1
|
Chandan K, Gupta M, Ahmad A, Sarwat M. P-type calcium ATPases play important roles in biotic and abiotic stress signaling. PLANTA 2024; 260:37. [PMID: 38922354 DOI: 10.1007/s00425-024-04462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION Knowledge of Ca2+-ATPases is imperative for improving crop quality/ food security, highly threatened due to global warming. Ca2+-ATPases modulates calcium, essential for stress signaling and modulating growth, development, and immune activities. Calcium is considered a versatile secondary messenger and essential for short- and long-term responses to biotic and abiotic stresses in plants. Coordinated transport activities from both calcium influx and efflux channels are required to generate cellular calcium signals. Various extracellular stimuli cause an induction in cytosolic calcium levels. To cope with such stresses, it is important to maintain intracellular Ca2+ levels. Plants need to evolve efficient efflux mechanisms to maintain Ca2+ ion homeostasis. Plant Ca2+-ATPases are members of the P-type ATPase superfamily and localized in the plasma membrane and endoplasmic reticulum (ER). They are required for various cellular processes, including plant growth, development, calcium signaling, and even retorts to environmental stress. These ATPases play an essential role in Ca2+ homeostasis and are actively involved in Ca2+ transport. Plant Ca2+-ATPases are categorized into two major classes: type IIA and type IIB. Although these two classes of ATPases share similarities in protein sequence, they differ in their structure, cellular localization, and sensitivity to inhibitors. Due to the emerging role of Ca2+-ATPase in abiotic and biotic plant stress, members of this family may help promote agricultural improvement under stress conditions. This review provides a comprehensive overview of P-type Ca2+-ATPase, and their role in Ca2+ transport, stress signaling, and cellular homeostasis focusing on their classification, evolution, ion specificities, and catalytic mechanisms. It also describes the main aspects of the role of Ca2+-ATPase in transducing signals during plant biotic and abiotic stress responses and its role in plant development and physiology.
Collapse
Affiliation(s)
- Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
2
|
Costa A, Resentini F, Buratti S, Bonza MC. Plant Ca 2+-ATPases: From biochemistry to signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119508. [PMID: 37290725 DOI: 10.1016/j.bbamcr.2023.119508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Calcium (Ca2+)-ATPases are ATP-dependent enzymes that transport Ca2+ ions against their electrochemical gradient playing the fundamental biological function of keeping the free cytosolic Ca2+ concentration in the submicromolar range to prevent cytotoxic effects. In plants, type IIB autoinhibited Ca2+-ATPases (ACAs) are localised both at the plasma membrane and at the endomembranes including endoplasmic reticulum (ER) and tonoplast and their activity is primarily regulated by Ca2+-dependent mechanisms. Instead, type IIA ER-type Ca2+-ATPases (ECAs) are present mainly at the ER and Golgi Apparatus membranes and are active at resting Ca2+. Whereas research in plants has historically focused on the biochemical characterization of these pumps, more recently the attention has been also addressed on the physiological roles played by the different isoforms. This review aims to highlight the main biochemical properties of both type IIB and type IIA Ca2+ pumps and their involvement in the shaping of cellular Ca2+ dynamics induced by different stimuli.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy.
| | - Francesca Resentini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy
| | - Stefano Buratti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
3
|
Poovaiah B, Du L, Wang H, Yang T. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. PLANT PHYSIOLOGY 2013; 163:531-42. [PMID: 24014576 PMCID: PMC3793035 DOI: 10.1104/pp.113.220780] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
Calcium/calmodulin-mediated signaling contributes in diverse roles in plant growth, development, and response to environmental stimuli .
