1
|
Grover CE, Jareczek JJ, Swaminathan S, Lee Y, Howell AH, Rani H, Arick MA, Leach AG, Miller ER, Yang P, Hu G, Xiong X, Mallery EL, Peterson DG, Xie J, Haigler CH, Zabotina OA, Szymanski DB, Wendel JF. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development. BMC Genomics 2025; 26:221. [PMID: 40050725 PMCID: PMC11884195 DOI: 10.1186/s12864-025-11360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Cotton fiber development relies on complex and intricate biological processes to transform newly differentiated fiber initials into the mature, extravagantly elongated cellulosic cells that are the foundation of this economically important cash crop. Here we extend previous research into cotton fiber development by employing controlled conditions to minimize variability and utilizing time-series sampling and analyses to capture daily transcriptomic changes from early elongation through the early stages of secondary wall synthesis (6 to 24 days post anthesis; DPA). RESULTS A majority of genes are expressed in fiber, largely partitioned into two major coexpression modules that represent genes whose expression generally increases or decreases during development. Differential gene expression reveals a massive transcriptomic shift between 16 and 17 DPA, corresponding to the onset of the transition phase that leads to secondary wall synthesis. Subtle gene expression changes are captured by the daily sampling, which are discussed in the context of fiber development. Coexpression and gene regulatory networks are constructed and associated with phenotypic aspects of fiber development, including turgor and cellulose production. Key genes are considered in the broader context of plant secondary wall synthesis, noting their known and putative roles in cotton fiber development. CONCLUSIONS The analyses presented here highlight the importance of fine-scale temporal sampling on understanding developmental processes and offer insight into genes and regulatory networks that may be important in conferring the unique fiber phenotype.
Collapse
Affiliation(s)
- Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Josef J Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
- Present address: Bellarmine University, Louisville, KY, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Youngwoo Lee
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexander H Howell
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Heena Rani
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Present address: USDA-ARS, Cereal Crops Research Unit, Madison, WI, 53726, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Alexis G Leach
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
- Present address: Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Emma R Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Pengcheng Yang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xianpeng Xiong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Eileen L Mallery
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Candace H Haigler
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Wang W, Liu D, Zhang T, Guo K, Liu X, Liu D, Chen L, Yang J, Teng Z, Zou Y, Ma J, Wang Y, Yang X, Guo X, Sun X, Zhang J, Xiao Y, Paterson AH, Zhang Z. Natural variation in GhROPGEF5 contributes to longer and stronger cotton fibers. THE NEW PHYTOLOGIST 2025; 245:1090-1105. [PMID: 39575696 DOI: 10.1111/nph.20286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025]
Abstract
Length and strength are key parameters impacting the quality of textiles that can be produced from cotton fibers, and therefore are important considerations in cotton breeding. Through map-based cloning and function analysis, we demonstrated that GhROPGEF5, encoding a ROP guanine nucleotide exchange factor, was the gene controlling fiber length and strength at qFSA10.1. Evolutionary analysis revealed that a base deletion in the third exon of GhROPGEF5 resulting in superior fiber length and strength was a rare mutation occurring in a tiny percentage of Upland cottons, with reduced fiber yield hindering its spread. GhROPGEF5 interacted with and activated GhROP10. Knockout or mutation of GhROPGEF5 resulted a loss of the ability to activate GhROP10. Knockout of GhROPGEF5 or GhROP10 affected the expression of many downstream genes associated with fiber elongation and secondary wall deposition, prolonged fiber elongation and delayed secondary wall deposition, producing denser fiber helices and increasing fiber length and strength. These results revealed new molecular aspects of fiber development and revealed a rare favorable allele for improving fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Tingfu Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Kai Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Lei Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jinming Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Ying Zou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Junrui Ma
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yi Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xinrui Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xin Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xiaoting Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yuehua Xiao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Andrew H Paterson
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| |
Collapse
|
3
|
Liu H, Zhang W, Zeng J, Zheng Q, Guo Z, Ruan C, Li W, Wang G, Wang X, Guo W. A Golgi vesicle-membrane-localized cytochrome B561 regulates ascorbic acid regeneration and confers Verticillium wilt resistance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39602087 DOI: 10.1111/tpj.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (H2O2) homeostasis and plant defense remains largely unknown. Here, we identified a Golgi vesicle-membrane-localized cytochrome B561 (CytB561) encoding gene, GhB561-11, involved in AsA regeneration and plant resistance to Verticillium dahliae in cotton. GhB561-11 was significantly downregulated upon V. dahliae attack. Knocking down GhB561-11 greatly enhanced cotton resistance to V. dahliae. We found that suppressing GhB561-11 inhibited the AsA regeneration, elevated the basal level of H2O2, and enhanced the plant defense against V. dahliae. Further investigation revealed that GhB561-11 interacted with the lipid droplet-associated protein GhLDAP3 to collectively regulate the AsA regeneration. Simultaneously silencing GhB561-11 and GhLDAP3 significantly elevated the H2O2 contents and dramatically improved the Verticillium wilt resistance in cotton. The study broadens our insights into the functional roles of CytB561 in regulating AsA regeneration and H2O2 homeostasis. It also provides a strategy by downregulating GhB561-11 to enhance Verticillium wilt resistance in cotton breeding programs.
Collapse
Affiliation(s)
- Hanqiao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- Institute for the Control of the Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Jianguo Zeng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qihang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Ding B, Liu B, Zhu X, Zhang H, Hu R, Li S, Zhang L, Jiang L, Yang Y, Zhang M, Zhao J, Pei Y, Hou L. Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H 2O 2 Production. Int J Mol Sci 2024; 25:11242. [PMID: 39457024 PMCID: PMC11509027 DOI: 10.3390/ijms252011242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Cotton fiber is one of the most important natural fiber sources in the world, and lipid metabolism plays a critical role in its development. However, the specific role of lipid molecules in fiber development and the impact of fatty acid alterations on fiber quality remain largely unknown. In this study, we demonstrate that the downregulation of GhROD1, a gene encoding phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), results in an improvement of fiber fineness. We found that GhROD1 downregulation significantly increases the proportion of linoleic acid (18:2) in cotton fibers, which subsequently upregulates genes encoding small heat shock proteins (sHSPs). This, in turn, reduces H2O2 production, thus delaying secondary wall deposition and leading to finer fibers. Our findings reveal how alterations in linoleic acid influence cellulose synthesis and suggest a potential strategy to improve cotton fiber quality by regulating lipid metabolism pathways.
Collapse
Affiliation(s)
- Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Rongyu Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Liuqin Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Juan Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Zhu QY, Ren ML, Jiang YJ, He C, Ding ZJ, Zheng SJ, Wang ZG, Jin CW. Co-mutation of OsLPR1/3/4/5 provides a promising strategy to minimize Cd contamination in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135165. [PMID: 38996675 DOI: 10.1016/j.jhazmat.2024.135165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Minimizing cadmium (Cd) contamination in rice grains is crucial for ensuring food security and promoting sustainable agriculture. Utilizing genetic modification to generate rice varieties with low Cd accumulation is a promising strategy due to its cost-effectiveness and operational simplicity. Our study demonstrated that the CRISPR-Cas9-mediated quadruple mutation of the multicopper oxidase genes OsLPR1/3/4/5 in the japonica rice cultivar Tongjing 981 had little effect on yields. However, a notable increase was observed in the cell wall functional groups that bind with Cd. As a result, the quadruple mutation of OsLPR1/3/4/5 enhanced Cd sequestration within the cell wall while reducing Cd concentrations in both xylem and phloem sap, thereby inhibiting Cd transport from roots to shoots. Consequently, Cd concentrations in brown rice and husk in oslpr1/3/4/5 quadruple mutants (qm) decreased by 52% and 55%, respectively, compared to the wild-type. These findings illustrate that the quadruple mutation of OsLPR1/3/4/5 is an effective method for minimizing Cd contamination in rice grains without compromising yields. Therefore, the quadruple mutation of OsLPR1/3/4/5 via biotechnological pathways may represent a valuable strategy for the generation of new rice varieties with low Cd accumulation.
Collapse
Affiliation(s)
- Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Meng Lian Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Ze Gang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Jiang C, Wang J, Fu X, Zhao C, Zhang W, Gao H, Zhu C, Song X, Zhao Y, An Y, Huang L, Chen N, Lu MZ, Zhang J. PagPXYs improve drought tolerance by regulating reactive oxygen species homeostasis in the cambium of Populus alba × P. glandulosa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112106. [PMID: 38663480 DOI: 10.1016/j.plantsci.2024.112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar (Populus alba × P. glandulosa, '84K'). Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8 % PEG6000 or 100 mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xinyue Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chunyan Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hesheng Gao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chenhao Zhu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Yi An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Ningning Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
8
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Yu G, Jia L, Yu N, Feng M, Qu Y. Cloning and Functional Analysis of CsROP5 and CsROP10 Genes Involved in Cucumber Resistance to Corynespora cassiicola. BIOLOGY 2024; 13:308. [PMID: 38785790 PMCID: PMC11117962 DOI: 10.3390/biology13050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The cloning of resistance-related genes CsROP5/CsROP10 and the analysis of their mechanism of action provide a theoretical basis for the development of molecular breeding of disease-resistant cucumbers. The structure domains of two Rho-related guanosine triphosphatases from plant (ROP) genes were systematically analyzed using the bioinformatics method in cucumber plants, and the genes CsROP5 (Cucsa.322750) and CsROP10 (Cucsa.197080) were cloned. The functions of the two genes were analyzed using reverse-transcription quantitative PCR (RT-qPCR), virus-induced gene silencing (VIGS), transient overexpression, cucumber genetic transformation, and histochemical staining technology. The conserved elements of the CsROP5/CsROP10 proteins include five sequence motifs (G1-G5), a recognition site for serine/threonine kinases, and a hypervariable region (HVR). The knockdown of CsROP10 through VIGS affected the transcript levels of ABA-signaling-pathway-related genes (CsPYL, CsPP2Cs, CsSnRK2s, and CsABI5), ROS-signaling-pathway-related genes (CsRBOHD and CsRBOHF), and defense-related genes (CsPR2 and CsPR3), thereby improving cucumber resistance to Corynespora cassiicola. Meanwhile, inhibiting the expression of CsROP5 regulated the expression levels of ROS-signaling-pathway-related genes (CsRBOHD and CsRBOHF) and defense-related genes (CsPR2 and CsPR3), thereby enhancing the resistance of cucumber to C. cassiicola. Overall, CsROP5 and CsROP10 may participate in cucumber resistance to C. cassiicola through the ROS and ABA signaling pathways.
