1
|
Cai Z, Li J, Su Y, Zheng L, Zhang J, Zhu M, Qiu B, Kong L, Ye Y, Xue Y, Wu W, Duan Y. The MADS6, JAGGED, and YABBY proteins synergistically determine floral organ development in rice. PLANT PHYSIOLOGY 2025; 197:kiaf076. [PMID: 39977122 DOI: 10.1093/plphys/kiaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 02/22/2025]
Abstract
MADS6, JAGGED (JAG), and DROOPING LEAF (DL) are key regulators of floral organ patterns in rice (Oryza sativa); however, how they work together in specifying floral organs remains to be determined. Here, we extensively analyzed the coordination mechanism. Genetic interactions showed that all double/triple mutant combinations of mads6-5 with jag and/or dl-sup7 generated an inflorescence from the spikelet center and lemma-like organs (LLOs) at the periphery, indicating that these genes synergistically promote floral organ specification, inhibit inflorescence initiation, and terminate the floral meristem (FM). Particularly, a fully developed mads6-5 jag spikelet appeared as a large bouquet composed of numerous multifloral complexes (MFC), while the triple mutant was generally similar to mads6-5 jag, except for a longer pedicel and fewer MFCs. Expression analysis revealed that JAG directly inhibits the transcription of MADS6 in stamens but not in pistils, as JAG and DL co-express in pistils and form a JAG-DL complex, indicating that JAG and DL may coordinate the transcription of MADS6 in sexual organs. Protein interactions revealed that MADS6 and JAG bind to 5 spikelet-related YABBY proteins (including DL), forming 10 heterodimers, suggesting that they may promote floral differentiation through various pathways. However, MADS6 and JAG neither bound together nor formed a heterotrimer with any of the 5 YABBY proteins. These findings revealed specific synergistic patterns between MADS6, JAGGED, and YABBY proteins, which may contribute to the unique characteristics of rice spikelets and provide insights into the diversity regulation mechanisms of floral specification in plants.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jieqiong Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Su
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Zheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianwei Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Miaomiao Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bingwen Qiu
- Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Kong
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Crops, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Liu R, Zhao D, Li P, Xia D, Feng Q, Wang L, Wang Y, Shi H, Zhou Y, Chen F, Lou G, Yang H, Gao H, Wu B, Chen J, Gao G, Zhang Q, Xiao J, Li X, Xiong L, Li Y, Li Z, You A, He Y. Natural variation in OsMADS1 transcript splicing affects rice grain thickness and quality by influencing monosaccharide loading to the endosperm. PLANT COMMUNICATIONS 2025; 6:101178. [PMID: 39489992 PMCID: PMC11783882 DOI: 10.1016/j.xplc.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Grain size, which encompasses grain length, width, and thickness, is a critical determinant of both grain weight and quality in rice. Despite the extensive regulatory networks known to determine grain length and width, the pathway(s) that regulate grain thickness remain to be clarified. Here, we present the map-based cloning and characterization of qGT3, a major quantitative trait locus for grain thickness in rice that encodes the MADS-domain transcription factor OsMADS1. Our findings demonstrate that OsMADS1 regulates grain thickness by affecting sugar delivery during grain filling, and we show that OsMADS1 modulates expression of the downstream monosaccharide transporter gene MST4. A natural variant leads to alternative splicing and thus to a truncated OsMADS1 protein with attenuated transcriptional repressor activity. The truncated OsMADS1 protein results in increased expression of MST4, leading to enhanced loading of monosaccharides into the developing endosperm and thereby increasing grain thickness and improving grain quality. In addition, our results reveal that NF-YB1 and NF-YC12 interact directly with OsMADS1, acting as cofactors to enhance its transcriptional activity toward MST4. Collectively, these findings reveal a novel molecular mechanism underlying grain thickness regulation that is controlled by the OsMADS1-NF-YB1-YC12 complex and has great potential for synergistic improvement of grain yield and quality in rice.
Collapse
Affiliation(s)
- Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingfei Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangying Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyuan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Haozhou Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bian Wu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Junxiao Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100000, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China.
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Yang L, Qiao X, He HE, Yi WW, Gao YN, Tan XM, Cheng H, Hou XF, Ma YY, Wang HL, Huang X, Ma YQ, Xu ZQ. IiAGL6 participates in the regulation of stamen development and pollen formation in Isatis indigotica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111974. [PMID: 38199385 DOI: 10.1016/j.plantsci.2024.111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xin Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hao-En He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Wei-Wei Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ya-Nan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hong-Li Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture and Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Liu E, Zhu S, Du M, Lyu H, Zeng S, Liu Q, Wu G, Jiang J, Dang X, Dong Z, Hong D. LAX1, functioning with MADS-box genes, determines normal palea development in rice. Gene 2023; 883:147635. [PMID: 37442304 DOI: 10.1016/j.gene.2023.147635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Normal floral organ development in rice is necessary for grain formation. Many MADS-box family genes that belong to ABCDE model have been widely implicated in rice flower development. The LAX1 allele encodes a plant-specific basic helix-loop-helix (bHLH) transcription factor, which is the main regulator of axillary meristem formation in rice. However, the molecular mechanisms of LAX1 allele together with MADS-box family genes underlying palea development have not been reported. We found a short palea mutant plant in a population of indica rice variety 9311 treated with cobalt 60. We report the map-based cloning and characterization of lax1-7, identified as a new mutant allele of the LAX1 locus, and the role of its wild-type allele LAX1 in rice palea development. Through complementary experiments, combined with genetic and molecular biological analyses, the function of the LAX1 allele was determined. We showed that LAX1 allele is expressed specifically in young spikelets and encodes a nucleus-localized protein. In vitro and in vivo experiments revealed that the LAX1 protein physically interacts with OsMADS1, OsMADS6 and OsMADS7. The LAX1 allele is pleiotropic for the maintenance of rice palea identity via cooperation with MADS-box genes and other traits, including axillary meristem initiation, days to heading, plant height, panicle length and spikelet fertility.
Collapse
Affiliation(s)
- Erbao Liu
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shangshang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyu Du
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Huineng Lyu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyuan Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guocan Wu
- Ningde Institute of Agricultural Sciences, Ningde 355017, China
| | - Jianhua Jiang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Xiaojing Dang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zhiyao Dong
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Delin Hong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Jing Y, Wenbo C, Zhifeng H, Yan X, XinFang Z, Mi W, RuHui W, Wenqiang S, Jun Z, QianNan D, Guanghua H, Yunfeng L, Ting Z. DEGENERATED LEMMA ( DEL) regulates lemma development and affects rice grain yield. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:335-347. [PMID: 37033767 PMCID: PMC10073388 DOI: 10.1007/s12298-023-01297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In grass, the lemma is a unique floral organ structure that directly determines grain size and yield. Despite a great deal of research on grain enlargement caused by changes in glume cells, the importance of normal development of the glume for normal grain development has been poorly studied. In this study, we investigated a rice spikelet mutant, degenerated lemma (del), which developed florets with a slightly degenerated or rod-like lemma. More importantly, del also showed a significant reduction in grain length and width, seed setting rate, and 1000-grain weight, which led to a reduction in yield. The results indicate that the mutation of the DEL gene further affects rice grain yield. Map-based cloning shows a single-nucleotide substitution from T to A within Os01g0527600/DEL/OsRDR6, causing an amino acid mutation of Leu-34 to His-34 in the del mutant. Compared with the wild type, the expression of DEL in del was significantly reduced, which might be caused by single base substitution. In addition, the expression level of tasiR-ARF in del was lower than that of the wild type. RT-qPCR results show that the expression of some floral organ identity genes was changed, which indicates that the DEL gene regulates lemma development by modulating the expression of these genes. The present results suggest that the normal expression of DEL is necessary for the formation of lemma and the normal development of grain morphology and therefore has an important effect on the yield. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01297-6.