Collapse
Affiliation(s)
| | | | - Huizhong Wang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| | - Tianbao Yang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| |
Collapse
|
4
|
Giacometti S, Marrano CA, Bonza MC, Luoni L, Limonta M, De Michelis MI. Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1215-24. [PMID: 22090438 PMCID: PMC3276087 DOI: 10.1093/jxb/err346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 09/20/2011] [Accepted: 10/04/2011] [Indexed: 05/23/2023]
Abstract
ACA8 is a plasma membrane-localized isoform of calmodulin (CaM)-regulated Ca(2+)-ATPase of Arabidopsis thaliana. Several phosphopeptides corresponding to portions of the regulatory N-terminus of ACA8 have been identified in phospho-proteomic studies. To mimic phosphorylation of the ACA8 N-terminus, each of the serines found to be phosphorylated in those studies (Ser19, Ser22, Ser27, Ser29, Ser57, and Ser99) has been mutated to aspartate. Mutants have been expressed in Saccharomyces cerevisiae and characterized: mutants S19D and S57D--and to a lesser extent also mutants S22D and S27D--are deregulated, as shown by their low activation by CaM and by tryptic cleavage of the N-terminus. The His-tagged N-termini of wild-type and mutant ACA8 (6His-(1)M-I(116)) were expressed in Escherichia coli, affinity-purified, and used to analyse the kinetics of CaM binding by surface plasmon resonance. All the analysed mutations affect the kinetics of interaction with CaM to some extent: in most cases, the altered kinetics result in marginal changes in affinity, with the exception of mutants S57D (K(D) ≈ 10-fold higher than wild-type ACA8) and S99D (K(D) about half that of wild-type ACA8). The ACA8 N-terminus is phosphorylated in vitro by two isoforms of A. thaliana calcium-dependent protein kinase (CPK1 and CPK16); phosphorylation of mutant 6His-(1)M-I(116) peptides shows that CPK16 is able to phosphorylate the ACA8 N-terminus at Ser19 and at Ser22. The possible physiological implications of the subtle modulation of ACA8 activity by phosphorylation of its N-terminus are discussed.
Collapse
|
5
|
Bonza MC, De Michelis MI. The plant Ca2+ -ATPase repertoire: biochemical features and physiological functions. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:421-30. [PMID: 21489092 DOI: 10.1111/j.1438-8677.2010.00405.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ca(2+)-ATPases are P-type ATPases that use the energy of ATP hydrolysis to pump Ca(2+) from the cytoplasm into intracellular compartments or into the apoplast. Plant cells possess two types of Ca(2+) -pumping ATPase, named ECAs (for ER-type Ca(2+)-ATPase) and ACAs (for auto-inhibited Ca(2+)-ATPase). Each type comprises different isoforms, localised on different membranes. Here, we summarise available knowledge of the biochemical characteristics and the physiological role of plant Ca(2+)-ATPases, greatly improved after gene identification, which allows both biochemical analysis of single isoforms through heterologous expression in yeast and expression profiling and phenotypic analysis of single isoform knock-out mutants.
Collapse
Affiliation(s)
- M C Bonza
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Istituto di Biofisica del CNR, Sezione di Milano, Milano, Italy
| | | |
Collapse
|
6
|
Peña A, Ripoll-Rozada J, Zunzunegui S, Cabezón E, de la Cruz F, Arechaga I. Autoinhibitory regulation of TrwK, an essential VirB4 ATPase in type IV secretion systems. J Biol Chem 2011; 286:17376-82. [PMID: 21454654 DOI: 10.1074/jbc.m110.208942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. In a previous work we demonstrated that TrwK is able to hydrolyze ATP. Here, based on the structural homology of VirB4 proteins with the DNA-pumping ATPase TrwB coupling protein, we generated a series of variants of TrwK where fragments of the C-terminal domain were sequentially truncated. Surprisingly, the in vitro ATPase activity of these TrwK variants was much higher than that of the wild-type enzyme. Moreover, addition of a synthetic peptide containing the amino acid residues comprising this C-terminal region resulted in the specific inhibition of the TrwK variants lacking such domain. These results indicate that the C-terminal end of TrwK plays an important regulatory role in the functioning of the T4SS.