Collapse
Affiliation(s)
- Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Lian Jia
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Ning Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Miao Feng
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Yue Qu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| |
Collapse
|
10
|
Tian X, Ji M, You J, Zhang Y, Lindsey K, Zhang X, Tu L, Wang M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:405-422. [PMID: 38163320 DOI: 10.1111/tpj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Wu D, Zhang D, Geng Z, Gao W, Tong M, Chu J, Yao X. Waterlogging faced by bulbil expansion improved the growth of Pinellia ternata and its effect reinforced by brassinolide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108377. [PMID: 38271862 DOI: 10.1016/j.plaphy.2024.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The bulbil expansion of P. ternata is a key period for its yield formation, and the process of bulbil expansion is often subjected to short-term heavy precipitation. It is not clear whether the short-term waterlogging can affect bulbil expansion. Brassinolide (BR) is widely believed to enhance plant tolerance to abiotic stress. The study investigated the effects of normal water (C), waterlogging (W), waterlogging + BR (W + B), waterlogging + propiconazole (W + P) on P. ternata at the bulbil expansion period in order to assess P. ternata's ability to cope with waterlogging during the bulbil expansion stage and the regulation effects of BR on the process. The biomass of P. ternata was significantly increased after waterlogging. W treatment significantly reduced the H2O2 and MDA contents, the rate of O2⋅- production and the activities of antioxidant enzymes compared with the C group. AsA and GSH contents were significantly reduced by W treatment. However, the ratios of AsA/DHA and GSH/GSSG were slightly affected by W treatment. The rate of O2∙- production and H2O2 content in W + B group were significantly lower than those in W group. The POD, APX, and GR activities, and GSH content in W + B group were evidently increased compared with the W group. Soluble sugar and active ingredients contents were significantly increased after waterlogging, and the enhancement was reinforced by BR. In conclusion, waterlogging reduced oxidative stress in P. ternata under the experimental conditions. BR treatment under waterlogging had a positive effect on P. ternata by enhancing antioxidant capacity and promoting the accumulation of soluble sugars and active ingredients.
Collapse
Affiliation(s)
- Dengyun Wu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zixin Geng
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wang Gao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
12
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Hou L, Yan K, Dong S, Guo L, Liu J, Wang S, Chang M, Meng J. Transcriptome Analysis Revealed That Hydrogen Peroxide-Regulated Oxidative Phosphorylation Plays an Important Role in the Formation of Pleurotus ostreatus Cap Color. J Fungi (Basel) 2023; 9:823. [PMID: 37623594 PMCID: PMC10455351 DOI: 10.3390/jof9080823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Pleurotus ostreatus is widely cultivated in China. H2O2, as a signaling molecule, can regulate the formation of cap color, but its regulatory pathway is still unclear, severely inhibiting the breeding of dark-colored strains. In this study, 614 DEGs specifically regulated by H2O2 were identified by RNA-seq analysis. GO-enrichment analysis shows that DEGs can be significantly enriched in multiple pathways related to ATP synthesis, mainly including proton-transporting ATP synthesis complex, coupling factor F(o), ATP biosynthetic process, nucleoside triphosphate metabolic processes, ATP metabolic process, purine nucleoside triphosphate biosynthetic and metabolic processes, and purine ribonuclease triphosphate biosynthetic metabolic processes. Further KEGG analysis revealed that 23 DEGs were involved in cap color formation through the oxidative phosphorylation pathway. They were enriched in Complexes I, III, IV, and V in the respiratory chain. Further addition of exogenous uncoupling agents and ATP synthase inhibitors clarifies the important role of ATP synthesis in color formation. In summary, H2O2 may upregulate the expression of complex-encoding genes in the respiratory chain and promote ATP synthesis, thereby affecting the formation of cap color. The results of this study lay the foundation for the breeding of dark-colored strains of P. ostreatus and provide a basis for the color-formation mechanism of edible fungi.
Collapse
Affiliation(s)
- Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
| | - Shuai Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
| | - Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; (L.H.); (K.Y.); (S.D.); (L.G.); (J.L.); (S.W.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu 030801, China
| |
Collapse
|
14
|
Veloso LLDSA, Azevedo CAVD, Nobre RG, Lima GSD, Bezerra JRC, Silva AARD, Fátima RTD, Gheyi HR, Soares LADA, Fernandes PD, Lima VLAD, Chaves LHG. Production and Fiber Characteristics of Colored Cotton Cultivares under Salt Stress and H 2O 2. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112090. [PMID: 37299070 DOI: 10.3390/plants12112090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Salt stress reduces the yield and quality of colored fiber cotton production, but this problem can be mitigated by the foliar application of hydrogen peroxide in adequate concentrations. In this context, the objective of the present study was to evaluate the production and characteristics of fibers of naturally colored cotton cultivares under irrigation with low- and high-salinity water and leaf application of hydrogen peroxide. The experiment was carried out in a greenhouse under a randomized block design, arranged in 4 × 3 × 2 factorial scheme, corresponding to four concentrations of hydrogen peroxide (0, 25, 50, and 75 μM), three cultivares of colored fiber cotton ('BRS Rubi', 'BRS Topázio', and 'BRS Verde'), and two electrical conductivities of water (0.8 and 5.3 dS m-1), with three replicates and one plant per plot. Irrigation with water of 0.8 dS m-1 associated with a foliar application of 75 μM of hydrogen peroxide favored the lint and seed weight, strength, micronaire index, and maturity of 'BRS Topázio'. The 'BRS Rubi' cotton cultivar showed higher tolerance to salinity, followed by the 'BRS Topázio' and 'BRS Verde' cultivares regarding the yield of seed cotton weight, with reduction below 20% under water of 5.3 dS m-1.
Collapse
Affiliation(s)
| | | | - Reginaldo Gomes Nobre
- Department of Science and Technology, Federal Rural University of the Semi-Arid, Caraúbas 59780-000, RN, Brazil
| | - Geovani Soares de Lima
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil
| | | | | | - Reynaldo Teodoro de Fátima
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil
| | - Hans Raj Gheyi
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil
| | | | - Pedro Dantas Fernandes
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil
| | - Vera Lúcia Antunes de Lima
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil
| | - Lúcia Helena Garófalo Chaves
- Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58430-380, PB, Brazil
| |
Collapse
|
15
|
Manimekalai R, Selvi A, Narayanan J, Vannish R, Shalini R, Gayathri S, Rabisha VP. Comparative physiological and transcriptome analysis in cultivated and wild sugarcane species in response to hydrogen peroxide-induced oxidative stress. BMC Genomics 2023; 24:155. [PMID: 36973642 PMCID: PMC10045617 DOI: 10.1186/s12864-023-09218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Sugarcane is an important energy crop grown worldwide,supplementing various renewable energy sources. Cultivated and wild sugarcane species respond differently to biotic and abiotic stresses. Generally, wild species are tolerant to various abiotic stresses. In the present study, the physiological and molecular responses of cultivated and wild sugarcane species to oxidative stress at the transcriptional levels were compared. Transcriptional responses were determined using RNAseq. The representative RNA-seq transcript values were validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and confirmed through physiological responses. RESULTS Oxidative stress causes leaf-rolling and -tip drying in cultivated sugarcane, but the wild species are tolerant. Higher chlorophyll fluorescence was observed in the wild species than that in the cultivated varieties under stress. Wild species can maintain a higher chlorophyll stability index than the cultivated species, which was confirmed by the lower transcripts of the chlorophyllase gene in the wild species than that in the cultivated variety. Transcription factor genes (NAC, MYB, and WRKY) were markedly expressed in response to oxidative stress, revealing their involvement in stress tolerance. The analysis revealed synchronized expression of acetyl-transferase, histone2A, cellulose synthase, and secondary cell wall biosynthetic genes in the wild species. The validation of selected genes and 15 NAC transcription factors using RT-qPCR revealed that their expression profiles were strongly correlated with RNA-seq. To the best of our knowledge, this is the first report on the oxidative stress response in cultivated and wild sugarcane species. CONCLUSION Physiological and biochemical changes in response to oxidative stress markedly differ between cultivated and wild sugarcane species. The differentially expressed stress-responsive genes are grouped intothe response to oxidative stress, heme-binding, peroxidase activity, and metal ion binding categories. Chlorophyll maintenance is a stress tolerance response enhanced by the differential regulation of the chlorophyllase gene.There is a considerable difference in the chlorophyll stability index between wild and cultivated varieties. We observed a substantial regulation of secondary wall biosynthesis genes in the wild species compared with that in the cultivated variety, suggesting differences in stress tolerance mechanisms.