Collapse
Affiliation(s)
- You Jing
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Chen Wenbo
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - He Zhifeng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Xiang Yan
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Zhang XinFang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Wei Mi
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Wu RuHui
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Shen Wenqiang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Zhang Jun
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Duan QianNan
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - He Guanghua
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Li Yunfeng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| | - Zhang Ting
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
6
|
Paliocha M, Schubert M, Preston JC, Fjellheim S. Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering. Mol Phylogenet Evol 2023; 179:107678. [PMID: 36535518 DOI: 10.1016/j.ympev.2022.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.
Collapse
Affiliation(s)
- Martin Paliocha
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Jill Christine Preston
- Department of Plant Biology, College of Agriculture and Life Sciences, The University of Vermont, Burlington, VT 05405, USA.
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| |
Collapse
|
7
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
8
|
Feng T, Wang L, Li L, Liu Y, Chong K, Theißen G, Meng Z. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. THE NEW PHYTOLOGIST 2022; 234:77-92. [PMID: 35067957 DOI: 10.1111/nph.17990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Starch synthesis makes a dramatic contribution to the yield and nutritional value of cereal crops. Although several starch synthesis enzymes and related regulators have been reported, the underlying regulatory mechanisms of starch synthesis remain largely unknown. OsMADS14 is a FRUITFULL (FUL)-like MADS-box gene in rice (Oryza sativa). Here we show that two null mutations of OsMADS14 result in a shrunken and chalky grain phenotype. It is caused by obviously defective compound starch granules and a significantly reduced content of both total starch and amylose in the endosperm. Transcriptomic profiling analyses revealed that the loss-of-function of OsMADS14 leads to significantly downregulated expression of many core starch synthesis genes, including OsAGPL2 and Waxy. Both in vitro and in vivo assays demonstrate that the OsMADS14 protein directly binds to stretches of DNA with a CArG-box consensus in the putative regulatory regions of OsAGPL2 and Waxy. Protein-protein interaction experiments also suggest that OsMADS14 interacts with nuclear factor NF-YB1 to promote the transcription of OsAGPL2 and Waxy. Our study thus demonstrates that OsMADS14 plays an essential role in the synthesis of storage starch and provides novel insights into the underlying molecular mechanism that may be used to improve rice cultivars by molecular breeding.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, D-07743, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
9
|
Wu T, Ali A, Wang J, Song J, Fang Y, Zhou T, Luo Y, Zhang H, Chen X, Liao Y, Liu Y, Xu P, Wu X. A homologous gene of OsREL2/ASP1, ASP-LSL regulates pleiotropic phenotype including long sterile lemma in rice. BMC PLANT BIOLOGY 2021; 21:390. [PMID: 34418975 PMCID: PMC8379857 DOI: 10.1186/s12870-021-03163-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Panicle is a harvesting organ of rice, and its morphology and development are closely associated with grain yield. The current study was carried on a mutant screened through an EMS (ethyl-methane sulphonate) mutagenized population of a Japonica cultivar Kitaake (WT). RESULTS A mutant, named as asp-lsl (aberrant spikelet-long sterile lemma), showed a significant decrease in plant height, number of tillers, thousand-grains weight, seed setting rate, spikelet length, kernel length and effective number of grains per panicle as compared to WT. Asp-lsl showed a pleiotropic phenotype coupled with the obvious presence of a long sterile lemma. Cross-sections of lemma showed an increase in the cell volume rather than the number of cells. Genetic segregation analysis revealed its phenotypic trait is controlled by a single recessive nuclear gene. Primary and fine mapping indicated that candidate gene controlling the phenotype of asp-lsl was located in an interval of 212 kb on the short arm of chromosome 8 between RM22445 and RM22453. Further sequencing and indels markers analysis revealed LOC_Os08g06480 harbors a single base substitution (G→A), resulting in a change of 521st amino acid(Gly→Glu. The homology comparison and phylogenetic tree analysis revealed mutation was occurred in a highly conserved domain and had a high degree of similarity in Arabidopsis, corn, and sorghum. The CRISPR/Cas9 mutant line of ASP-LSL produced a similar phenotype as that of asp-lsl. Subcellular localization of ASP-LSL revealed that its protein is localized in the nucleus. Relative expression analysis revealed ASP-LSL was preferentially expressed in panicle, stem, and leaves. The endogenous contents of GA, CTK, and IAA were found significantly decreased in asp-lsl as compared to WT. CONCLUSIONS Current study presents the novel phenotype of asp-lsl and also validate the previously reported function of OsREL2 (ROMOSA ENHANCER LOCI2), / ASP1(ABERRANT SPIKELET AND PANICLE 1).
Collapse
Affiliation(s)
- Tingkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Jinhao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Jiahe Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yongqiong Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Tingting Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yi Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yutong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
10
|
Nayar S, Thangavel G. CsubMADS1, a lag phase transcription factor, controls development of polar eukaryotic microalga Coccomyxa subellipsoidea C-169. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1228-1242. [PMID: 34160095 DOI: 10.1111/tpj.15380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.
Collapse
Affiliation(s)
- Saraswati Nayar
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Gokilavani Thangavel
- Division of Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| |
Collapse
|
11
|
Hu Y, Wang L, Jia R, Liang W, Zhang X, Xu J, Chen X, Lu D, Chen M, Luo Z, Xie J, Cao L, Xu B, Yu Y, Persson S, Zhang D, Yuan Z. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2434-2449. [PMID: 33337484 DOI: 10.1093/jxb/eraa588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Floral patterning is regulated by intricate networks of floral identity genes. The peculiar MADS32 subfamily genes, absent in eudicots but prevalent in monocots, control floral organ identity. However, how the MADS32 family genes interact with other floral homeotic genes during flower development is mostly unknown. We show here that the rice homeotic transcription factor OsMADS32 regulates floral patterning by interacting synergistically with E class protein OsMADS6 in a dosage-dependent manner. Furthermore, our results indicate important roles for OsMADS32 in defining stamen, pistil, and ovule development through physical and genetic interactions with OsMADS1, OsMADS58, and OsMADS13, and in specifying floral meristem identity with OsMADS6, OsMADS3, and OsMADS58, respectively. Our findings suggest that OsMADS32 is an important factor for floral meristem identity maintenance and that it integrates the action of other MADS-box homeotic proteins to sustain floral organ specification and development in rice. Given that OsMADS32 is an orphan gene and absent in eudicots, our data substantially expand our understanding of flower development in plants.