Collapse
Affiliation(s)
- Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-IDICAN-CSIC, Santander 39011, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Pittman JK. Vacuolar Ca(2+) uptake. Cell Calcium 2011; 50:139-46. [PMID: 21310481 DOI: 10.1016/j.ceca.2011.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022]
Abstract
Calcium transporters that mediate the removal of Ca(2+) from the cytosol and into internal stores provide a critical role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. The vacuole is a major calcium store in many organisms, particularly plants and fungi. Two main pathways facilitate the accumulation of Ca(2+) into vacuoles, Ca(2+)-ATPases and Ca(2+)/H(+) exchangers. Here I review the biochemical and regulatory features of these transporters that have been characterised in yeast and plants. These Ca(2+) transport mechanisms are compared with those being identified from other vacuolated organisms including algae and protozoa. Studies suggest that Ca(2+) uptake into vacuoles and other related acidic Ca(2+) stores occurs by conserved mechanisms which developed early in evolution.
Collapse
Affiliation(s)
- Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
8
|
Ca2+ Pumps and Ca2+ Antiporters in Plant Development. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
9
|
Ishida H, Vogel HJ. The solution structure of a plant calmodulin and the CaM-binding domain of the vacuolar calcium-ATPase BCA1 reveals a new binding and activation mechanism. J Biol Chem 2010; 285:38502-10. [PMID: 20880850 PMCID: PMC2992282 DOI: 10.1074/jbc.m110.131201] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/09/2010] [Indexed: 11/06/2022] Open
Abstract
The type IIb class of plant Ca(2+)-ATPases contains a unique N-terminal extension that encompasses a calmodulin (CaM) binding domain and an auto-inhibitory domain. Binding of Ca(2+)-CaM to this region can release auto-inhibition and activates the calcium pump. Using multidimensional NMR spectroscopy, we have determined the solution structure of the complex of a plant CaM isoform with the CaM-binding domain of the well characterized Ca(2+)-ATPase BCA1 from cauliflower. The complex has a rather elongated structure in which the two lobes of CaM do not contact each other. The anchor residues Trp-23 and Ile-40 form a 1-8-18 interaction motif. Binding of Ca(2+)-CaM gives rise to the induction of two helical parts in this unique target peptide. The two helical portions are connected by a highly positively charged bend region, which represents a relatively fixed angle and positions the two lobes of CaM in an orientation that has not been seen before in any complex structure of calmodulin. The behavior of the complex was further characterized by heteronuclear NMR dynamics measurements of the isotope-labeled protein and peptide. These data suggest a unique calcium-driven activation mechanism for BCA1 and other plant Ca(2+)-ATPases that may also explain the action of calcium-CaM on some other target enzymes. Moreover, CaM activation of plant Ca(2+)-ATPases seems to occur in an organelle-specific manner.
Collapse
Affiliation(s)
- Hiroaki Ishida
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hans J. Vogel
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Abstract
In numerous plant signal transduction pathways, Ca2+ is a versatile second messenger which controls the activation of many downstream actions in response to various stimuli. There is strong evidence to indicate that information encoded within these stimulus-induced Ca2+ oscillations can provide signalling specificity. Such Ca2+ signals, or 'Ca2+ signatures', are generated in the cytosol, and in noncytosolic locations including the nucleus and chloroplast, through the coordinated action of Ca2+ influx and efflux pathways. An increased understanding of the functions and regulation of these various Ca2+ transporters has improved our appreciation of the role these transporters play in specifically shaping the Ca2+ signatures. Here we review the evidence which indicates that Ca2+ channel, Ca2+-ATPase and Ca2+ exchanger isoforms can indeed modulate specific Ca2+ signatures in response to an individual signal.
Collapse
Affiliation(s)
- Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Brownfield L, Wilson S, Newbigin E, Bacic A, Read S. Molecular control of the glucan synthase-like protein NaGSL1 and callose synthesis during growth of Nicotiana alata pollen tubes. Biochem J 2008; 414:43-52. [PMID: 18462191 DOI: 10.1042/bj20080693] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The protein NaGSL1 (Nicotiana alata glucan synthase-like 1) is implicated in the synthesis of callose, the 1,3-beta-glucan that is the major polysaccharide in the walls of N. alata (flowering tobacco) pollen tubes. Here we examine the production, intracellular location and post-translational processing of NaGSL1, and relate each of these to the control of pollen-tube callose synthase (CalS). The 220 kDa NaGSL1 polypeptide is produced after pollen-tube germination and accumulates during pollen-tube growth, as does CalS. A combination of membrane fractionation and immunoelectron microscopy revealed that NaGSL1 was present predominantly in the endoplasmic reticulum and Golgi membranes in younger pollen tubes when CalS was mostly in an inactive (latent) form. In later stages of pollen-tube growth, when CalS was present in both latent and active forms, a greater proportion of NaGSL1 was in intracellular vesicles and the plasma membrane, the latter location being consistent with direct deposition of callose into the wall. N. alata CalS is activated in vitro by the proteolytic enzyme trypsin and the detergent CHAPS, but in neither case was activation associated with a detectable change in the molecular mass of the NaGSL1 polypeptide. NaGSL1 may thus either be activated by the removal of a few amino acids or by the removal of another protein that inhibits NaGSL1. These findings are discussed in relation to the control of callose biosynthesis during pollen germination and pollen-tube growth.
