found in amidotransferases. A third Cu-induced mRNA, Bcp6PGL, showed very high (86%) similarity to a putative 6-phosphogluconolactonase (6PGL) from Arabidopsis thaliana. In addition to Cu induction, BcCJS1 expression was induced by methyl jasmonate (MeJA) and salicylic acid (SA), BcCJAS1 expression by MeJA, SA and abscisic acid and Bcp6PGL expression by MeJA. The expression of all three genes increased after Alternaria brassicae infection. BcCJS1 and BcCJAS1 were induced within 1 h after MeJA- but not until 3 h after SA-treatment. The expression of both genes was systemically induced after infection with a compatible or incompatible fungal pathogen. SA systemically induced only BcCJAS1. The effects of various inhibitors of signalling pathways on expression of the three genes were studied.
Collapse
Affiliation(s)
- Z Zheng
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9 Canada
| | | | | |
Collapse
|
37
|
Kenton P, Darby RM, Shelley G, Draper J. A PR-5 gene promoter from Asparagus officinalis (AoPRT-L) is not induced by abiotic stress, but is activated around sites of pathogen challenge and by salicylate in transgenic tobacco. MOLECULAR PLANT PATHOLOGY 2000; 1:367-78. [PMID: 20572984 DOI: 10.1046/j.1364-3703.2000.00040.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Summary Using a promoter-uidA (AoPRT-L-GUS) construct, we have characterized heterologous expression controlled by an Asparagus officinalis acidic PR-5 gene promoter. The construct was found to be up-regulated following a variety of treatments with the defence signal salicylate. Similarly, AoPRT-L-GUS was induced by the SA mimic benzothiodiazole, however, unlike salicylate, this compound does not appear to be transported through the vasculature. The construct was insensitive to wounding and to the wound signal jasmonate. Pathogen challenge resulted in a restricted zone of expression at and around the infection site. High levels of NaCl or PEG 8000 failed to induce foliar expression, however, mannitol proved to be an effective inducer when applied as a root drench. The oxidants H(2)O(2) and t-butyl hydroperoxide also failed to induce AoPRT-L-GUS expression. Developmental expression of the construct appeared to be limited to leaf axils, sepal tips, a proportion of anthers and a small segment of tissue just below the stigma. Thus, the AoPRT-L promoter exhibits a limited expression profile responding principally to salicylate-related defence signals, and shows very little developmental expression. This suggests that the AoPRT-L promoter may be an ideal choice for contained gene expression.
Collapse
Affiliation(s)
- P Kenton
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion, SY23 3DA, UK
| | | | | | | |
Collapse
|
38
|
Schaffrath U, Zabbai F, Dudler R. Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5935-42. [PMID: 10998053 DOI: 10.1046/j.1432-1327.2000.01660.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A full-length lipoxygenase cDNA (RCI-1) has been cloned from rice (Oryza sativa) whose corresponding transcripts accumulate in response to treatment of the plants with chemical inducers of acquired resistance such as benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA), and probenazole. In contrast, RCI-1 transcript levels did not increase after inoculation with compatible and incompatible races of the rice blast fungus Magnaporthe grisea and the nonhost pathogen Pseudomonas syringae pv. syringae. RCI-1 transcript levels also increased after exogenous application of jasmonic acid, but not upon wounding. Dose-response and time course experiments revealed a similar pattern of transcript accumulation and lipoxygenase activity in BTH-treated rice leaves. Enzymatic analysis of recombinant RCI-1 protein produced in Escherichia coli revealed that 13-hydroperoxy-octadecanoic acids were the predominant reaction products when either linoleic or linolenic acid used as a substrate. The RCI-1 sequence features a putative chloroplast targeting sequence at its N-terminus. Indeed, a protein consisting of the putative chloroplast transit peptide fused to green fluorescent protein was exclusively localized in chloroplasts, indicating that RCI-1 is a chloroplastic enzyme.
Collapse
Affiliation(s)
- U Schaffrath
- Institute of Biology III, RWTH Aachen, Germany; Institute of Plant Biology, University of Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. THE PLANT CELL 2000; 12:1633-46. [PMID: 11006337 PMCID: PMC149075 DOI: 10.1105/tpc.12.9.1633] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Accepted: 06/12/2000] [Indexed: 05/17/2023]
Abstract
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.