Collapse
Affiliation(s)
- Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Jia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayang Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Cao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Ben Xu
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Yu Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Biosciences, University of Melbourne, Parkville VIC, Melbourne, Australia
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Cao W, Cao B, Wang X, Bai J, Xu YZ, Zhao J, Li X, He Y, Hu S. Alternatively spliced BobCAL transcripts alter curd morphotypes in a collection of Chinese cauliflower accessions. HORTICULTURE RESEARCH 2020; 7:160. [PMID: 33082967 PMCID: PMC7527968 DOI: 10.1038/s41438-020-00378-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The curd of cauliflower (Brassica oleracea L. var. botrytis) is a modified inflorescence that is consumed as a vegetable. Curd formation is proposed to be due to a mutation in the BobCAULIFLOWER (BobCAL) gene, but the genetic relationship between BobCAL variation and curd morphotypes remains obscure. To address this question, we collected and classified a collection of 78 cauliflower accessions into four subpopulations according to curd surface features: smooth, coarse, granular, and hairy curd morphotypes. Through the cDNA sequencing of BobCAL alleles, we showed that smooth and coarse accessions characterized by inflorescence meristem arrest presented a strong association with the 451T SNP (BobCAL_T), whereas granular and hairy accessions marked with floral organ arrest presented an association with 451G (BobCAL_G). Interestingly, all BobCAL alleles were alternatively spliced, resulting in a total of four alternative splice (AS) variants due to the retention of the fourth and/or seventh introns. Among accessions with BobCAL_G alleles, the total expression of all these AS variants in granular plants was almost equal to that in hairy plants; however, the expression of the individual AS variants encoding intact proteins relative to those encoding truncated proteins differed. Hairy accessions showed relatively high expression of the individual variants encoding intact proteins, whereas granular accessions displayed relatively low expression. In smooth cauliflower, the overexpression of the BobCAL_Ga variant caused an alteration in the curd morphotype from smooth to hairy, concurrent with an increase in the expression levels of downstream floral identity genes. These results reveal that alternative splicing of BobCAL transcripts is involved in the determination of cauliflower curd morphotypes.
Collapse
Affiliation(s)
- Wenguang Cao
- National Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Plant Physiology & Ecology, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032 China
| | - Biting Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Xuan Wang
- National Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Plant Physiology & Ecology, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032 China
| | - Jinjuan Bai
- National Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Plant Physiology & Ecology, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032 China
| | - Yong-Zhen Xu
- National Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Plant Physiology & Ecology, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032 China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Department of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Xiaorong Li
- National Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Plant Physiology & Ecology, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032 China
| | - Yuke He
- National Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Plant Physiology & Ecology, Chinese Academy of Science, 300 Fenglin Road, Shanghai, 200032 China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
13
|
Li C, Chen L, Fan X, Qi W, Ma J, Tian T, Zhou T, Ma L, Chen F. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae). TREE PHYSIOLOGY 2020; 40:1247-1259. [PMID: 32348527 DOI: 10.1093/treephys/tpaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The APETALA1/SQUAMOSA (AP1/SQUA)-like genes of flowering plants play crucial roles in the development processes of floral meristems, sepals, petals and fruits. Although many of the AP1/SQUA-like genes have been characterized in angiosperms, few have been identified in basal angiosperm taxa. Therefore, the functional evolution of the AP1/SQUA subfamily is still unclear. We characterized an AP1 homolog, MawuAP1, from Magnolia wufengensis that is an ornamental woody plant belonging to the basal angiosperms. Gene sequence and phylogenetic analyses suggested that MawuAP1 was clustered with the FUL-like homologous genes of basal angiosperms and had FUL motif and paleoAP1 motif domain, but it did not have the euAP1 motif domain of core eudicots. Expression pattern analysis showed that MawuAP1 was highly expressed in vegetative and floral organs, particularly in the early stage of flower bud development and pre-anthesis. Protein-protein interaction pattern analysis revealed that MawuAP1 has interaction with an A-class gene (MawuAP1), C-class gene (MawuAG-1) and E-class gene (MawuAGL9) of the MADS-box family genes. Ectopic expression in Arabidopsis thaliana indicated that MawuAP1 could significantly promote flowering and fruit development, but it could not restore the sepal and petal formation of ap1 mutants. These results demonstrated that there are functional differences in the specification of sepal and petal floral organs and development of fruits among the AP1/SQUA-like genes, and functional conservation in the regulation of floral meristem. These findings provide strong evidence for the important functions of MawuAP1 in floral meristem determination, promoting flowering and fruit development, and further highlight the importance of AP1/SQUA subfamily in biological evolution and diversity.
Collapse
Affiliation(s)
- Cunjie Li
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Liyuan Chen
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Xiaoning Fan
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Wenjuan Qi
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tian Tian
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Tao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| | - Luyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, P.R. China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, P.R. China
| |
Collapse
|
14
|
Yin X, Liu X, Xu B, Lu P, Dong T, Yang D, Ye T, Feng YQ, Wu Y. OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3895-3909. [PMID: 31034557 PMCID: PMC6685668 DOI: 10.1093/jxb/erz198] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
The APETALA1 (AP1)/FRUITFULL (FUL)-like transcription factor OsMADS18 plays diverse functions in rice development, but the underlying molecular mechanisms are far from fully understood. Here, we report that down-regulation of OsMADS18 expression in RNAi lines caused a delay in seed germination and young seedling growth, whereas the overexpression of OsMADS18 produced plants with fewer tillers. In targeted OsMADS18 genome-edited mutants (osmads18-cas9), an increased number of tillers, altered panicle size, and reduced seed setting were observed. The EYFP-OsMADS18 (full-length) protein was localized to the nucleus and plasma membrane but the EYFP-OsMADS18-N (N-terminus) protein mainly localized to the nucleus. The expression of OsMADS18 could be stimulated by abscisic acid (ABA), and ABA stimulation triggered the cleavage of HA-OsMADS18 and the translocation of OsMADS18 from the plasma membrane to the nucleus. The inhibitory effect of ABA on seedling growth was less effective in the OsMADS18-overexpressing plants. The expression of a set of ABA-responsive genes was significantly reduced in the overexpressing plants. The phenotypes of transgenic plants expressing EYFP-OsMADS18-N resembled those observed in the osmads18-cas9 mutants. Analysis of the interaction of OsMADS18 with OsMADS14, OsMADS15, and OsMADS57 strongly suggests an essential role for OsMADS18 in rice development.
Collapse
Affiliation(s)
- Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoyin Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Correspondence:
| |
Collapse
|
15
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Peréz-Mesa P, Suárez-Baron H, Ambrose BA, González F, Pabón-Mora N. Floral MADS-box protein interactions in the early diverging angiosperm Aristolochia fimbriata Cham. (Aristolochiaceae: Piperales). Evol Dev 2019; 21:96-110. [PMID: 30734997 DOI: 10.1111/ede.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Floral identity MADS-box A, B, C, D, E, and AGL6 class genes are predominantly single copy in Magnoliids, and predate the whole genome duplication (WGD) events in monocots and eudicots. By comparison with the model species Arabidopsis thaliana, the expression patterns of B-, C-, and D-class genes in stamen, carpel, and ovules are conserved in Aristolochia fimbriata, whereas A-, E-class, and AGL6 genes have different expression patterns. Nevertheless, the interactions of these proteins that act through multimeric complexes remain poorly known in early divergent angiosperms. This study evaluates protein interactions among all floral MADS-box A. fimbriata proteins using the Yeast Two Hybrid System (Y2H). We found no homodimers and less heterodimers formed by AfimFUL when compared to AfimAGL6, which allowed us to suggest AGL6 homodimers in combination with AfimSEP2 as the most likely tetramer in sepal identity. We found AfimAP3-AfimPI obligate heterodimers and AfimAG-AfimSEP2 protein interactions intact suggesting conserved stamen and carpel tetrameric complexes in A. fimbriata. We observed a broader interaction partner set for AfimSEP2 than for its paralog AfimSEP1. We show conserved and exclusive MADS-box protein interactions in A. fimbriata in comparison with other eudicot and monocot model species in order to establish plesiomorphic MADS-box protein floral networks in angiosperms.