Collapse
Affiliation(s)
- Lynette Brownfield
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
12
|
Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. PLANT & CELL PHYSIOLOGY 2005; 46:762-74. [PMID: 15753101 DOI: 10.1093/pcp/pci081] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although Arabidopsis thaliana does not produce phytosiderophores (PS) under Fe deficiency, it contains eight homologs of the metal-PS/metal-nicotianamine (NA) transporter ZmYS1 from maize. This study aimed to investigate whether one of the closest Arabidopsis homologs to ZmYS1, AtYSL2, is involved in metal-chelate transport. Northern analysis revealed high expression levels of AtYSL2 in Fe-sufficient or Fe-resupplied roots, while under Fe deficiency transcript levels decreased. Quantitative real-time polymerase chain reaction (PCR) and analysis of transgenic plants expressing an AtYSL2 promoter::beta-glucuronidase gene further allowed the detection of down-regulated AtYSL2 gene expression under Zn and Fe deficiency. In contrast to ZmYS1, AtYSL2 did not mediate metal-PS or metal-NA transport in yeast mutants defective in Cu or Fe uptake, nor did AtYSL2 mediate Fe(II)-NA-, Fe(III)-NA- or Ni(II)-NA-inducible currents when assayed by two-electrode voltage clamp in Xenopus oocytes. Moreover, truncation of the N-terminus to remove putative phosphorylation sites that might trigger autoinhibition did not confer functionality to AtYSL2. A direct growth comparison of yeast cells transformed with AtYSL2 in two different yeast expression vectors showed that transformation with empty pFL61 repressed growth even under non-limiting Fe supply. We therefore conclude that the yeast complementation assay previously employed does not allow the identification of AtYSL2 as an Fe-NA transporter. Transgenic plants expressing an AtYSL2 promoter::beta-glucuronidase gene showed expression in root endodermis and pericycle cells facing the meta-xylem tubes. Taken together, our investigations support an involvement of AtYSL2 in Fe and Zn homeostasis, although functionality or substrate specificity are likely to differ between AtYSL2 and ZmYS1.
Collapse
Affiliation(s)
- Gabriel Schaaf
- Institut für Pflanzenernährung, Universität Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yamniuk AP, Vogel HJ. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 2004; 27:33-57. [PMID: 15122046 DOI: 10.1385/mb:27:1:33] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1-14 and 1-10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM's central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly alpha-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | | |
Collapse
|
14
|
Luoni L, Meneghelli S, Bonza MC, DeMichelis MI. Auto-inhibition of Arabidopsis thaliana plasma membrane Ca2+-ATPase involves an interaction of the N-terminus with the small cytoplasmic loop. FEBS Lett 2004; 574:20-4. [PMID: 15358533 DOI: 10.1016/j.febslet.2004.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 07/30/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Type IIB Ca2+-ATPases have a terminal auto-inhibitory, domain the action of which is suppressed by calmodulin (CaM) binding. Here, we show that a peptide (6His-1M-I116) corresponding to the first 116 aminoacids (aa) of At-ACA8, the first cloned isoform of Arabidopsis thaliana plasma membrane Ca2+-ATPase, inhibits the activity of the enzyme deprived of the N-terminus by controlled trypsin treatment 10-fold more efficiently than a peptide (41I-T63) corresponding only to the CaM-binding site. A peptide (268E-W348) corresponding to 81 aa of the small cytoplasmic loop of At-ACA8 binds peptide 6His-1M-I116 immobilized on Ni-NTA agarose. Peptide 268E-W348 stimulates Ca2+-ATPase activity. Its effect is not additive with that of CaM and is suppressed by tryptic cleavage of the N-terminus. These results provide the first functional identification of a site of intramolecular interaction with the terminal auto-inhibitory domain of type IIB Ca2+-ATPases.