Collapse
Affiliation(s)
- M V Rao
- Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
40
|
Beßer K, Jarosch B, Langen G, Kogel KH. Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. MOLECULAR PLANT PATHOLOGY 2000; 1:277-286. [PMID: 20572974 DOI: 10.1046/j.1364-3703.2000.00031.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract Salicylic acid (SA) and its synthetic mimics 2,6-dichloroisonicotinic acid (DCINA) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), protect barley systemically against powdery mildew (Blumeria graminis f.sp. hordei, Bgh) infection by strengthening plant defence mechanisms that result in effective papillae and host cell death. Here, we describe the differential expression of a number of newly identified barley chemically induced (BCI) genes encoding a lipoxygenase (BCI-1), a thionin (BCI-2), an acid phosphatase (BCI-3), a Ca(2+)-binding EF-hand protein (BCI-4), a serine proteinase inhibitor (BCI-7), a fatty acid desaturase (BCI-8) and several further proteins with as yet unknown function. Compared with SA, the chemicals DCINA and BTH were more potent inducers of both gene expression and resistance. Homologues of four BCI genes were detected in wheat and were also differentially regulated upon chemical activation of disease resistance. Except for BCI-4 and BCI-5 (unknown function), the genes were also induced by exogenous application of jasmonates, whereas treatments that raise endogenous jasmonates as well as wounding were less effective. The fact that BCI genes were not expressed during incompatible barley-Bgh interactions governed by gene-for-gene relationships suggests the presence of separate pathways leading to powdery mildew resistance.
Collapse
Affiliation(s)
- K Beßer
- Institute for Phytopathology und Applied Zoology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
41
|
Genoud T, Métraux JP. Crosstalk in plant cell signaling: structure and function of the genetic network. TRENDS IN PLANT SCIENCE 1999; 4:503-507. [PMID: 10562736 DOI: 10.1016/s1360-1385(99)01498-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cell signaling integrates independent stimuli using connections between biochemical pathways. The sensory apparatus can be represented as a network, and the connections between pathways are termed crosstalk. Here, we describe several examples of crosstalk in plant biology. To formalize the network of signal transduction we evaluated the relevance of mechanistic models used in artificial intelligence. Although the perceptron model of neural networking provides a good description of the process, we suggest that Boolean networks should be used as a starting framework. The Boolean network model allows genetic data to be integrated into the logical network of connections deduced from DNA microarray data.
Collapse
Affiliation(s)
- T Genoud
- Département de Biologie, Université de Fribourg, Switzerland
| | | |
Collapse
|
42
|
van Wees SC, Luijendijk M, Smoorenburg I, van Loon LC, Pieterse CM. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. PLANT MOLECULAR BIOLOGY 1999; 41:537-49. [PMID: 10608663 DOI: 10.1023/a:1006319216982] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Selected strains of nonpathogenic rhizobacteria from the genus Pseudomonas are capable of eliciting broad-spectrum induced systemic resistance (ISR) in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In Arabidopsis, the ISR pathway functions independently of salicylic acid (SA) but requires responsiveness to jasmonate and ethylene. Here, we demonstrate that known defense-related genes, i.e. the SA-responsive genes PR-1, PR-2, and PR-5, the ethylene-inducible gene Hel, the ethylene- and jasmonate-responsive genes ChiB and Pdf1.2, and the jasmonate-inducible genes Atvsp, Lox1, Lox2, Pall, and Pin2, are neither induced locally in the roots nor systemically in the leaves upon induction of ISR by Pseudomonas fluorescens WCS417r. In contrast, plants infected with the virulent leaf pathogen Pseudomonas syringae pv. tomato (Pst) or expressing SAR induced by preinfecting lower leaves with the avirulent pathogen Pst(avrRpt2) exhibit elevated expression levels of most of the defense-related genes studied. Upon challenge inoculation with Pst, PR gene transcripts accumulated to a higher level in SAR-expressing plants than in control-treated and ISR-expressing plants, indicating that SAR involves potentiation of SA-responsive PR gene expression. In contrast, pathogen challenge of ISR-expressing plants led to an enhanced level of Atvsp transcript accumulation. The otherjasmonate-responsive defense-related genes studied were not potentiated during ISR, indicating that ISR is associated with the potentiation of specific jasmonate-responsive genes.