Collapse
Affiliation(s)
- Pablo Peréz-Mesa
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| | | |
Collapse
|
17
|
Tao J, Liang W, An G, Zhang D. OsMADS6 Controls Flower Development by Activating Rice FACTOR OF DNA METHYLATION LIKE1. PLANT PHYSIOLOGY 2018; 177:713-727. [PMID: 29717020 PMCID: PMC6001338 DOI: 10.1104/pp.18.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 05/08/2023]
Abstract
OsMADS6, an ancient AGAMOUS-LIKE6 (AGL6)-like gene, has essential functions in specifying floral organ and meristem identity in rice (Oryza sativa). However, how AGL6 genes control flower development remains largely unknown. In this study, we report that OsMADS6 directly targets FACTOR OF DNA METHYLATION LIKE 1 (OsFDML1), a rice homolog of the SUPPRESSOR OF GENE SILENCING3-like gene FACTOR OF DNA METHYLATION 1 (FDM1) from Arabidopsis (Arabidopsis thaliana). Arabidopsis FDM1 is involved in RNA-directed DNA methylation and OsFDML1 regulates flower development. The expression of OsFDML1 overlaps with that of OsMADS6 in the palea primordia and the ovule, and OsMADS6 directly promotes OsFDML1 expression through binding to regions containing putative CArG motifs within the OsFDML1 promoter during rice spikelet development. Consistent with the phenotypes of osmads6 mutants, the osfdml1 mutants showed floral defects, including altered palea identity with lemma-like shape containing no marginal region of palea, increased numbers of stigmas and fused carpels, and meristem indeterminacy. Moreover, transgenic plants overexpressing OsFDML1 displayed floral defects, such as abnormal paleae. Phylogenetic analysis showed that OsFDML1 homologs exist only in terrestrial plants. In addition, protein-protein interaction assays showed that OsFDML1 interacts with its close paralog OsFDML2, similar to the activity of OsFDML1 homologs in Arabidopsis. These results provide insight into how the ancient AGL6 gene regulates floral development.
Collapse
Affiliation(s)
- Juhong Tao
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanqi Liang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Youngin, Kyungbuk 446-701, Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Crop Biotech Institute, Kyung Hee University, Youngin, Kyungbuk 446-701, Korea
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Urrbrae SA 5064, Australia
| |
Collapse
|
18
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
19
|
Wu D, Liang W, Zhu W, Chen M, Ferrándiz C, Burton RA, Dreni L, Zhang D. Loss of LOFSEP Transcription Factor Function Converts Spikelet to Leaf-Like Structures in Rice. PLANT PHYSIOLOGY 2018; 176:1646-1664. [PMID: 29217592 PMCID: PMC5813523 DOI: 10.1104/pp.17.00704] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 05/08/2023]
Abstract
SEPALLATA (SEP)-like genes, which encode a subfamily of MADS-box transcription factors, are essential for specifying floral organ and meristem identity in angiosperms. Rice (Oryza sativa) has five SEP-like genes with partial redundancy and overlapping expression domains, yet their functions and evolutionary conservation are only partially known. Here, we describe the biological role of one of the SEP genes of rice, OsMADS5, in redundantly controlling spikelet morphogenesis. OsMADS5 belongs to the conserved LOFSEP subgroup along with OsMADS1 and OsMADS34OsMADS5 was expressed strongly across a broad range of reproductive stages and tissues. No obvious phenotype was observed in the osmads5 single mutants when compared with the wild type, which was largely due to the functional redundancy among the three LOFSEP genes. Genetic and molecular analyses demonstrated that OsMADS1, OsMADS5, and OsMADS34 together regulate floral meristem determinacy and specify the identities of spikelet organs by positively regulating the other MADS-box floral homeotic genes. Experiments conducted in yeast also suggested that OsMADS1, OsMADS5, and OsMADS34 form protein-protein interactions with other MADS-box floral homeotic members, which seems to be a typical, conserved feature of plant SEP proteins.
Collapse
Affiliation(s)
- Di Wu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
20
|
Ye S, Yang W, Zhai R, Lu Y, Wang J, Zhang X. Mapping and application of the twin-grain1 gene in rice. PLANTA 2017; 245:707-716. [PMID: 27999987 DOI: 10.1007/s00425-016-2627-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
The map-based cloning and application of a flower organ number gene twin - grain1 provide great potential for improving seed production in hybrid rice. A new germplasm for high-yield rice breeding, the twin-grain1 (tg1) mutant with more than one grain in a glume, was obtained from the Zhejing 22 rice variety via physical mutagenesis. The mapping results showed that TG1 is allelic to FLORAL ORGAN NUMBER2 (FON2)/FLORAL ORGAN NUMBER4 (FON4), a flower organ number gene located at 88.7 cM on chromosome 11. The novel tg1 gene allele was introgressed into the cytoplasmic male sterility (CMS) line Zhejing 22A, giving rise to a new CMS line Zhejing 22-tg1A. The Zhejing 22-tg1A line showed enhanced glume opening and stigma exsertion, which increased the outcrossing rate in hybrid rice. A small-scale hybrid rice seed production test demonstrated that the grain yield of the Zhejing 22-tg1A/Zhejinghui 5 line was significantly increased compared to that of the Zhejing 22A/Zhejinghui 5 line. The plot yield evaluation of the F1 hybrid lines showed a higher yield for the Zhejing 22-tg1A/Zhejinghui 5 line than that of the Zhejing 22A/Zhejinghui 5 line. The results implied great potentials for the tg1 gene in hybrid rice breeding.
Collapse
Affiliation(s)
- Shenghai Ye
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weibing Yang
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rongrong Zhai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanting Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junmei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
21
|
Wei J, Choi H, Jin P, Wu Y, Yoon J, Lee YS, Quan T, An G. GL2-type homeobox gene Roc4 in rice promotes flowering time preferentially under long days by repressing Ghd7. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:133-143. [PMID: 27717449 DOI: 10.1016/j.plantsci.2016.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Under long day (LD) lengths, flowering can be delayed in rice by modulating several regulatory genes. We found activation tagging lines that showed an early flowering phenotype preferentially under LD conditions. Expression of Rice outermost cell-specific gene 4 (Roc4), encoding a homeodomain Leu-zipper class IV family protein, was significantly increased. Transcript levels of Grain number, plant height, and heading date7 (Ghd7) were significantly reduced while those of Ghd7 downstream genes were increased. However, other flowering regulators were unaffected. Whereas constitutive overexpression of Roc4 in 'Dongjin' japonica rice, which carries active Ghd7, also caused LD-preferential early flowering, its overexpression in 'Longjing27' rice, which is defective in functional Ghd7, did not produce the same result. This confirmed that Roc4 regulates flowering time mainly through Ghd7. Phytochromes and O. sativa GIGANTEA (OsGI) function upstream of Roc4. Transgenic plants showed ubiquitous expression of the β-glucuronidase reporter gene under the Roc4 promoter. Furthermore, Roc4 had transcriptional activation activity in the N-terminal region of the StAR-related lipid-transfer domain. All of these findings are evidence that Roc4 is an LD-preferential flowering enhancer that functions downstream of phytochromes and OsGI, but upstream of Ghd7.