Collapse
Affiliation(s)
- Laura Luoni
- Dipartimento di Biologia L. Gorini, Università di Milano, CNR Istituto di Biofisica--Sezione di Milano, via G. Celoria 26, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
15
|
Yamniuk AP, Vogel HJ. Structurally homologous binding of plant calmodulin isoforms to the calmodulin-binding domain of vacuolar calcium-ATPase. J Biol Chem 2004; 279:7698-707. [PMID: 14670974 DOI: 10.1074/jbc.m310763200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery that plants contain multiple calmodulin (CaM) isoforms having variable sequence identity to mammalian CaM has sparked a flurry of new questions regarding the intracellular role of Ca(2+) regulation in plants. To date, the majority of research in this field has focused on the differential enzymatic regulation of various mammalian CaM-dependent enzymes by the different plant CaM isoforms. However, there is comparatively little information on the structural recognition of target enzymes found exclusively in plant cells. Here we have used a variety of spectroscopic techniques, including nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy, to study the interactions of the most conserved and most divergent CaM isoforms from soybean, SCaM-1, and SCaM-4, respectively, with a synthetic peptide derived from the CaM-binding domain of cauliflower vacuolar calcium-ATPase. Despite their sequence divergence, both SCaM-1 and SCaM-4 interact with the calcium-ATPase peptide in a similar calcium-dependent, stoichiometric manner, adopting an antiparallel binding orientation with an alpha-helical peptide. The single Trp residue is bound in a solvent-inaccessible hydrophobic pocket on the C-terminal domain of either protein. Thermodynamic analysis of these interactions using isothermal titration calorimetry demonstrates that the formation of each calcium-SCaM-calcium-ATPase peptide complex is driven by favorable binding enthalpy and is very similar to the binding of mammalian CaM to the CaM-binding domains of myosin light chain kinases and calmodulin-dependent protein kinase I.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
16
|
Abstract
Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.
Collapse
Affiliation(s)
- Tianbao Yang
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | |
Collapse
|
17
|
Pittman JK, Hirschi KD. Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:257-262. [PMID: 12753975 DOI: 10.1016/s1369-5266(03)00036-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ca(2+) signal transduction requires the meticulous regulation of cytosolic Ca(2+) levels. Endomembrane Ca(2+) transporters and binding proteins are important components in partitioning these Ca(2+) signals to mediate cellular activity. Recently, many of these proteins have been characterized and mutant analysis suggests that these transporters form a network. Future attempts to manipulate plant Ca(2+) signaling must address all aspects of this complex.
Collapse
Affiliation(s)
- Jon K Pittman
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA
| | | |
Collapse
|
18
|
Pittman JK, Shigaki T, Cheng NH, Hirschi KD. Mechanism of N-terminal autoinhibition in the Arabidopsis Ca(2+)/H(+) antiporter CAX1. J Biol Chem 2002; 277:26452-9. [PMID: 12006570 DOI: 10.1074/jbc.m202563200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of Ca(2+)/H(+) antiporters may be an important function in determining the duration and amplitude of cytosolic Ca(2+) oscillations. Previously the Arabidopsis Ca(2+)/H(+) transporter, CAX1 (cation exchanger 1), was identified by its ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. Recently, a 36-amino acid N-terminal regulatory region on CAX1 has been identified that inhibits CAX1-mediated Ca(2+)/H(+) antiport. Here we show that a synthetic peptide designed against the CAX1 36 amino acids inhibited Ca(2+)/H(+) transport mediated by an N-terminal-truncated CAX1 but did not inhibit Ca(2+) transport by other Ca(2+)/H(+) antiporters. Ca(2+)/H(+) antiport activity measured from vacuolar-enriched membranes of Arabidopsis root was also inhibited by the CAX1 peptide. Through analyzing CAX chimeric constructs the region of interaction of the N-terminal regulatory region was mapped to include 7 amino acids (residues 56-62) within CAX1. The CAX1 N-terminal regulatory region was shown to physically interact with this 7-amino acid region by yeast two-hybrid analysis. Mutagenesis of amino acids within the N-terminal regulatory region implicated several residues as being essential for regulation. These findings describe a unique mode of antiporter autoinhibition and demonstrate the first detailed mechanisms for the regulation of a Ca(2+)/H(+) antiporter from any organism.