Collapse
Affiliation(s)
- R Manimekalai
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India.
| | - A Selvi
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - Jini Narayanan
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - Ram Vannish
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - R Shalini
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - S Gayathri
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - V P Rabisha
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| |
Collapse
|
16
|
Hong B, Zhou B, Peng Z, Yao M, Wu J, Wu X, Guan C, Guan M. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Brassica napus to Waterlogging Stress. Int J Mol Sci 2023; 24:ijms24076015. [PMID: 37046988 PMCID: PMC10094381 DOI: 10.3390/ijms24076015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
During the growth period of rapeseed, if there is continuous rainfall, it will easily lead to waterlogging stress, which will seriously affect the growth of rapeseed. Currently, the mechanisms of rapeseed resistance to waterlogging stress are largely unknown. In this study, the rapeseed (Brassica napus) inbred lines G230 and G218 were identified as waterlogging-tolerant rapeseed and waterlogging-sensitive rapeseed, respectively, through a potted waterlogging stress simulation and field waterlogging stress experiments. After six days of waterlogging stress at the seedling stage, the degree of leaf aging and root damage of the waterlogging-tolerant rapeseed G230 were lower than those of the waterlogging-sensitive rapeseed G218. A physiological analysis showed that waterlogging stress significantly increased the contents of malondialdehyde, soluble sugar, and hydrogen peroxide in rape leaves and roots. The transcriptomic and metabolomic analysis showed that the differential genes and the differential metabolites of waterlogging-tolerant rapeseed G230 were mainly enriched in the metabolic pathways, biosynthesis of secondary metabolites, flavonoid biosynthesis, and vitamin B6 metabolism. Compared to G218, the expression levels of some genes associated with flavonoid biosynthesis and vitamin B metabolism were higher in G230, such as CHI, DRF, LDOX, PDX1.1, and PDX2. Furthermore, some metabolites involved in flavonoid biosynthesis and vitamin B6 metabolism, such as naringenin and epiafzelechin, were significantly up-regulated in leaves of G230, while pyridoxine phosphate was only significantly down-regulated in roots and leaves of G218. Furthermore, foliar spraying of vitamin B6 can effectively improve the tolerance to waterlogging of G218 in the short term. These results indicate that flavonoid biosynthesis and vitamin B6 metabolism pathways play a key role in the waterlogging tolerance and hypoxia stress resistance of Brassica napus and provide new insights for improving the waterlogging tolerance and cultivating waterlogging-tolerant rapeseed varieties.
Collapse
Affiliation(s)
- Bo Hong
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Bingqian Zhou
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Zechuan Peng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Mingyao Yao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Junjie Wu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Xuepeng Wu
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
| | - Chunyun Guan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Mei Guan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| |
Collapse
|
17
|
Wei HY, Li Y, Yan J, Peng SY, Wei SJ, Yin Y, Li KT, Cheng X. Root cell wall remodeling: A way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130186. [PMID: 36265381 DOI: 10.1016/j.jhazmat.2022.130186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Exopolysaccharides (EPS) are macromolecules with environment beneficial properties. Currently, numerous studies focus on the absorption of heavy metals by EPS, but less attention has been paid to the effects of EPS on the plants. This study explored the effects of EPS from Lactobacillus plantarum LPC-1 on the structure and function of cell walls in rice seedling roots under cadmium (Cd) stress. The results showed that EPS could regulate the remodeling process of the cell walls of rice roots. EPS affects the synthesis efficiency and the content of the substances that made up the cell wall, and thus plays an essential role in limiting the uptake and transport of Cd in rice root. Furthermore, EPS could induce plant resistance to heavy metals by regulating the lignin biosynthesis pathway in rice roots. Finally, the cell wall remodeling induced by EPS likely contributes to plant stress responses by activating the reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- Hong-Yu Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Li
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jiao Yan
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sai-Jin Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Kun-Tai Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of food science and technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xin Cheng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
18
|
Yang Y, Lai W, Long L, Gao W, Xu F, Li P, Zhou S, Ding Y, Hu H. Comparative proteomic analysis identified proteins and the phenylpropanoid biosynthesis pathway involved in the response to ABA treatment in cotton fiber development. Sci Rep 2023; 13:1488. [PMID: 36707547 PMCID: PMC9883468 DOI: 10.1038/s41598-023-28084-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important role in cotton fiber development. In this study, the physiological changes and proteomic profiles of cotton (Gossypium hirsutum) ovules were analyzed after 20 days of ABA or ABA inhibitor (ABAI) treatment. The results showed that compared to the control (CK), the fiber length was significantly decreased under ABA treatment and increased under ABAI treatment. Using a tandem mass tags-based quantitative technique, the proteomes of cotton ovules were comprehensively analyzed. A total of 7321 proteins were identified, of which 365 and 69 differentially accumulated proteins (DAPs) were identified in ABA versus CK and ABAI versus CK, respectively. Specifically, 345 and 20 DAPs were up- and down-regulated in the ABA group, and 65 and 4 DAPs were up- and down-regulated in the ABAI group, respectively. The DAPs in the ABA group were mainly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis and flavonoid secondary metabolism, whereas the DAPs in the ABAI group were mainly enriched in the indole alkaloid biosynthesis and phenylpropanoid biosynthesis pathways. Moreover, 9 proteins involved in phenylpropanoid biosynthesis were upregulated after ABA treatment, suggesting that this pathway might play important roles in the response to ABA, and 3 auxin-related proteins were upregulated, indicating that auxin might participate in the regulation of fiber development under ABAI treatment.
Collapse
Affiliation(s)
- Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Shihan Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| |
Collapse
|
19
|
Analysis of Rac/Rop Small GTPase Family Expression in Santalum album L. and Their Potential Roles in Drought Stress and Hormone Treatments. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121980. [PMID: 36556345 PMCID: PMC9787843 DOI: 10.3390/life12121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Plant-specific Rac/Rop small GTPases, also known as Rop, belong to the Rho subfamily. Rac proteins can be divided into two types according to their C-terminal motifs: Type I Rac proteins have a typical CaaL motif at the C-terminal, whereas type II Rac proteins lack this motif but retain a cysteine-containing element for membrane anchoring. The Rac gene family participates in diverse signal transduction events, cytoskeleton morphogenesis, reactive oxygen species (ROS) production and hormone responses in plants as molecular switches. S. album is a popular semiparasitic plant that absorbs nutrients from the host plant through the haustoria to meet its own growth and development needs. Because the whole plant has a high use value, due to the high production value of its perfume oils, it is known as the "tree of gold". Based on the full-length transcriptome data of S. album, nine Rac gene members were named SaRac1-9, and we analyzed their physicochemical properties. Evolutionary analysis showed that SaRac1-7, AtRac1-6, AtRac9 and AtRac11 and OsRac5, OsRacB and OsRacD belong to the typical plant type I Rac/Rop protein, while SaRac8-9, AtRac7, AtRac8, AtRac10 and OsRac1-4 belong to the type II Rac/ROP protein. Tissue-specific expression analysis showed that nine genes were expressed in roots, stems, leaves and haustoria, and SaRac7/8/9 expression in stems, haustoria and roots was significantly higher than that in leaves. The expression levels of SaRac1, SaRac4 and SaRac6 in stems were very low, and the expression levels of SaRac2 and SaRac5 in roots and SaRac2/3/7 in haustoria were very high, which indicated that these genes were closely related to the formation of S. album haustoria. To further analyze the function of SaRac, nine Rac genes in sandalwood were subjected to drought stress and hormone treatments. These results establish a preliminary foundation for the regulation of growth and development in S. album by SaRac.
Collapse
|
20
|
Dai X, Zhang S, Liu S, Qi H, Duan X, Han Z, Wang J. Functional Characterization and Phenotyping of Protoplasts on a Microfluidics-Based Flow Cytometry. BIOSENSORS 2022; 12:bios12090688. [PMID: 36140072 PMCID: PMC9496511 DOI: 10.3390/bios12090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as H2O2, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated. Second, a faster and stronger oxidative burst was observed in Petunia protoplasts isolated from white petals than in those isolated from purple petals, demonstrating the photoprotective role of anthocyanins. Third, using mutants with different endogenous auxin, we demonstrated the beneficial effect of auxin during the process of primary cell wall regeneration. Moreover, UV-B irradiation has a similar accelerating effect by increasing the intracellular auxin level, as shown by double fluorescence channels. In summary, our work has revealed previously underappreciated phenotypic variability within a protoplast population and demonstrated the advantages of a microfluidic flow cytometry for assessing the in vivo dynamics of plant metabolic and physiological indices at the single-cell level.