Collapse
Affiliation(s)
- Jinhuan Wei
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Heebak Choi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ping Jin
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yunfei Wu
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jinmi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yang-Seok Lee
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Taiyong Quan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
22
|
Li Q, Wang Y, Wang F, Guo Y, Duan X, Sun J, An H. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon. PHYSIOLOGIA PLANTARUM 2016; 157:507-518. [PMID: 26856680 DOI: 10.1111/ppl.12427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two-hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub- or neo-functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Ye Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Fuxiang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Yuyu Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Xueqing Duan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Jinhao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Hailong An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| |
Collapse
|
23
|
Cho LH, Yoon J, Pasriga R, An G. Homodimerization of Ehd1 Is Required to Induce Flowering in Rice. PLANT PHYSIOLOGY 2016; 170:2159-71. [PMID: 26864016 PMCID: PMC4825144 DOI: 10.1104/pp.15.01723] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
In plants, flowering time is elaborately controlled by various environment factors. Ultimately, florigens such as FLOWERING LOCUS T (FT) or FT-like molecules induce flowering. In rice (Oryza sativa), Early heading date 1 (Ehd1) is a major inducer of florigen gene expression. Although Ehd1 is highly homologous to the type-B response regulator (RR) family in the cytokinin signaling pathway, its precise molecular mechanism is not well understood. In this study, we showed that the C-terminal portion of the protein containing the GARP DNA-binding (G) domain can promote flowering when overexpressed. We also observed that the N-terminal portion of Ehd1, carrying the receiver (R) domain, delays flowering by inhibiting endogenous Ehd1 activity. Ehd1 protein forms a homomer via a 16-amino acid region in the inter domain between R and G. From the site-directed mutagenesis analyses, we demonstrated that phosphorylation of the Asp-63 residue within the R domain induces the homomerization of Ehd1, which is crucial for Ehd1 activity. A type-A RR, OsRR1, physically interacts with Ehd1 to form a heterodimer. In addition, OsRR1-overexpressing plants show a late-flowering phenotype. Based on these observations, we conclude that OsRR1 inhibits Ehd1 activity by binding to form an inactive complex.
Collapse
Affiliation(s)
- Lae-Hyeon Cho
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| | - Jinmi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| | - Richa Pasriga
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| |
Collapse
|
24
|
Dreni L, Zhang D. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1625-1638. [PMID: 26956504 DOI: 10.1093/jxb/erw046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future.
Collapse
Affiliation(s)
- Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia
| |
Collapse
|
25
|
Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, Zhao X, Zhang D, Yuan Z. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. MOLECULAR PLANT 2015; 8:1366-84. [PMID: 25917758 DOI: 10.1016/j.molp.2015.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/05/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators.
Collapse
Affiliation(s)
- Yun Hu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Changsong Yin
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xuelian Yang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Baozhe Ping
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Anxue Li
- Shanghai Ocean University, Shanghai 201306, China
| | - Ru Jia
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Zhijing Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Zheng Yuan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China.
| |
Collapse
|
26
|
Chen R, Shen LP, Wang DH, Wang FG, Zeng HY, Chen ZS, Peng YB, Lin YN, Tang X, Deng MH, Yao N, Luo JC, Xu ZH, Bai SN. A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. MOLECULAR PLANT 2015; 8:1069-89. [PMID: 25684654 DOI: 10.1016/j.molp.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 05/19/2023]
Abstract
Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 transcripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are expressed at the low levels in early rice stamen, through the ChIP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reactions and the expression levels of most of them are increased when expression of OsMADS58 is downregulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Ping Shen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fu-Gui Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Ben Peng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ya-Nan Lin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Ming-Hua Deng
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Chu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- Center for Quantitative Biology, Peking University, Beijing 100871, China; The National Center of Plant Gene Research, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 624 Jin-Guang Life Science Building, 5 Yiheyuan Road, Beijing 100871, China.
| |
Collapse
|
27
|
Wang H, Zhang L, Cai Q, Hu Y, Jin Z, Zhao X, Fan W, Huang Q, Luo Z, Chen M, Zhang D, Yuan Z. OsMADS32 interacts with PI-like proteins and regulates rice flower development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:504-513. [PMID: 25081486 DOI: 10.1111/jipb.12248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
OsMADS32 is a monocot specific MIKC(c) type MADS-box gene that plays an important role in regulating rice floral meristem and organs identity, a crucial process for reproductive success and rice yield. However, its underlying mechanism of action remains to be clarified. Here, we characterized a hypomorphic mutant allele of OsMADS32/CFO1, cfo1-3 and identified its function in controlling rice flower development by bioinformatics and protein-protein interaction analysis. The cfo1-3 mutant produces defective flowers, including loss of lodicule identity, formation of ectopic lodicule or hull-like organs and decreased stamen number, mimicking phenotypes related to the mutation of B class genes. Molecular characterization indicated that mis-splicing of OsMADS32 transcripts in the cfo1-3 mutant resulted in an extra eight amino acids in the K-domain of OsMADS32 protein. By yeast two hybrid and bimolecular fluorescence complementation assays, we revealed that the insertion of eight amino acids or deletion of the internal region in the K1 subdomain of OsMADS32 affects the interaction between OsMADS32 with PISTILLATA (PI)-like proteins OsMADS2 and OsMADS4. This work provides new insight into the mechanism by which OsMADS32 regulates rice lodicule and stamen identity, by interaction with two PI-like proteins via its K domain.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y. Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:99-112. [PMID: 25324400 PMCID: PMC4265153 DOI: 10.1093/jxb/eru396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The indeterminate gametophyte1 (ig1) mutation was first characterized to modulate female gametophyte development in maize (Zea mays). However, the function of its rice orthologue, OsIG1, remains unknown. For this, we first analysed OsIG1 localization from differential tissues in rice. Real-time quantitative PCR (qRT-PCR) and histochemical staining results demonstrated that the expression signal of OsIG1 was strongly detected in young inflorescence, moderately in mature flower and weakly in leaf. Furthermore, RNA in situ hybridization analyses exhibited that OsIG1 was strongly expressed in inflorescence meristems, floral meristems, empty-glume- and floret- primordia, especially in the primordia of stamens and immature ovules, and the micropylar side of the mature ovary. In OsIG1-RNAi lines, wrinkled blade formation was accompanied by increased leaf inclination angle. Cross-section further showed that the number of bulliform cells located between the vasculatures was significantly increased, indicating that OsIG1 is involved in division and differentiation of bulliform cell and lateral growth during leaf development. OsIG1-RNAi suppression lines showed pleiotropic phenotypes, including degenerated palea, glume-like features and open hull. In addition, a single OsIG1-RNAi floret is characterized by frequently developing double ovules with abnormal embryo sac development. Additionally, down-regulation of OsIG1 differentially affected the expression of genes associated with the floral organ development including EG1, OsMADS6 and OsMADS1. Taken together, these results demonstrate that OsIG1 plays an essential role in the regulation of empty-glume identity, floral organ number control and female gametophyte development in rice.