Collapse
Affiliation(s)
- Jon K Pittman
- Plant Physiology Group, United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
19
|
Pittman JK, Hirschi KD. Regulation of CAX1, an Arabidopsis Ca(2+)/H+ antiporter. Identification of an N-terminal autoinhibitory domain. PLANT PHYSIOLOGY 2001; 127:1020-1029. [PMID: 11706183 DOI: 10.1104/pp.010409] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Regulation of Ca(2+) transport determines the duration of a Ca(2+) signal, and hence, the nature of the biological response. Ca(2+)/H+ antiporters such as CAX1 (cation exchanger 1), play a key role in determining cytosolic Ca(2+) levels. Analysis of a full-length CAX1 clone suggested that the CAX1 open reading frame contains an additional 36 amino acids at the N terminus that were not found in the original clone identified by suppression of yeast (Saccharomyces cerevisiae) vacuolar Ca(2+) transport mutants. The long CAX1 (lCAX1) could not suppress the yeast Ca(2+) transport defects despite localization to the yeast vacuole. Calmodulin could not stimulate lCAX1 Ca(2+)/H+ transport in yeast; however, minor alterations in the 36-amino acid region restored Ca(2+)/H+ transport. Sequence analysis suggests that a 36-amino acid N-terminal regulatory domain may be present in all Arabidopsis CAX-like genes. Together, these results suggest a structural feature involved in regulation of Ca(2+)/H+ antiport.
Collapse
Affiliation(s)
- J K Pittman
- Plant Physiology Group, U.S. Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Sze H, Liang F, Hwang I, Curran AC, Harper JF. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 51:433-62. [PMID: 11543429 DOI: 10.1146/annurev.arplant.51.1.433] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.
Collapse
Affiliation(s)
- H Sze
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park 20742, USA.
| | | | | | | | | |
Collapse
|
21
|
Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. THE NEW PHYTOLOGIST 2001; 151:35-66. [PMID: 33873389 DOI: 10.1046/j.1469-8137.2001.00154.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The complexity of Ca2+ patterns observed in eukaryotic cells, including plants, has led to the hypothesis that specific patterns of Ca2+ propagation, termed Ca2+ signatures, encode information and relay it to downstream elements (effectors) for translation into appropriate cellular responses. Ca2+ -binding proteins (sensors) play a key role in decoding Ca2+ signatures and transducing signals by activating specific targets and pathways. Calmodulin is a Ca2+ sensor known to modulate the activity of many mammalian proteins, whose targets in plants are now being actively characterized. Plants possess an interesting and rapidly growing list of calmodulin targets with a variety of cellular roles. Nevertheless, many targets appear to be unique to plants and remain uncharacterized, calling for a concerted effort to elucidate their functions. Moreover, the extended family of calmodulin-related proteins in plants consists of evolutionarily divergent members, mostly of unknown function, although some have recently been implicated in stress responses. It is hoped that advances in functional genomics, and the research tools it generates, will help to explain themultiplicity of calmodulin genes in plants, and to identify their downstream effectors. This review summarizes current knowledge of the Ca2+ -calmodulin messenger system in plants and presents suggestions for future areas of research. Contents I. Introduction 36 II. CaM isoforms and CaM-like proteins 37 III. CaM-target proteins 42 IV. CaM and nuclear functions 46 V. Regulation of ion transport 49 VI. CaM and plant responses to environmental stimuli 52 VII. Conclusions and future studies 58 Acknowledgements 59 References 59.