Collapse
Affiliation(s)
- S C van Wees
- Graduate School of Experimental Plant Sciences, Faculty of Biology, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Takahashi A, Kawasaki T, Henmi K, ShiI K, Kodama O, Satoh H, Shimamoto K. Lesion mimic mutants of rice with alterations in early signaling events of defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:535-45. [PMID: 10205906 DOI: 10.1046/j.1365-313x.1999.00405.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We screened 93 lesion mimic mutants of rice for resistance to the blast fungus, Magnaporthe grisea, and found eight mutants that exhibited significant resistance to the fungus. We called these mutants cdr (cell death and resistance) and further analyzed three of them. Two mutations, cdr1 and cdr2, were recessive and one, Cdr3, was dominant. Many small brownish lesions developed over the entire leaf of the mutants 20-50 days after sowing. TUNEL staining revealed that DNA fragmentation occurred in leaf blade cells of the homozygous Cdr3 mutants. Autofluorescence and callose deposition were visible in leaf cells of these three mutants. Activation of two defense-related genes, PBZ1 and PR1, was observed in the leaves of the mutants; high expression of PBZ1 was correlated with the lesion formation in the three mutants, whereas PR1 was constitutively expressed in the cdr2 and Cdr3 mutants irrespective of the lesion formation. Levels of momilactone A, a major phytoalexin of rice, in these mutants were increased approximately 100-400-fold relative to the wild-type levels. Suspension-cultured cells of the cdr1 and cdr2 but not Cdr3 produced higher levels of H2O2 than the wild type when treated with calyculin A, an inhibitor of protein phosphatase 1. These results suggest that biochemical lesions of cdr1 and cdr2 lie in the early signaling steps leading to activation of the NADPH oxidase and that type-1 protein phosphatase is operative in protein dephosphorylation involved in NADPH oxidase activation.
Collapse
Affiliation(s)
- A Takahashi
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.
Collapse
Affiliation(s)
- CM Pieterse
- Section of Plant Pathology, Dept of Plant Ecology and Evolutionary Biology, Utrecht University, PO Box 800.84, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
45
|
Shah J, Kachroo P, Klessig DF. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. THE PLANT CELL 1999; 11:191-206. [PMID: 9927638 PMCID: PMC144168 DOI: 10.1105/tpc.11.2.191] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)- and benzothiadiazole (BTH)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1 for expression of the PR genes and disease resistance. The ssi1 mutation caused PR (PR-1, BGL2 [PR-2], and PR-5) genes to be constitutively expressed and restored resistance to an avirulent strain of Pseudomonas syringae pv tomato in npr1-5 (previously called sai1) mutant plants. In addition, ssi1 plants were small, spontaneously developed hypersensitive response-like lesions, accumulated elevated levels of SA, and constitutively expressed the antimicrobial defensin gene PDF1.2. The phenotypes of the ssi1 mutant are SA dependent. When SA accumulation was prevented in ssi1 npr1-5 plants by expressing the SA-degrading salicylate hydroxylase (nahG) gene, all of the phenotypes associated with the ssi1 mutation were suppressed. However, lesion formation and expression of the PR genes were restored in these plants by the application of BTH. Interestingly, expression of PDF1.2, which previously has been shown to be SA independent but jasmonic acid and ethylene dependent, was also suppressed in ssi1 npr1-5 plants by the nahG gene. Furthermore, exogenous application of BTH restored PDF1.2 expression in these plants. Our results suggest that SSI1 may function as a switch modulating cross-talk between the SA- and jasmonic acid/ethylene-mediated defense signal transduction pathways.
Collapse
Affiliation(s)
- J Shah
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
46
|
Reymond P, Farmer EE. Jasmonate and salicylate as global signals for defense gene expression. CURRENT OPINION IN PLANT BIOLOGY 1998; 1:404-11. [PMID: 10066616 DOI: 10.1016/s1369-5266(98)80264-1] [Citation(s) in RCA: 524] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Remarkably, only a few low molecular mass signals, including jasmonic acid, ethylene and salicylic acid, upregulate the expression of scores of defense-related genes. Using these regulators, the plant fine-tunes its defense gene expression against aggressors which, in some cases, may be able to disrupt or amplify plant defense signal pathways to their own ends.
Collapse
Affiliation(s)
- P Reymond
- Institut de Biologie et de Physiologie Végétales, Bâtiment de Biologie, Université de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
47
|
Clarke JD, Liu Y, Klessig DF, Dong X. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. THE PLANT CELL 1998; 10:557-69. [PMID: 9548982 PMCID: PMC144011 DOI: 10.1105/tpc.10.4.557] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.
Collapse
Affiliation(s)
- J D Clarke
- Developmental, Cell, and Molecular Biology Group, Department of Botany, Box 91000, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | |
Collapse
|