Collapse
Affiliation(s)
- Jingrong Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Huang
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Han
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
29
|
Conrad LJ, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:883-94. [PMID: 25279942 DOI: 10.1111/tpj.12688] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 05/23/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.
Collapse
Affiliation(s)
- Liza J Conrad
- Plant Biology Department, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Nayar S, Kapoor M, Kapoor S. Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5339-50. [PMID: 25096923 PMCID: PMC4157715 DOI: 10.1093/jxb/eru296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OsMADS29 is a seed-specific MADS-box transcription factor that affects embryo development and grain filling by maintaining hormone homeostasis and degradation of cells in the nucellus and nucellar projection. Although it has a bipartite nuclear localization signal (NLS) sequence, the transiently expressed OsMADS29 monomer does not localize specifically in the nucleus. Dimerization of the monomers alters the intracellular localization fate of the resulting OsMADS29 homodimer, which then translocates into the nucleus. By generating domain-specific deletions/mutations, we show that two conserved amino acids (lysine(23) and arginine(24)) in the NLS are important for nuclear localization of the OsMADS29 homodimer. Furthermore, the analyses involving interaction of OsMADS29 with 30 seed-expressed rice MADS proteins revealed 19 more MADS-box proteins, including five E-class proteins, which interacted with OsMADS29. Eleven of these complexes were observed to be localized in the nucleus. Deletion analysis revealed that the KC region (K-box and C-terminal domain) plays a pivotal role in homodimerization. These data suggest that the biological function of OsMADS29 may not only be regulated at the level of transcription and translation as reported earlier, but also at the post-translational level by way of the interaction between OsMADS29 monomers, and between OsMADS29 and other MADS-box proteins.
Collapse
Affiliation(s)
- Saraswati Nayar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
31
|
Pabón-Mora N, Wong GKS, Ambrose BA. Evolution of fruit development genes in flowering plants. FRONTIERS IN PLANT SCIENCE 2014; 5:300. [PMID: 25018763 PMCID: PMC4071287 DOI: 10.3389/fpls.2014.00300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/07/2014] [Indexed: 05/18/2023]
Abstract
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
- *Correspondence: Natalia Pabón-Mora, Instituto de Biología, Universidad de Antioquia, Calle 70 No 52-21, AA 1226 Medellín, Colombia e-mail:
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | | |
Collapse
|
32
|
Wang JD, Lo SF, Li YS, Chen PJ, Lin SY, Ho TY, Lin JH, Chen LJ. Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. BOTANICAL STUDIES 2013; 54:12. [PMID: 28510861 PMCID: PMC5432754 DOI: 10.1186/1999-3110-54-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/20/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND The rice gene, OsMADS45, which belongs to the MADS-box E class gene, participates in the regulation of floral development. Previous studies have revealed that ectopic expression of OsMADS45 induces early flowering and influences reduced plant height under short-day (SD) conditions. However, the regulation mechanism of OsMADS45 overexpression remains unknown. We introduce an OsMADS45 overexpression construct Ubi:OsMADS45 into TNG67 plants (an Hd1 (Heading date 1) and Ehd1 (Early heading date 1) defective rice cultivar grown in Taiwan), and we analyzed the expression patterns of various floral regulators to understand the regulation pathways affected by OsMADS45 expression. RESULTS The transgenic rice exhibit a heading date approximately 40 days earlier than that observed in TNG67 plants, and transgenic rice display small plant size and low grain yield. OsMADS45 overexpression did not alter the oscillating rhythm of the examined floral regulatory genes but advanced (by approximately 20 days) the up-regulate of two florigens, Hd3a (Heading Date 3a) and RFT1 (RICE FLOWERING LOCUS T1) and suppressed the expression of Hd1 at the juvenile stage. The expression levels of OsMADS14 and OsMADS18, which are two well-known reproductive phase transition markers, were also increased at early developmental stages and are believed to be the major regulators responsible for early flowering in OsMADS45-overexpressing transgenic rice. OsMADS45 overexpression did not influence other floral regulator genes upstream of Hd1 and Ehd1, such as OsGI (OsGIGANTEA), Ehd2/Osld1/RID1 and OsMADS50. CONCLUSION These results indicate that in transgenic rice, OsMADS45 overexpressing ectopically activates the upstream genes Hd3a and RFT1 at early development stage and up-regulates the expression of OsMADS14 and OsMADS18, which induces early flowering.
Collapse
Affiliation(s)
- Jiun-Da Wang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Suan Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Ju Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Yun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Plant and Microbiology, Academia Sinica, Taipei 115, Taiwan
| | - Teh-Yuan Ho
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jenq-Horng Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
33
|
Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. FRONTIERS IN PLANT SCIENCE 2013; 4:358. [PMID: 24062757 PMCID: PMC3775002 DOI: 10.3389/fpls.2013.00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/23/2013] [Indexed: 05/03/2023]
Abstract
Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Grupo de Biotecnología, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
| | - Oriane Hidalgo
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
| | | | - Amy Litt
- The New York Botanical GardenBronx, NY, USA
| |
Collapse
|
34
|
Wei X, Zhang X, Shao G, He J, Jiao G, Xie L, Sheng Z, Tang S, Hu P. Fine mapping of BH1, a gene controlling lemma and palea development in rice. PLANT CELL REPORTS 2013; 32:1455-1463. [PMID: 23689259 DOI: 10.1007/s00299-013-1457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 06/02/2023]
Abstract
A new rice floral organ mutant bh1 , had a negative effect on grain yield. BH1 was fine mapped to 87.5 kb on chr2. A 55 kb chromosome segment was deleted in bh1. The cereal spikelet is enclosed by the lemma and palea. The lemma and palea of the floral mutant designated bh1, a selection from a T-DNA library generated from the rice cultivar Asominori, takes on an abnormal curve-shaped appearance only late in floral development, finally forming a beak-shaped hull. The mutation had a negative effect on thousand grain weight, seed set rate and germination rate. Genetic analysis indicated that the mutant phenotype was determined by a single recessive gene. Through map-based approach, BH1 gene was finally located to a ~87.5-kbp region on the long arm of chromosome 2. An analysis of the gene content of this region indicated that the mutation involves the loss of a 55-kbp stretch, harboring four open reading frames. Transcription profiling based on qRT-PCR revealed that the genes OsMADS1, OsMADS14, OsMADS15, OsMADS18, REP1, CFO1, and DL, all of which are also involved in lemma and palea development and identity specification, were down-regulated in the bh1 mutant. BH1 is therefore an important floral organ development gene.
Collapse
Affiliation(s)
- Xiangjin Wei
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yockteng R, Almeida AMR, Morioka K, Alvarez-Buylla ER, Specht CD. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Mol Biol Evol 2013; 30:2401-22. [PMID: 23938867 DOI: 10.1093/molbev/mst137] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.