Collapse
Affiliation(s)
- Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Hillel Fromm
- Centre for Plant Sciences, Leeds Institute for Biotechnology and Agriculture (LIBA), School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Reddy AS. Calcium: silver bullet in signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:381-404. [PMID: 11166425 DOI: 10.1016/s0168-9452(00)00386-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Accumulating evidence suggests that Ca(2+) serves as a messenger in many normal growth and developmental process and in plant responses to biotic and abiotic stresses. Numerous signals have been shown to induce transient elevation of [Ca(2+)](cyt) in plants. Genetic, biochemical, molecular and cell biological approaches in recent years have resulted in significant progress in identifying several Ca(2+)-sensing proteins in plants and in understanding the function of some of these Ca(2+)-regulated proteins at the cellular and whole plant level. As more and more Ca(2+)-sensing proteins are identified it is becoming apparent that plants have several unique Ca(2+)-sensing proteins and that the downstream components of Ca(2+) signaling in plants have novel features and regulatory mechanisms. Although the mechanisms by which Ca(2+) regulates diverse biochemical and molecular processes and eventually physiological processes in response to diverse signals are beginning to be understood, recent studies have raised many interesting questions. Despite the fact that Ca(2+) sensing proteins are being identified at a rapid pace, progress on the function(s) of many of them is limited. Studies on plant 'signalome' - the identification of all signaling components in all messengers mediated transduction pathways, analysis of their function and regulation, and cross talk among these components - should help in understanding the inner workings of plant cell responses to diverse signals. New functional genomics approaches such as reverse genetics, microarray analyses coupled with in vivo protein-protein interaction studies and proteomics should not only permit functional analysis of various components in Ca(2+) signaling but also enable identification of a complex network of interactions.
Collapse
Affiliation(s)
- A S.N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, 80523, Fort Collins, CO, USA
| |
Collapse
|
23
|
Geisler M, Frangne N, Gomès E, Martinoia E, Palmgren MG. The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. PLANT PHYSIOLOGY 2000; 124:1814-27. [PMID: 11115896 PMCID: PMC59877 DOI: 10.1104/pp.124.4.1814] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2000] [Revised: 07/02/2000] [Accepted: 09/12/2000] [Indexed: 05/17/2023]
Abstract
Several lines of evidence suggest that regulation of intracellular Ca(2+) levels is crucial for adaptation of plants to environmental stress. We have cloned and characterized Arabidopsis auto-inhibited Ca(2+)-ATPase, isoform 4 (ACA4), a calmodulin-regulated Ca(2+)-ATPase. Confocal laser scanning data of a green fluorescent protein-tagged version of ACA4 as well as western-blot analysis of microsomal fractions obtained from two-phase partitioning and Suc density gradient centrifugation suggest that ACA4 is localized to small vacuoles. The N terminus of ACA4 contains an auto-inhibitory domain with a binding site for calmodulin as demonstrated through calmodulin-binding studies and complementation experiments using the calcium transport yeast mutant K616. ACA4 and PMC1, the yeast vacuolar Ca(2+)-ATPase, conferred protection against osmotic stress such as high NaCl, KCl, and mannitol when expressed in the K616 strain. An N-terminally modified form of ACA4 specifically conferred increased NaCl tolerance, whereas full-length ATPase had less effect.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins
- Binding Sites
- Calcium/metabolism
- Calcium/pharmacology
- Calcium-Transporting ATPases/chemistry
- Calcium-Transporting ATPases/genetics
- Calcium-Transporting ATPases/metabolism
- Calmodulin/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Mutation
- Potassium Chloride/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Salts/pharmacology
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction
- Sodium Chloride/pharmacology
- Tissue Distribution
- Vacuoles/enzymology
Collapse
Affiliation(s)
- M Geisler
- Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
24
|
Martinoia E, Massonneau A, Frangne N. Transport processes of solutes across the vacuolar membrane of higher plants. PLANT & CELL PHYSIOLOGY 2000; 41:1175-86. [PMID: 11092901 DOI: 10.1093/pcp/pcd059] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The central vacuole is the largest compartment of a mature plant cell and may occupy more than 80% of the total cell volume. However, recent results indicate that beside the large central vacuole, several small vacuoles may exist in a plant cell. These vacuoles often belong to different classes and can be distinguished either by their contents in soluble proteins or by different types of a major vacuolar membrane protein, the aquaporins. Two vacuolar proton pumps, an ATPase and a PPase energize vacuolar uptake of most solutes. The electrochemical gradient generated by these pumps can be utilized to accumulate cations by a proton antiport mechanism or anions due to the membrane potential difference. Uptake can be catalyzed by channels or by transporters. Growing evidence shows that for most ions more than one transporter/channel exist at the vacuolar membrane. Furthermore, plant secondary products may be accumulated by proton antiport mechanisms. The transport of some solutes such as sucrose is energized in some plants but occurs by facilitated diffusion in others. A new class of transporters has been discovered recently: the ABC type transporters are directly energized by MgATP and do not depend on the electrochemical force. Their substrates are organic anions formed by conjugation, e.g. to glutathione. In this review we discuss the different transport processes occurring at the vacuolar membrane and focus on some new results obtained in this field.