Collapse
Affiliation(s)
- Xingda Dai
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Siyuan Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| |
Collapse
|
21
|
Duan Y, Chen Q, Chen Q, Zheng K, Cai Y, Long Y, Zhao J, Guo Y, Sun F, Qu Y. Analysis of transcriptome data and quantitative trait loci enables the identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3 GENES|GENOMES|GENETICS 2022; 12:6650278. [PMID: 35881688 PMCID: PMC9434320 DOI: 10.1093/g3journal/jkac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Gossypium barbadense possesses a superior fiber quality because of its fiber length and strength. An in-depth analysis of the underlying genetic mechanism could aid in filling the gap in research regarding fiber strength and could provide helpful information for Gossypium barbadense breeding. Three quantitative trait loci related to fiber strength were identified from a Gossypium barbadense recombinant inbred line (PimaS-7 × 5917) for further analysis. RNA sequencing was performed in the fiber tissues of PimaS-7 × 5917 0–35 days postanthesis. Four specific modules closely related to the secondary wall-thickening stage were obtained using the weighted gene coexpression network analysis. In total, 55 genes were identified as differentially expressed from 4 specific modules. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis, and Gbar_D11G032910, Gbar_D08G020540, Gbar_D08G013370, Gbar_D11G033670, and Gbar_D11G029020 were found to regulate fiber strength by playing a role in the composition of structural constituents of cytoskeleton and microtubules during fiber development. Quantitative real-time PCR results confirmed the accuracy of the transcriptome data. This study provides a quick strategy for exploring candidate genes and provides new insights for improving fiber strength in cotton.
Collapse
Affiliation(s)
- Yajie Duan
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yilei Long
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Jieyin Zhao
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yaping Guo
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Fenglei Sun
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University , Urumqi, Xinjiang 830052, China
| |
Collapse
|
22
|
Xu X, Ye X, Xing A, Wu Z, Li X, Shu Z, Wang Y. Camellia sinensis small GTPase gene (CsRAC1) involves in response to salt stress, drought stress and ABA signaling pathway. Gene X 2022; 821:146318. [PMID: 35181507 DOI: 10.1016/j.gene.2022.146318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/29/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
RAC/ROP gene (RACs) is a plant-specific small GTPases. RACs play an irreplaceable role in the tissue dynamics of cytoskeleton, vesicle transport and hormone signal transmission in plants. In the present study, a novel gene from RACs family, CsRAC1, was identified from tea [Camellia sinensis (L.) O. Kuntze]. CsRAC1 contained a 591-bp open reading frame and encoded a putative protein of 197 amino acids. Subcellular localization analysis in leaves of transgenic tobacco and root tips of Arabidopsis thaliana showed that CsRAC1 targeted the nucleus and cell membrane. The expression of CsRAC1 induced by abiotic stresses such as cold, heat, drought, salt and abscisic acid has also been verified by RT-qPCR. Further verification of biological function of CsRAC1 showed that overexpression of CsRAC1 increased the sensitivity of A. thaliana to salt stress, improved the tolerance of mature A. thaliana to drought stress, and enhanced the inhibition of ABA on seed germination of A. thaliana. In addition, the antioxidant system regulated by CsRAC1 mainly worked in mature A. thaliana. The results indicate that CsRAC1 is involved in the response of C. sinensis to salt, drought stress and ABA signaling pathway.
Collapse
Affiliation(s)
- Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Anqi Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zichen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xuyan Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zaifa Shu
- Lishui Academy of Agricultural Sciences, Lishui, Zhejiang Province 323000, China.
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Zhao N, Wang W, Jiang K, Grover CE, Cheng C, Pan Z, Zhao C, Zhu J, Li D, Wang M, Xiao L, Yang J, Ning X, Li B, Xu H, Su Y, Aierxi A, Li P, Guo B, Wendel JF, Kong J, Hua J. A Calmodulin-Like Gene ( GbCML7) for Fiber Strength and Yield Improvement Identified by Resequencing Core Accessions of a Pedigree in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 12:815648. [PMID: 35185964 PMCID: PMC8850914 DOI: 10.3389/fpls.2021.815648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 05/23/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7, which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3, facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiran Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuanxia Pan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Cunpeng Zhao
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahui Zhu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Dan Li
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li Xiao
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Xinmin Ning
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Alifu Aierxi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Baosheng Guo
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Sekmen Cetinel AH, Yalcinkaya T, Akyol TY, Gokce A, Turkan I. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:321-336. [PMID: 34392045 DOI: 10.1016/j.plaphy.2021.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Drought is a prevalent natural factor limiting crop production in arid regions across the world. To overcome this limitation, seeds are sown much deeper to boost germination by soil moisture produced by underground water. Seed pretreatment can effectively induce deep-sowing tolerance in plants. In the present study, we evaluated whether H2O2 pretreatment of seeds can initiate metabolic changes and lead to improved deep-sowing tolerance in wheat. Pretreatment with 0.05 μM H2O2 promoted first internode elongation by 13% in the deep-sowing tolerant wheat cultivar "Tir" and by 32% in the sensitive cultivar "Kıraç-66" under deep-sowing conditions, whereas internode elongation was inhibited by diphenyleneiodonium chloride. In contrast to Tir seedlings, H2O2 levels in the first internode of Kıraç-66 seedlings increased under deep-sowing condition in the H2O2-treated group compared to controls. Moreover, these seedlings had significantly lower catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX) activities but higher NADPH oxidase (NOX) and superoxide dismutase (SOD) activities under the same conditions, which consequently induced greater H2O2 accumulation. Contrary to Tir, both total glutathione and glutathione S-transferase (GST) activity decreased in Kıraç-66 after deep-sowing at 10 cm. However, H2O2 treatment increased the total glutathione amounts and the activities of glutathione-related enzymes (except GST and GPX) in the first internode of Kıraç-66. Taken together, these data support that H2O2 acts as a signaling molecule in the activation of antioxidant enzymes (specifically NOX, SOD, and CAT), regulation of both glutathione-related enzymes and total glutathione content, and upregulation of the cell wall-loosening protein gene TaEXPB23.
Collapse
Affiliation(s)
| | - Tolga Yalcinkaya
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| | - Azime Gokce
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
25
|
Zhang D, Chen C, Wang H, Niu E, Zhao P, Fang S, Zhu G, Shang X, Guo W. Cotton Fiber Development Requires the Pentatricopeptide Repeat Protein GhIm for Splicing of Mitochondrial nad7 mRNA. Genetics 2021; 217:1-17. [PMID: 33683356 DOI: 10.1093/genetics/iyaa017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins encoded by nuclear genomes can bind to organellar RNA and are involved in the regulation of RNA metabolism. However, the functions of many PPR proteins remain unknown in plants, especially in polyploidy crops. Here, through a map-based cloning strategy and Clustered regularly interspaced short palindromic repeats/cas9 (CRISPR/cas9) gene editing technology, we cloned and verified an allotetraploid cotton immature fiber (im) mutant gene (GhImA) encoding a PPR protein in chromosome A03, that is associated with the non-fluffy fiber phenotype. GhImA protein targeted mitochondrion and could bind to mitochondrial nad7 mRNA, which encodes the NAD7 subunit of Complex I. GhImA and its homolog GhImD had the same function and were dosage-dependent. GhImA in the im mutant was a null allele with a 22 bp deletion in the coding region. Null GhImA resulted in the insufficient GhIm dosage, affected mitochondrial nad7 pre-mRNA splicing, produced less mature nad7 transcripts, and eventually reduced Complex I activities, up-regulated alternative oxidase metabolism, caused reactive oxygen species (ROS) burst and activation of stress or hormone response processes. This study indicates that the GhIm protein participates in mitochondrial nad7 splicing, affects respiratory metabolism, and further regulates cotton fiber development via ATP supply and ROS balance.
Collapse
Affiliation(s)
- Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Erli Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyue Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Genome-wide identification and molecular evolution analysis of the heat shock transcription factor (HSF) gene family in four diploid and two allopolyploid Gossypium species. Genomics 2021; 113:3112-3127. [PMID: 34246694 DOI: 10.1016/j.ygeno.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
Heat shock transcription factors (HSFs) can regulate plant development and stress response. The comprehensive evolutionary history of the HSF family remains elusive in cotton. In this study, each cotton species had 78 members in Gossypium barbadense and Gossypium hirsutum. The diploid species had 39 GaHSFs in Gossypium arboreum, 31 GrHSFs in Gossypium raimondii, 34 GtHSFs in Gossypium turneri, and 34 GlHSFs in Gossypium longicalyx. The HSF family in cotton can be classified into three subfamilies, with seven groups in subfamily A and five groups in subfamily B. Different groups exhibited distinct gene proportions, conserved motifs, gene structures, expansion rates, gene loss rates, and cis-regulatory elements. The paleohexaploidization event led to the expansion of the HSF family in cotton, and the gene duplication events in six Gossypium species were inherited from their common ancestor. The HSF family in diploid species had a divergent evolutionary history, whereas two cultivated tetraploids presented a highly conserved evolution of the HSF family. The HSF members in At and Dt subgenomes of the cultivated tetraploids showed a different evolution from their corresponding diploid donors. Some HSF members were regarded as key candidates for regulating cotton development and stress response. This study provided the comprehensive information on the evolutionary history of the HSF family in cotton.