Collapse
Affiliation(s)
- Roxana Yockteng
- Department of Plant and Microbial Biology, Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley
| | | | | | | | | |
Collapse
|
36
|
Yun D, Liang W, Dreni L, Yin C, Zhou Z, Kater MM, Zhang D. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. MOLECULAR PLANT 2013; 6:743-56. [PMID: 23300256 DOI: 10.1093/mp/sst003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rice (Oryza sativa) has unique floral patterns that contribute to grain yield. However, the molecular mechanism underlying the specification of floral organ identities in rice, particularly the interaction among floral homeotic genes, remains poorly understood. Here, we show that the floral homeotic gene OsMADS16 (also called SUPERWOMAN1, SPW1, a B-class gene) acts together with the rice C-class genes OsMADS3 and OsMADS58 in specifying floral organ patterning. OsMADS16 and the two C-class genes have an overlapping expression pattern in the third whorl founder cells. Compared with the single mutants, both spw1-1 osmads3-4 and spw1-1 osmads58 double mutants exhibit additional whorls of glume-like organs within the flower, particularly an extra whorl of six glume-like structures formed at the position of the wild-type stamens. These ectopic glume-like structures were shown to have palea identity through cellular observation and in situ hybridization analysis using marker genes. Our results suggest that B- and C-class genes play a key role in suppressing indeterminate growth within the floral meristem, particularly whorl-3 primordia. We also hypothesize that, in contrast to previous assumptions, the specialized spikelet organ in rice, the palea, is the counterpart of the sepal in eudicots, and the lemma is homologous to the bract.
Collapse
Affiliation(s)
- Dapeng Yun
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Genes of the AGAMOUS subfamily have been shown to play crucial roles in reproductive organ identity determination, fruit, and seed development. They have been deeply studied in eudicot species and especially in Arabidopsis. Recently, the AGAMOUS subfamily of rice has been studied for their role in flower development and an enormous amount of data has been generated. In this review, we provide an overview of these data and discuss the conservation of gene functions between rice and Arabidopsis.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
38
|
Aceto S, Gaudio L. The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Curr Genomics 2012; 12:342-56. [PMID: 22294877 PMCID: PMC3145264 DOI: 10.2174/138920211796429754] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022] Open
Abstract
Since the time of Darwin, biologists have studied the origin and evolution of the Orchidaceae, one of the largest families of flowering plants. In the last two decades, the extreme diversity and specialization of floral morphology and the uncoupled rate of morphological and molecular evolution that have been observed in some orchid species have spurred interest in the study of the genes involved in flower development in this plant family. As part of the complex network of regulatory genes driving the formation of flower organs, the MADS-box represents the most studied gene family, both from functional and evolutionary perspectives. Despite the absence of a published genome for orchids, comparative genetic analyses are clarifying the functional role and the evolutionary pattern of the MADS-box genes in orchids. Various evolutionary forces act on the MADS-box genes in orchids, such as diffuse purifying selection and the relaxation of selective constraints, which sometimes reveals a heterogeneous selective pattern of the coding and non-coding regions. The emerging theory regarding the evolution of floral diversity in orchids proposes that the diversification of the orchid perianth was a consequence of duplication events and changes in the regulatory regions of the MADS-box genes, followed by sub- and neo-functionalization. This specific developmental-genetic code is termed the "orchid code."
Collapse
Affiliation(s)
- Serena Aceto
- Department of Biological Sciences, University of Naples Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| | | |
Collapse
|
39
|
Zhu P, Gu H, Jiao Y, Huang D, Chen M. Computational identification of protein-protein interactions in rice based on the predicted rice interactome network. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:128-37. [PMID: 22196356 PMCID: PMC5054448 DOI: 10.1016/s1672-0229(11)60016-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/04/2011] [Indexed: 01/29/2023]
Abstract
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localization prediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box domain-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
40
|
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S. Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 2012. [PMID: 22466020 DOI: 10.1007/s10142‐012‐0274‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carefully analyzed expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the spatial and temporal expression profiles of rice genes in 19 stages of vegetative and reproductive development. We could verify expression of 22,980 genes in at least one of the tissues. Differential expression analysis with respect to five vegetative tissues and preceding stages of development revealed reproductive stage-preferential/-specific genes. By using subtractive logic, we identified 354 and 456 genes expressing specifically during panicle and seed development, respectively. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1) and male meiosis (P3), the genes involved in jasmonic acid and phenylpropanoid biosynthesis were significantly upregulated. P6 stage of panicle, containing mature gametophytes, exhibited enrichment of transcripts involved in homogalacturonon degradation. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of three panicle-specific genes, OsAGO3, OsSub42, and RTS, and an early seed-specific gene, XYH, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
Collapse
Affiliation(s)
- Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Garay-Arroyo A, Piñeyro-Nelson A, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER. When ABC becomes ACB. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2377-2395. [PMID: 22442416 DOI: 10.1093/jxb/ers024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Understanding how the information contained in genes is mapped onto the phenotypes, and deriving formal frameworks to search for generic aspects of developmental constraints and evolution remains one of the main challenges of contemporary biological research. The Mexican endemic triurid Lacandonia schismatica (Lacandoniaceae), a mycoheterotrophic monocotyledonous plant with hermaphroditic reproductive axes is alone among 250,000 species of angiosperms, as it has central stamens surrounded by a peripheral gynoecium, representing a natural instance of a homeotic mutant. Based on the classical ABC model of flower development, it has recently been shown that the B-function gene APETALA3 (AP3), essential for stamen identity, was displaced toward the flower centre in L. schismatica (ABC to ACB) from the early stages of flower development. A functional conservation of B-function genes from L. schismatica through the rescue of B-gene mutants in Arabidopsis thaliana, as well as conserved protein interactions, has also been demonstrated. Thus, it has been shown that relatively simple genetic alterations may underlie large morphological shifts fixed in extant natural populations. Nevertheless, critical questions remain in order to have a full and sufficient explanation of the molecular genetic mechanisms underlying L. schismatica's unique floral arrangement. Evolutionary approaches to developmental mechanisms and systems biology, including high-throughput functional genomic studies and models of complex developmental gene regulatory networks, constitute two main approaches to meet such a challenge. In this review, the aim is to address some of the pending questions with the ultimate goal of investigating further the mechanisms of L. schismatica's unique homeotic flower arrangement and its evolution.
Collapse
Affiliation(s)
- Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | | | | | | | |
Collapse
|
42
|
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S. Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 2012; 12:229-48. [PMID: 22466020 DOI: 10.1007/s10142-012-0274-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
Abstract
Carefully analyzed expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the spatial and temporal expression profiles of rice genes in 19 stages of vegetative and reproductive development. We could verify expression of 22,980 genes in at least one of the tissues. Differential expression analysis with respect to five vegetative tissues and preceding stages of development revealed reproductive stage-preferential/-specific genes. By using subtractive logic, we identified 354 and 456 genes expressing specifically during panicle and seed development, respectively. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1) and male meiosis (P3), the genes involved in jasmonic acid and phenylpropanoid biosynthesis were significantly upregulated. P6 stage of panicle, containing mature gametophytes, exhibited enrichment of transcripts involved in homogalacturonon degradation. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of three panicle-specific genes, OsAGO3, OsSub42, and RTS, and an early seed-specific gene, XYH, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
Collapse
Affiliation(s)
- Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 2011; 359:277-88. [DOI: 10.1016/j.ydbio.2011.08.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022]
|
44
|
Abstract
The flower of rice diverged from those of model eudicot species such as Arabidopsis, Antirrhinum, or Petunia, and is thus of great interest in developmental and evolutionary biology. Specific to grass species, including rice, are the structural units of the inflorescence called the spikelet and floret, which comprise grass-specific peripheral organs and conserved sexual organs. Recent advances in molecular genetic studies have provided an understanding of the functions of rapidly increasing numbers of genes involved in rice flower development. The genetic framework of rice flower development is in part similar to that of model eudicots. However, rice also probably recruits specific genetic mechanisms, which probably contribute to the establishment of the specific floral architecture of rice. In this review, the molecular genetic mechanisms of rice flowering are outlined, focusing on recent information and in comparison with those of model eudicots.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Rice Research Division, National Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan.