Collapse
Affiliation(s)
- E Martinoia
- Laboratoire de Physiologie Végétale, Institut de Botanique, Université de Neuchâtel, Rue Emile Argand 13, CH-2007 Neuchâtel, Switzerland.
| | | | | |
Collapse
|
25
|
Curran AC, Hwang I, Corbin J, Martinez S, Rayle D, Sze H, Harper JF. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain. J Biol Chem 2000; 275:30301-8. [PMID: 10818096 DOI: 10.1074/jbc.m002047200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.
Collapse
Affiliation(s)
- A C Curran
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bonza MC, Morandini P, Luoni L, Geisler M, Palmgren MG, De Michelis MI. At-ACA8 encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a calmodulin-binding domain at the N terminus. PLANT PHYSIOLOGY 2000; 123:1495-506. [PMID: 10938365 PMCID: PMC59105 DOI: 10.1104/pp.123.4.1495] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2000] [Accepted: 04/17/2000] [Indexed: 05/18/2023]
Abstract
A Ca(2+)-ATPase was purified from plasma membranes (PM) isolated from Arabidopsis cultured cells by calmodulin (CaM)-affinity chromatography. Three tryptic fragments from the protein were microsequenced and the corresponding cDNA was amplified by polymerase chain reaction using primers designed from the microsequences of the tryptic fragments. At-ACA8 (Arabidopsis-autoinhibited Ca(2+)-ATPase, isoform 8, accession no. AJ249352) encodes a 1,074 amino acid protein with 10 putative transmembrane domains, which contains all of the characteristic motifs of Ca(2+)-transporting P-type Ca(2+)-ATPases. The identity of At-ACA8p as the PM Ca(2+)-ATPase was confirmed by immunodetection with an antiserum raised against a sequence (valine-17 through threonine-31) that is not found in other plant CaM-stimulated Ca(2+)-ATPases. Confocal fluorescence microscopy of protoplasts immunodecorated with the same antiserum confirmed the PM localization of At-ACA8. At-ACA8 is the first plant PM localized Ca(2+)-ATPase to be cloned and is clearly distinct from animal PM Ca(2+)-ATPases due to the localization of its CaM-binding domain. CaM overlay assays localized the CaM-binding domain of At-ACA8p to a region of the N terminus of the enzyme around tryptophan-47, in contrast to a C-terminal localization for its animal counterparts. Comparison between the sequence of At-ACA8p and those of endomembrane-localized type IIB Ca(2+)-ATPases of plants suggests that At-ACA8 is a representative of a new subfamily of plant type IIB Ca(2+)-ATPases.
Collapse
Affiliation(s)
- M C Bonza
- Dipartimento di Biologia, Università di Milano, Centro di Studio del Consiglio Nazionale delle Ricerche per la Biologia Cellulare e Molecolare delle Piante, via G. Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci U S A 2000; 97:6224-9. [PMID: 10823962 PMCID: PMC18586 DOI: 10.1073/pnas.97.11.6224] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Indexed: 11/18/2022] Open
Abstract
The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.
Collapse
Affiliation(s)
- I Hwang
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|