Collapse
|
27
|
Ding X, Li X, Wang L, Zeng J, Huang L, Xiong L, Song S, Zhao J, Hou L, Wang F, Pei Y. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1092-1094. [PMID: 33787060 PMCID: PMC8196644 DOI: 10.1111/pbi.13594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Xiaoyan Ding
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Xianbi Li
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Lei Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Jianyan Zeng
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Liang Huang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Li Xiong
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Shuiqing Song
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Juan Zhao
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Lei Hou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Fanlong Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| |
Collapse
|
28
|
Pérez FJ, Noriega X, Rubio S. Hydrogen Peroxide Increases during Endodormancy and Decreases during Budbreak in Grapevine ( Vitis vinifera L.) Buds. Antioxidants (Basel) 2021; 10:antiox10060873. [PMID: 34072287 PMCID: PMC8228137 DOI: 10.3390/antiox10060873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Changes in the level of hydrogen peroxide (H2O2) is a good indicator to monitor fluctuations in cellular metabolism and in the stress responses. In this study, the changes in H2O2 content during bud endodormancy (ED) and budbreak were analysed in grapevine (Vitis vinifera L.). The results showed a gradual increase in the H2O2 content during the development of bud ED, which was mainly due to an increase in the activity of peroxidases (PODs). The maximum H2O2 content reached in the grapevine buds coincided with the maximum depth of bud ED. In contrast, during budbreak, the H2O2 content decreased. As the plant hormones cytokinin (CK) and auxin play an important role in budbreak and growth resumption in grapevine, the effect of exogenous applications of H2O2 on the expression of genes involved in CK and auxin metabolism was analysed. The results showed that H2O2 represses the expression of the CK biosynthesis genes VvIPT3a and VvLOG1 and induces the expression of the CK-inactivating gene VvCKX3, thus reducing potentially the CK content in the grapevine bud. On the other hand, H2O2 induced the expression of the auxin biosynthesis genes VvAMI1 and VvYUC3 and of the auxin transporter gene VvPIN3, thus increasing potentially the auxin content and auxin transport in grapevine buds. In general, the results suggest that H2O2 in grapevine buds is associated with the depth of ED and negatively regulates its budbreak.
Collapse
|
29
|
Li Y, Zhang X, Cheng Q, Teixeira da Silva JA, Fang L, Ma G. Elicitors Modulate Young Sandalwood ( Santalum album L.) Growth, Heartwood Formation, and Concrete Oil Synthesis. PLANTS 2021; 10:plants10020339. [PMID: 33578821 PMCID: PMC7916594 DOI: 10.3390/plants10020339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
Five chemical elicitors––6-benzyladenine (BA), ethephon (ETH), methyl jasmonate (MeJA), hydrogen peroxide (H2O2) and calcium chloride (CaCl2)––were used to treat 1- and 5-year-old sandal trees (Santalum album L.) to assess their effects on growth, heartwood formation and concrete oil synthesis. The results showed that some newly formed branches in stems that were induced by BA and ETH displayed leaf senescence and developed new smaller and light-green leaves. The relative percentage of concrete oil from the heartwood of water-treated trees (0.65%) was significantly lower than that from trees treated with 4 mM H2O2 (2.85%) and 4 mM BA (2.75%) within one year. Four mM BA, H2O2 and CaCl2 induced a significantly higher level of sesquiterpenoids than heartwood treated with 2 mM of these elicitors. Four mM MeJA induced significantly less sesquiterpenoids than heartwood treated with 2 mM MeJA. Morphological, physiological, and chromatographic–spectrometric technologies were integrated to trace the potential function of these exogenously applied chemical elicitors. The results may have important applications and provide a better understanding of the molecular mechanism of heartwood formation and hardening in young sandalwood trees.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.Z.); (Q.C.); (L.F.)
| | - Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.Z.); (Q.C.); (L.F.)
| | - Qingwei Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.Z.); (Q.C.); (L.F.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jaime A. Teixeira da Silva
- Independent Researcher, P.O. Box 7, Miki-cho Post Office, Ikenobe 3011-2, Kagawa-Ken, Miki-cho 761-0799, Japan;
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.Z.); (Q.C.); (L.F.)
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.Z.); (Q.C.); (L.F.)
- Correspondence:
| |
Collapse
|
30
|
Zhang M, Cao H, Xi J, Zeng J, Huang J, Li B, Song S, Zhao J, Pei Y. Auxin Directly Upregulates GhRAC13 Expression to Promote the Onset of Secondary Cell Wall Deposition in Cotton Fibers. FRONTIERS IN PLANT SCIENCE 2020; 11:581983. [PMID: 33224170 PMCID: PMC7674626 DOI: 10.3389/fpls.2020.581983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/12/2020] [Indexed: 06/01/2023]
Abstract
Cotton fibers are single cells that show a relatively independent developmental process of cell differentiation, elongation, and secondary wall deposition. Auxin promotes fiber cell protrusion from the surface of the ovule. However, the role of auxin at other stages of cotton fiber development remains largely unknown. To gain a deeper insight into this aspect, we measured indoleacetic acid (IAA) content in developing fibers. Results showed an increase in IAA content at the transition stage from elongation to secondary cell wall deposition. Subsequently, we investigated the differences between two transgenic cottons that show upregulated and downregulated fiber auxin levels, respectively. In planta analysis revealed that, in addition to promoting cell elongation, auxin regulated the time of initiation of reactive oxygen species (ROS) production and secondary wall deposition in cotton fibers. This was closely correlated with the upregulated expression of GhRAC13, which regulates ROS-triggered cellulose synthesis. We found multiple putative auxin-responsive elements existed within the promoter region of GhRAC13, and IAA could induce proGhRAC13 activity. The dual-luciferase reporter assay further proved the activation of proGhRAC13 by GhARF5, an auxin-signaling activator. Altogether, our results suggest a role of auxin in promoting the onset of secondary growth by directly upregulating GhRAC13 expression in cotton fibers.
Collapse
Affiliation(s)
- Mi Zhang
- Biotechnology Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, China
| | - Huizhen Cao
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Juan Huang
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Baoxia Li
- Biotechnology Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, China
| | - Shuiqing Song
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Li J, Wang X, Wang X, Ma P, Yin W, Wang Y, Chen Y, Chen S, Jia H. Hydrogen sulfide promotes hypocotyl elongation via increasing cellulose content and changing the arrangement of cellulose fibrils in alfalfa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5852-5864. [PMID: 32640016 DOI: 10.1093/jxb/eraa318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) is known to have positive physiological functions in plant growth, but limited data are available on its influence on cell walls. Here, we demonstrate a novel mechanism by which H2S regulates the biosynthesis and deposition of cell wall cellulose in alfalfa (Medicago sativa). Treatment with NaHS was found to increase the length of epidermal cells in the hypocotyl, and transcriptome analysis indicated that it caused the differential expression of numerous of cell wall-related genes. These differentially expressed genes were directly associated with the biosynthesis of cellulose and hemicellulose, and with the degradation of pectin. Analysis of cell wall composition showed that NaHS treatment increased the contents of cellulose and hemicellulose, but decreased the pectin content. Atomic force microscopy revealed that treatment with NaHS decreased the diameter of cellulose fibrils, altered the arrangement of the fibrillar bundles, and increased the spacing between the bundles. The dynamics of cellulose synthase complexes (CSCs) were closely related to cellulose synthesis, and NaHS increased the rate of mobility of the particles. Overall, our results suggest that the H2S signal enhances the plasticity of the cell wall by regulating the deposition of cellulose fibrils and by decreasing the pectin content. The resulting increases in cellulose and hemicellulose contents lead to cell wall expansion and cell elongation.
Collapse
Affiliation(s)
- Jisheng Li
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaofeng Wang
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| | - Peiyun Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| | - Weili Yin
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanqing Wang
- Life Science Research Core, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Chen
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Shangguan L, Chen M, Fang X, Xie Z, Gong P, Huang Y, Wang Z, Fang J. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes. BMC PLANT BIOLOGY 2020; 20:390. [PMID: 32842963 PMCID: PMC7449092 DOI: 10.1186/s12870-020-02583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/29/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bud dormancy is a strategic mechanism plants developed as an adaptation to unfavorable environments. The grapevine (Vitis vinifera) is one of the most ancient fruit vine species and vines are planted all over the world due to their great economic benefits. To better understand the molecular mechanisms underlying bud dormancy between adjacent months, the transcriptomes of 'Rosario Bianco' grape buds of 6 months and three nodes were analyzed using RNA-sequencing technology and pair-wise comparison. From November to April of the following year, pairwise comparisons were conducted between adjacent months. RESULTS A total of 11,647 differentially expressed genes (DEGs) were obtained from five comparisons. According to the results of cluster analysis of the DEG profiles and the climatic status of the sampling period, the 6 months were divided into three key processes (November to January, January to March, and March to April). Pair-wise comparisons of DEG profiles of adjacent months and three main dormancy processes showed that the whole grapevine bud dormancy period was mainly regulated by the antioxidant system, secondary metabolism, cell cycle and division, cell wall metabolism, and carbohydrates metabolism. Additionally, several DEGs, such as VvGA2OX6 and VvSS3, showed temporally and spatially differential expression patterns, which normalized to a similar trend during or before April. CONCLUSION Considering these results, the molecular mechanisms underlying bud dormancy in the grapevine can be hypothesized, which lays the foundation for further research.