| | | |
Collapse
|
45
|
Molecular aspects of flower development in grasses. ACTA ACUST UNITED AC 2011; 24:247-82. [PMID: 21877128 DOI: 10.1007/s00497-011-0175-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The grass family (Poaceae) of the monocotyledons includes about 10,000 species and represents one of the most important taxa among angiosperms. Their flower morphology is remarkably different from those of other monocotyledons and higher eudicots. The peculiar floral structure of grasses is the floret, which contains carpels and stamens, like eudicots, but lacks petals and sepals. The reproductive organs are surrounded by two lodicules, which correspond to eudicot petals, and by a palea and lemma, whose correspondence to eudicot organs remains controversial. The molecular and genetic analysis of floral morphogenesis and organ specification, primarily performed in eudicot model species, led to the ABCDE model of flower development. Several genes required for floral development in grasses correspond to class A, B, C, D, and E genes of eudicots, but others appear to have unique and diversified functions. In this paper, we outline the present knowledge on the evolution and diversification of grass genes encoding MIKC-type MADS-box transcription factors, based on information derived from studies in rice, maize, and wheat. Moreover, we review recent advances in studying the genes involved in the control of flower development and the extent of structural and functional conservation of these genes between grasses and eudicots.
Collapse
|
46
|
Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. THE PLANT CELL 2011; 23:2536-52. [PMID: 21784949 PMCID: PMC3226212 DOI: 10.1105/tpc.111.087262] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 05/19/2023]
Abstract
AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meristem determinacy redundantly with SUPERWOMAN1/MADS16 (B-gene) or MADS3 (C-gene). MADS6 was shown to define carpel/ovule development and floral determinacy by interacting with MADS13 (D-gene) and control the palea and floral meristem identities together with the YABBY gene DROOPING LEAF. Expression analyses revealed that the transcript levels of six B-, C-, and E-class genes were reduced in mads6-1 at the early flower developmental stage, suggesting that MADS6 is a key regulator of early flower development. Moreover, MADS6 can directly bind to a putative regulatory motif on MADS58 (C-gene), and mads6-1 mads58 displayed phenotypes similar to that of mads6-1. These results suggest that MADS6 is a key player in specifying flower development via interacting with other floral homeotic genes in rice, thus providing new insights into the mechanism by which flower development is controlled.
Collapse
Affiliation(s)
- Haifeng Li
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Hu
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhu
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changsong Yin
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Xu
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ludovico Dreni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Martin M. Kater
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Dabing Zhang
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
47
|
Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem Biophys Res Commun 2010; 401:598-604. [DOI: 10.1016/j.bbrc.2010.09.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 11/21/2022]
|
48
|
Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH. Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC PLANT BIOLOGY 2010; 10:129. [PMID: 20579338 PMCID: PMC3017775 DOI: 10.1186/1471-2229-10-129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 06/25/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The ornamental plant Gerbera hybrida bears complex inflorescences with morphologically distinct floral morphs that are specific to the sunflower family Asteraceae. We have previously characterized several MADS box genes that regulate floral development in Gerbera. To study further their behavior in higher order complex formation according to the quartet model, we performed yeast two- and three-hybrid analysis with fourteen Gerbera MADS domain proteins to analyze their protein-protein interaction potential. RESULTS The exhaustive pairwise interaction analysis showed significant differences in the interaction capacity of different Gerbera MADS domain proteins compared to other model plants. Of particular interest in these assays was the behavior of SEP-like proteins, known as GRCDs in Gerbera. The previously described GRCD1 and GRCD2 proteins, which are specific regulators involved in stamen and carpel development, respectively, showed very limited pairwise interactions, whereas the related GRCD4 and GRCD5 factors displayed hub-like positions in the interaction map. We propose GRCD4 and GRCD5 to provide a redundant and general E function in Gerbera, comparable to the SEP proteins in Arabidopsis. Based on the pairwise interaction data, combinations of MADS domain proteins were further subjected to yeast three-hybrid assays. Gerbera B function proteins showed active behavior in ternary complexes. All Gerbera SEP-like proteins with the exception of GRCD1 were excellent partners for B function proteins, further implicating the unique role of GRCD1 as a whorl- and flower-type specific C function partner. CONCLUSIONS Gerbera MADS domain proteins exhibit both conserved and derived behavior in higher order protein complex formation. This protein-protein interaction data can be used to classify and compare Gerbera MADS domain proteins to those of Arabidopsis and Petunia. Combined with our reverse genetic studies of Gerbera, these results reinforce the roles of different genes in the floral development of Gerbera. Building up the elaborate capitulum of Gerbera calls for modifications and added complexity in MADS domain protein behavior compared to the more simple flowers of, e.g., Arabidopsis.
Collapse
Affiliation(s)
- Satu Ruokolainen
- Gerbera Laboratory, Department of Applied Biology P.O. Box 27 (Latokartanonkaari 7), FIN - 00014 University of Helsinki, Finland
| | - Yan Peng Ng
- Current Address: Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Finland
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA
| | - Paula Elomaa
- Gerbera Laboratory, Department of Applied Biology P.O. Box 27 (Latokartanonkaari 7), FIN - 00014 University of Helsinki, Finland
| | - Teemu H Teeri
- Gerbera Laboratory, Department of Applied Biology P.O. Box 27 (Latokartanonkaari 7), FIN - 00014 University of Helsinki, Finland
| |
Collapse
|
49
|
Chen M, Meng Y, Mao C, Chen D, Wu P. Methodological framework for functional characterization of plant microRNAs. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2271-2280. [PMID: 20388745 DOI: 10.1093/jxb/erq087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the beginning of this century, microRNAs (miRNAs), which are tiny RNA molecules, have become one of the major research topics on gene expression regulation in both animals and plants. The major task of miRNA study is to elucidate how the miRNAs are expressed in vivo, how they exert regulatory effects on their targets, and how they can be qualitatively or quantitatively cloned. For these purposes, the methodology of miRNA study has been developed and significantly improved in recent years. The focus here is on a number of powerful methods for plant miRNA research including bioinformatics tools and experimental approaches being used for upstream or downstream analysis of miRNAs or miRNA cloning. Some discrepancies exist in the miRNA research methodology between plants and animals, for example, 5' modified RACE (Rapid Amplification of cDNA Ends) can be used for cleavage target validation only in plants. However, numerous common methods are shared by these two miRNA research areas. Thus, this review will enhance our understanding of miRNA research methodology in organisms.
Collapse
Affiliation(s)
- Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Zijingang Campus, Yu Hang Tang Road 388, Hangzhou 310058, PR China.
| | | | | | | | | |
Collapse
|
50
|
Immink RG, Kaufmann K, Angenent GC. The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 2010; 21:87-93. [DOI: 10.1016/j.semcdb.2009.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/23/2009] [Indexed: 02/05/2023]
|