Collapse
Affiliation(s)
- Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhenqiang Xie
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
- Department of Agriculture and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, Jiangsu Province, China
| | - Peijie Gong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Yuxiang Huang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
33
|
Zhang Q, Zhang X, Zhuang R, Wei Z, Shu W, Wang X, Kang Z. TaRac6 Is a Potential Susceptibility Factor by Regulating the ROS Burst Negatively in the Wheat- Puccinia striiformis f. sp. tritici Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:716. [PMID: 32695124 PMCID: PMC7338558 DOI: 10.3389/fpls.2020.00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 05/30/2023]
Abstract
Rac/Rop proteins play important roles in the regulation of cell growth and plant defense responses. However, the function of Rac/Rop proteins in wheat remains largely unknown. In this study, a small G protein gene, designated as TaRac6, was characterized from wheat (Triticum aestivum) in response to Puccinia striiformis f. sp. tritici (Pst) and was found to be highly homologous to the Rac proteins identified in other plant species. Transient expression analyses of the TaRac6-GFP fusion protein in Nicotiana benthamiana leaves showed that TaRac6 was localized in the whole cell. Furthermore, transient expression of TaRac6 inhibited Bax-triggered plant cell death (PCD) in N. benthamiana. Transcript accumulation of TaRac6 was increased at 24 h post-inoculation (hpi) in the compatible interaction between wheat and Pst, while it was not induced in an incompatible interaction. More importantly, silencing of TaRac6 by virus induced gene silencing (VIGS) enhanced the resistance of wheat (Suwon 11) to Pst (CYR31) by producing fewer uredinia. Histological observations revealed that the hypha growth of Pst was markedly inhibited along with more H2O2 generated in the TaRac6-silenced leaves in response to Pst. Moreover, transcript levels of TaCAT were significantly down-regulated, while those of TaSOD and TaNOX were significantly up-regulated. These results suggest that TaRac6 functions as a potential susceptibility factor, which negatively regulate the reactive oxygen species (ROS) burst in the wheat-Pst interaction.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinmei Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Rui Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zetong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Weixue Shu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
34
|
Zhang G, Yue C, Lu T, Sun L, Hao F. Genome-wide identification and expression analysis of NADPH oxidase genes in response to ABA and abiotic stresses, and in fibre formation in Gossypium. PeerJ 2020; 8:e8404. [PMID: 31988810 PMCID: PMC6970565 DOI: 10.7717/peerj.8404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
Plasma membrane NADPH oxidases, also named respiratory burst oxidase homologues (Rbohs), play pivotal roles in many aspects of growth and development, as well as in responses to hormone signalings and various biotic and abiotic stresses. Although Rbohs family members have been identified in several plants, little is known about Rbohs in Gossypium. In this report, we characterized 13, 13, 26 and 19 Rbohs in G. arboretum, G. raimondii, G. hirsutum and G. barbadense, respectively. These Rbohs were conservative in physical properties, structures of genes and motifs. The expansion and evolution of the Rbohs dominantly depended on segmental duplication, and were under the purifying selection. Transcription analyses showed that GhRbohs were expressed in various tissues, and most GhRbohs were highly expressed in flowers. Moreover, different GhRbohs had very diverse expression patterns in response to ABA, high salinity, osmotic stress and heat stress. Some GhRbohs were preferentially and specifically expressed during ovule growth and fiber formation. These results suggest that GhRbohs may serve highly differential roles in mediating ABA signaling, in acclimation to environmental stimuli, and in fiber growth and development. Our findings are valuable for further elucidating the functions and regulation mechanisms of the Rbohs in adaptation to diverse stresses, and in growth and development in Gossypium.
Collapse
Affiliation(s)
- Gaofeng Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Caimeng Yue
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Tingting Lu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan, China.,Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Lirong Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
35
|
Zhou X, Hu W, Li B, Yang Y, Zhang Y, Thow K, Fan L, Qu Y. Proteomic profiling of cotton fiber developmental transition from cell elongation to secondary wall deposition. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1168-1177. [PMID: 31620780 DOI: 10.1093/abbs/gmz111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/26/2019] [Accepted: 08/02/2019] [Indexed: 01/16/2023] Open
Abstract
Cotton fiber developmental transition from elongation to secondary cell wall biosynthesis is a critical growth shifting phase that affects fiber final length, strength, and other properties. Morphological dynamic analysis indicated an asynchronous fiber developmental pattern between two most important commercial cotton species, Gossypium hirsutum (Gh) and G. barbadense (Gb). Using isobaric tags for relative and absolute quantitation techniques, we examined the temporal changes of protein expression at three representative development periods (15-19, 19-23, and 23-27 dpa) in both species. Strikingly, a large proportion of differentially expressed proteins (DEPs) were identified at 19-23 dpa in Gh and at 23-27 dpa in Gb, corresponding to their fiber developmental transition timing. To better understand fiber transitional development, we comparatively analyzed those DEPs in 19-23 dpa of Gh vs. in 23-27 dpa of Gb, and noted that these cotton species indeed share fundamentally similar fiber developmental features under the biological processes. We also showed that there are limited overlaps in both specific upregulated and downregulated proteins between the two species, suggesting species-specific protein regulations in the development process. Proteomic profiling results revealed dynamic changes of several key proteins and biological processes that are potentially correlated with fiber developmental transition. During the transition, upregulated proteins are mainly involved in carbohydrate/energy metabolism, oxidation-reduction, cytoskeleton, protein turnover, Ca2+ signaling, etc., whereas important downregulated proteins are mostly involved in phenylpropanoid and flavonoid secondary metabolism pathways. The gene expressions of several changed proteins in this key stage were also examined by quantitative reverse transcription polymerase chain reaction. Overall, the present study provides accurate pictures of the regulatory networks of functional proteins during the fiber developmental transition, therefore highlighting candidate genes/proteins and related pathways for the cotton fiber improvement.
Collapse
Affiliation(s)
- Xiaoyun Zhou
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wenran Hu
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bo Li
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yang Yang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yong Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kieran Thow
- St Hugh’s College, University of Oxford, Gourdon, Montrose, UK
| | - Ling Fan
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanying Qu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
36
|
Gao Z, Sun W, Wang J, Zhao C, Zuo K. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:7-16. [PMID: 31300144 DOI: 10.1016/j.plantsci.2019.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/25/2019] [Indexed: 05/08/2023]
Abstract
Cotton fibers are developed epidermal cells of the seed coat and contain large amounts of cellulose and minor lignin-like components. Lignin in the cell walls of cotton fibers effectively provides mechanical strength and is also presumed to restrict fiber elongation and secondary cell wall synthesis. To analyze the effect of lignin and lignin-like phenolics on fiber quality and the transcriptional regulation of lignin synthesis in cotton fibers, we characterized the function of a bHLH transcription factor, GhbHLH18, during fiber elongation stage. GhbHLH18 knock-down plants have longer and stronger fibers, and accumulate less lignin-like phenolics in mature cotton fibers than control plants. By mining public transcriptomic data for developing fibers, we discovered that GhbHLH18 is coexpressed with most lignin synthesis pathway genes. Furthermore, we showed that GhbHLH18 strongly binds to the E-box in the promoter region of GhPER8 and activates its expression. Transient over expression of GhPER8 protein in tobacco leaves significantly decreased the content of coniferyl alcohol and sinapic alcohol-the substrate respectively for G-lignin and S-lignin biosynthesis. These results suggest that GhbHLH18 is negatively associated with fiber quality by activating peroxidase-mediated lignin metabolism, thus the paper represents an alternative strategy to improve fiber quality.
Collapse
Affiliation(s)
- Zhengyin Gao
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Wang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyan Zhao
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
37
|
Bernacki MJ, Czarnocka W, Szechyńska-Hebda M, Mittler R, Karpiński S. Biotechnological Potential of LSD1, EDS1, and PAD4 in the Improvement of Crops and Industrial Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E290. [PMID: 31426325 PMCID: PMC6724177 DOI: 10.3390/plants8080290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Lesion Simulating Disease 1 (LSD1), Enhanced Disease Susceptibility (EDS1) and Phytoalexin Deficient 4 (PAD4) were discovered a quarter century ago as regulators of programmed cell death and biotic stress responses in Arabidopsis thaliana. Recent studies have demonstrated that these proteins are also required for acclimation responses to various abiotic stresses, such as high light, UV radiation, drought and cold, and that their function is mediated through secondary messengers, such as salicylic acid (SA), reactive oxygen species (ROS), ethylene (ET) and other signaling molecules. Furthermore, LSD1, EDS1 and PAD4 were recently shown to be involved in the modification of cell walls, and the regulation of seed yield, biomass production and water use efficiency. The function of these proteins was not only demonstrated in model plants, such as Arabidopsis thaliana or Nicotiana benthamiana, but also in the woody plant Populus tremula x tremuloides. In addition, orthologs of LSD1, EDS1, and PAD4 were found in other plant species, including different crop species. In this review, we focus on specific LSD1, EDS1 and PAD4 features that make them potentially important for agricultural and industrial use.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-239 Cracow, Poland
- The Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Błonie, Radzików, Poland
| | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| |
Collapse
|
38
|
Shivakumar VS, Johnson G, Zimmer EA. Transcriptome analysis of the curry tree (Bergera koenigii L., Rutaceae) during leaf development. Sci Rep 2019; 9:4230. [PMID: 30862864 PMCID: PMC6414593 DOI: 10.1038/s41598-019-40227-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
The curry tree (Bergera koenigii L.) is a widely cultivated plant used in South Asian cooking. Next-generation sequencing was used to generate the transcriptome of the curry leaf to detect changes in gene expression during leaf development, such as those genes involved in the production of oils which lend the leaf its characteristic taste, aroma, and medicinal properties. Using abundance estimation (RSEM) and differential expression analysis, genes that were significantly differentially expressed were identified. The transcriptome was annotated with BLASTx using the non-redundant (nr) protein database, and Gene Ontology (GO) terms were assigned based on the top BLAST hit using Blast2GO. Lastly, functional enrichment of the assigned GO terms was analyzed for genes that were significantly differentially expressed. Of the most enriched GO categories, pathways involved in cell wall, membrane, and lignin synthesis were found to be most upregulated in immature leaf tissue, possibly due to the growth and expansion of the leaf tissue. Terpene synthases, which synthesize monoterpenes and sesquiterpenes, which comprise much of the curry essential oil, were found to be significantly upregulated in mature leaf tissue, suggesting that oil production increases later in leaf development. Enzymes involved in pigment production were also significantly upregulated in mature leaves. The findings were based on computational estimates of gene expression from RNA-seq data, and further study is warranted to validate these results using targeted techniques, such as quantitative PCR.
Collapse
Affiliation(s)
- Vikram S Shivakumar
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.
- Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA.
| | - Gabriel Johnson
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Elizabeth A Zimmer
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.
| |
Collapse
|
39
|
Zhang W, Song J, Yue S, Duan K, Yang H. MhMAPK4 from Malus hupehensis Rehd. decreases cell death in tobacco roots by controlling Cd 2+ uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:230-240. [PMID: 30388541 DOI: 10.1016/j.ecoenv.2018.09.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) induces cell death in plant roots. Mitogen-activated protein kinase (MAPK) plays a role in the regulation of cell death induced by Cd in plant roots. In this study, MhMAPK4 was isolated from the roots of Malus hupehensis. Subcellular localization showed that the MhMAPK4 protein was located in the cell membrane and cytoplasm and is a transmembrane protein that is characterized by hydrophily. The expression of MhMAPK4 in the roots of M. hupehensis was up-regulated by Cd sulfate and Cd chloride. Phenotypic comparison under Cd stress showed that the growth of wild-type (WT) tobacco was lower than the transgenic lines overexpressing MhMAPK4. The fresh weight and the root length of WT also was lower than that of the transgenic tobacco. The net Cd2+ influx in the tobacco roots was decreased by the overexpression of MhMAPK4, as was root Cd accumulation. The recovery time of the Cd2+ influx to stable state in the transgenic tobacco was also shorter than the WT. The expression of iron-regulated transporter 1 (NtIRT1) and natural resistance associated macrophage protein 5 (NtNRAMP5) was relatively low in the transgenic lines under Cd stress. Cell death and apoptosis in the tobacco roots was reduced following the overexpression of MhMAPK4. The activity of vacuolar processing enzyme (VPE) and the transcript level of VPE in the transgenic tobacco was lower than that of WT under Cd stress. In addition, the electrolyte leakage and malondialdehyde and hydrogen peroxide contents in the transgenic tobacco were lower than those of WT, whereas the antioxidant enzyme activity and expression were higher. These results suggest that MhMAPK4 regulates Cd accumulation by mediating Cd2+ uptake by the roots, and controls Cd-caused cell death by adjusting VPE activity.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Songqing Yue
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Kaixuan Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
40
|
Xu L, Li S, Shabala S, Jian T, Zhang W. Plants Grown in Parafilm-Wrapped Petri Dishes Are Stressed and Possess Altered Gene Expression Profile. FRONTIERS IN PLANT SCIENCE 2019; 10:637. [PMID: 31156687 PMCID: PMC6529517 DOI: 10.3389/fpls.2019.00637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/29/2019] [Indexed: 05/03/2023]
Abstract
Arabidopsis is used as a model species in numerous physiological and genetic studies. Most of them employ parafilm-wrapped sterile culture. Here we demonstrate that this method is prone to potential artifacts and can lead to erroneous conclusions. We compared the effect of different sealing methods including air-permeable paper tape and traditional parafilm on Arabidopsis seedling growth, root development and gene expression network. Although seedlings grown in Petri dishes after 1 week sealed with paper tape showed a similar growth phenotype to that of parafilm-sealed seedlings, more than 700 differentially expressed genes (DEG) were found, including stress and nutrition-responsive genes. In addition, more H2O2 was accumulated in the tissues of parafilm-sealed plants. After 14 days of growth, paper tape-sealed plants grew much better than parafilm-sealed ones and accumulated higher chlorophyll content, with 490 DEGs found. After 3 weeks of growth, paper tape-sealed plants had higher chlorophyll and better growth compared to parafilm-sealed ones; and only 10 DEGs were found at this stage. Thus, the obvious phenotype observed at the latter stage was a result of differential gene expression at earlier time points, mostly of defense, abiotic stress, nutrition, and phytohormone-responsive genes. More O2 content was detected inside paper tape-sealed Petri dishes at early growth stage (7 days), and distinct difference in the CO2 content was observed between parafilm-sealed and paper tape-sealed Petri dishes. Furthermore, the carbon source also influenced seedlings growth with different sealing methods. In conclusion, conventional sealing using parafilm was not the optimal choice, most likely because of the limited gas exchange and a consequent stress caused to plants.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengjie Li
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Tao Jian
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- *Correspondence: Wenying Zhang,
| |
Collapse
|
41
|
Ma Y, Zhang W, Niu J, Ren Y, Zhang F. Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:136-145. [PMID: 32172755 DOI: 10.1071/fp18096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 05/04/2023]
Abstract
The roles of hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) in signalling transduction of stomatal closure induced by salt stress were examined by using pharmacological, spectrophotographic and laser scanning confocal microscopic (LSCM) approaches in Vicia faba L. Salt stress resulted in stomatal closure, and this effect was blocked by H2S modulators hypotaurine (HT), aminooxy acetic acid (AOA), hydroxylamine (NH2OH), potassium pyruvate (C3H3KO3) and ammonia (NH3) and H2O2 modulators ascorbic acid (ASA), catalase (CAT), diphenylene iodonium (DPI). Additionally, salt stress induced H2S generation and increased L-/D-cysteine desulfhydrase (L-/D-CDes, pyridoxalphosphate-dependent enzyme) activity in leaves, and caused H2O2 production in guard cells, and these effects were significantly suppressed by H2S modulators and H2O2 modulators respectively. Moreover, H2O2 modulators suppressed salt stress-induced increase of H2S levels and L-/D-CDes activity in leaves as well as stomatal closure of V. faba. However, H2S modulators had no effects on salt stress-induced H2O2 production in guard cells. Altogether, our data suggested that H2S and H2O2 probably are involved in salt stress-induced stomatal closure, and H2S may function downstream of H2O2 in salt stress-induced stomatal movement in V. faba.
Collapse
Affiliation(s)
- Yinli Ma
- School of Life Sciences, Shanxi Normal University, Linfen 041004, China
| | - Wei Zhang
- School of Life Sciences, Shanxi Normal University, Linfen 041004, China
| | - Jiao Niu
- School of Life Sciences, Shanxi Normal University, Linfen 041004, China
| | - Yu Ren
- School of Life Sciences, Shanxi Normal University, Linfen 041004, China
| | - Fan Zhang
- School of Life Sciences, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
42
|
Sarwar M, Saleem MF, Ullah N, Rizwan M, Ali S, Shahid MR, Alamri SA, Alyemeni MN, Ahmad P. Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci Rep 2018; 8:17086. [PMID: 30459328 PMCID: PMC6244283 DOI: 10.1038/s41598-018-35420-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Episodes of extremely high temperature during reproductive stages of cotton crops are common in many parts of the world. Heat stress negatively influences plant growth, physiology and ultimately lint yield. This study attempts to modulate heat-induced damage to cotton crops via application of growth regulators e.g. hydrogen peroxide (H2O2 30ppm), salicylic acid (SA 50ppm), moringa leaf extract (MLE 30 times diluted) and ascorbic acid (ASA 70ppm). Cotton plants were exposed to different thermal regimes by staggering sowing time (field) or exposing to elevated temperatures (38/24 °C and 45/30 °C) for one week during reproductive growth stages (glasshouse). Elevated temperatures significantly induced lipid membrane damage, which was evident from an increased malondialdehyde (MDA) level in cotton leaves. Heat-stressed plants also experienced a significant reduction in leaf chlorophyll contents, net photosynthetic rate and lint yield. Hydrogen peroxide outclassed all the other regulators in increasing leaf SOD, CAT activity, chlorophyll contents, net photosynthetic rate, number of sympodial branches, boll weight and fiber quality components. For example, hydrogen peroxide improved boll weight of heat stressed plants by 32% (supra), 12% (sub) under glasshouse and 18% (supra) under field conditions compared with water treated plants under the same temperatures. Growth regulators, specifically, H2O2 protected physiological processes of cotton from heat-induced injury by capturing reactive oxygen species and modulating antioxidant enzymes. Thus, cotton performance in the future warmer climates may be improved through regulation (endogenous) or application (exogenous) hormones during reproductive phases.
Collapse
Affiliation(s)
- Muhammad Sarwar
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Najeeb Ullah
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland Wilsonton Heights, Toowoomba, QLD, 4350, Australia
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Muhammad Rizwan Shahid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saud A Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Botany, S.P. College, Maulana Azad Road, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
43
|
Ma Y, Niu J, Zhang W, Wu X. Hydrogen sulfide may function downstream of hydrogen peroxide in mediating darkness-induced stomatal closure in Vicia faba. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:553-560. [PMID: 32290994 DOI: 10.1071/fp17274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 06/11/2023]
Abstract
The relationship between hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) during darkness-induced stomatal closure in Vicia faba L. was investigated by using pharmacological, spectrophotographic and lasers canning confocal microscopic approaches. Darkness-induced stomatal closure was inhibited by H2S scavenger hypotaurine (HT), H2S synthesis inhibitors aminooxy acetic acid (AOA) and hydroxylamine (NH2OH) and potassium pyruvate (N3H3KO3) and ammonia (NH3), which are the products of L-/D-cysteine desulfhydrase (L-/D-CDes). Moreover, darkness induced H2S generation and increased L-/D-CDes activity in leaves of V. faba. H2O2 scavenger and synthesis inhibitors suppressed darkness-induced increase of H2S levels and L-/D-CDes activity as well as stomatal closure in leaves of V. faba. However, H2S scavenger and synthesis inhibitors had no effect on darkness-induced H2O2 accumulation in guard cells of V. faba. From these data it can be deduced that H2S is involved in darkness-induced stomatal closure and acts downstream of H2O2 in V. faba.
Collapse
Affiliation(s)
- Yinli Ma
- School of Life Sciences, Shanxi Normal University, Gongyuan Street No. 1, Linfen 041004, China
| | - Jiao Niu
- School of Life Sciences, Shanxi Normal University, Gongyuan Street No. 1, Linfen 041004, China
| | - Wei Zhang
- School of Life Sciences, Shanxi Normal University, Gongyuan Street No. 1, Linfen 041004, China
| | - Xiang Wu
- Hanzhong Forestry Science Research Institute, Zhengjiaba, Hanzhong 723000, China
| |
Collapse
|
44
|
Li Y, Xu S, Wang Z, He L, Xu K, Wang G. Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1471-1484. [PMID: 29444316 PMCID: PMC5888972 DOI: 10.1093/jxb/ery024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 05/04/2023]
Abstract
Sugars play important roles in regulating plant growth, development, and stomatal movement. Here, we found that glucose triggered stomatal closure in a dose- and time-dependent manner in Arabidopsis. Pharmacological data showed that glucose-induced stomatal closure was greatly inhibited by catalase [CAT; a reactive oxygen species (ROS) scavenger], diphenyleneiodonium chloride (DPI; an NADPH oxidase inhibitor), lanthanum chloride (LaCl3; a Ca2+ channel blocker), EGTA (a Ca2+ chelator), and two nitrate reductase (NR) inhibitors, tungstate and sodium azide (NaN3), while it was not affected by salicylhydroxamic acid (SHAM; a peroxidase inhibitor). Moreover, glucose induced ROS and nitric oxide (NO) production in guard cells of Arabidopsis. The ROS production was almost completely removed by CAT, strongly restricted by DPI, and was not affected by SHAM. NO production was partially suppressed by tungstate and NaN3, and the levels of NO were significantly reduced in the nia1-1nia2-5 mutant. Additionally, glucose-triggered stomatal closure was significantly impaired in gin1-1, gin2-1, pyr1pyl1pyl2pyl4, abi1-1, ost1, slac1-4, cpk6-1, and nia1-1nia2-5 mutants. Likewise, the reductions in leaf stomatal conductance (gs) and transpiration rate (E) caused by glucose were reversed in the above mutants. These results suggest that glucose-triggered stomatal closure may be dependent on basal signaling through PYR/RCAR receptors and hexokinase1 (HXK1).
Collapse
Affiliation(s)
- Yan Li
- Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shanshan Xu
- Natural History Research Center, Shanghai Natural History Museum, Branch of Shanghai Science & Technology Museum, Shanghai, China
| | - Zhiwei Wang
- Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lingchao He
- Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kang Xu
- Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Genxuan Wang
- Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV. Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep 2018; 8:3620. [PMID: 29483524 PMCID: PMC5827756 DOI: 10.1038/s41598-018-21866-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cotton fiber is a specialized unicellular structure useful for the study of cellular differentiation and development. Heat shock proteins (HSPs) have been shown to be involved in various developmental processes. Microarray data analysis of five Gossypium hirsutum genotypes revealed high transcript levels of GhHSP90 and GhHSP70 genes at different stages of fiber development, indicating their importance in the process. Further, we identified 26 and 55 members of HSP90 and HSP70 gene families in G. hirsutum. The treatment of specific inhibitors novobiocin (Nov; HSP90) and pifithrin/2-phenylethynesulfonamide (Pif; HSP70) in in-vitro cultured ovules resulted in a fewer number of fiber initials and retardation in fiber elongation. The molecular chaperone assay using bacterially expressed recombinant GhHSP90-7 and GhHSP70-8 proteins further confirmed the specificity of inhibitors. HSP inhibition disturbs the H2O2 balance that leads to the generation of oxidative stress, which consequently results in autophagy in the epidermal layer of the cotton ovule. Transmission electron microscopy (TEM) of inhibitor-treated ovule also corroborates autophagosome formation along with disrupted mitochondrial cristae. The perturbations in transcript profile of HSP inhibited ovules show differential regulation of different stress and fiber development-related genes and pathways. Altogether, our results indicate that HSP90 and HSP70 families play a crucial role in cotton fiber differentiation and development by maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Amit Choudhary
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vikash K Yadav
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Sudhir K Agarwal
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
46
|
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1867. [PMID: 29163592 PMCID: PMC5671638 DOI: 10.3389/fpls.2017.01867] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
47
|
Miao Q, Deng P, Saha S, Jenkins JN, Hsu CY, Abdurakhmonov IY, Buriev ZT, Pepper A, Ma DP. Genome-wide identification and characterization of microRNAs differentially expressed in fibers in a cotton phytochrome A1 RNAi line. PLoS One 2017; 12:e0179381. [PMID: 28614407 PMCID: PMC5470697 DOI: 10.1371/journal.pone.0179381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023] Open
Abstract
Cotton fiber is an important commodity throughout the world. Fiber property determines fiber quality and commercial values. Previous studies showed that silencing phytochrome A1 gene (PHYA1) by RNA interference in Upland cotton (Gossypium hirsutum L. cv. Coker 312) had generated PHYA1 RNAi lines with simultaneous improvements in fiber quality (longer, stronger and finer fiber) and other key agronomic traits. Characterization of the altered molecular processes in these RNAi genotypes and its wild-type controls is a great interest to better understand the PHYA1 RNAi phenotypes. In this study, a total of 77 conserved miRNAs belonging to 61 families were examined in a PHYA1 RNAi line and its parental Coker 312 genotype by using multiplex sequencing. Of these miRNAs, seven (miR7503, miR7514, miR399c, miR399d, miR160, miR169b, and miR2950) were found to be differentially expressed in PHYA1 RNAi cotton. The target genes of these differentially expressed miRNAs were involved in the metabolism and signaling pathways of phytohormones, which included Gibberellin, Auxin and Abscisic Acid. The expression of several MYB transcription factors was also affected by miRNAs in RNAi cotton. In addition, 35 novel miRNAs (novel miR1-novel miR35) were identified in fibers for the first time in this study. Target genes of vast majority of these novel miRNAs were also predicted. Of these, nine novel miRNAs (novel-miR1, 2, 16, 19, 26, 27, 28, 31 and 32) were targeted to cytochrome P450-like TATA box binding protein (TBP). The qRT-PCR confirmed expression levels of several differentially regulated miRNAs. Expression patterns of four miRNAs-targets pairs were also examined via RNA deep sequencing. Together, the results imply that the regulation of miRNA expression might confer to the phenotype of the PHYA1 RNAi line(s) with improved fiber quality.
Collapse
Affiliation(s)
- Qing Miao
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States of America
| | - Peng Deng
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States of America
| | - Sukumar Saha
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS, United States of America
| | - Johnie N. Jenkins
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS, United States of America
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, United States of America
| | | | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Alan Pepper
- Department of Biology, Texas A & M University, College Station, TX, United States of America
| | - Din-Pow Ma
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
48
|
Dorion S, Clendenning A, Rivoal J. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:914-926. [PMID: 27880021 DOI: 10.1111/tpj.13431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 05/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O2 uptake, flux of carbon between sucrose and CO2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways.
Collapse
Affiliation(s)
- Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Audrey Clendenning
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
49
|
Tang K, Liu JY. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Acta Biochim Biophys Sin (Shanghai) 2017; 49:33-43. [PMID: 27864277 DOI: 10.1093/abbs/gmw113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Phospholipase D (PLD) hydrolyzes phospholipids to generate a free polar head group (e.g., choline) and a second messenger phosphatidic acid and plays diverse roles in plant growth and development, including seed germination, leaf senescence, root hair growth, and hypocotyl elongation. However, the function of PLD in cotton remains largely unexplored. Here, the comprehensive molecular characterization of GhPLDα1 was explored with its role in upland cotton (Gossypium hirsutum) fiber development. The GhPLDα1 gene was cloned successfully, and a sequence alignment showed that GhPLDα1 contains one C2 domain and two HKD (HxKxxxxD) domains. Quantitative reverse transcriptase-polymerase chain reaction measured the expression of GhPLDα1 in various cotton tissues with the highest level in fibers at 20 days post anthesis (d.p.a.). Fluorescent microscopy and immunoblotting in tobacco epidermis showed the GhPLDα1 distribution in both cell membranes and the cytoplasm. An activity assay indicated changes in PLDα enzyme activity in developing fiber cells with a peak level at 20 d.p.a., coinciding with the onset of cellulose accumulation and the increased H2O2 content during fiber development. Furthermore, the inhibition of PLDα activity obviously decreased the cellulose and H2O2 contents of in vitro-cultured cotton fibers. These results provide important evidence explaining the relationship of GhPLDα1 with secondary cell wall thickening in cotton fibers in that GhPLDα1 may correlate with the increased H2O2 content at the onset of secondary cell wall thickening, ultimately promoting cellulose biosynthesis.
Collapse
Affiliation(s)
- Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|