1
|
Kuljarusnont S, Iwakami S, Iwashina T, Tungmunnithum D. Flavonoids and Other Phenolic Compounds for Physiological Roles, Plant Species Delimitation, and Medical Benefits: A Promising View. Molecules 2024; 29:5351. [PMID: 39598740 PMCID: PMC11596516 DOI: 10.3390/molecules29225351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Flavonoids and other phenolic constituents are a large group of plant metabolites that have long attracted interest from researchers worldwide due to their functions in plant physiology, as well as their huge number of benefits for human health and well-being. This review attempts to reveal a promising view of the major physiological roles of flavonoids and other phenolic phytochemical molecules, e.g., protection agents against UV damage, pathogen defense agents, detoxifying agents, and agents promoting pollen fertility and successful pollination. Besides, the value of both flavonoids and other phenolic phytochemicals for plant species delimitation was also emphasized for the first time with the determination of their major physiological roles. Furthermore, their medical benefits for mankind were also highlighted in this current work.
Collapse
Affiliation(s)
- Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Satoshi Iwakami
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Tokyo, Japan;
| | - Tsukasa Iwashina
- Department of Botany, National Museum of Nature and Science (TNS), Tsukuba 305-0005, Ibaraki, Japan;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 45000 Orléans, France
| |
Collapse
|
2
|
Hasanagić D, Samelak I, Maksimović T, Jovanović-Cvetković T, Maksimović V. Phenolic profile, antioxidant capacity and oxidoreductase enzyme activity in autochthonous grape varieties from Bosnia and Herzegovina. Nat Prod Res 2024:1-10. [PMID: 39222473 DOI: 10.1080/14786419.2024.2398721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The variability of phenolic compounds among grape varieties has an important role in selecting winemaking techniques, but the use of phenolic profiles for quality control is still fragmented and incomplete. Given the recent climate change and global warming, biochemical characterisation of secondary metabolites in autochthonous grape varieties is a very important factor for their preservation and sustainable agriculture. Two autochthonous grape varieties from the western Herzegovina region in Bosnia and Herzegovina have been selected for the research targeting at the evaluation of their phenolic profiles, antioxidant activities, and the correlation with oxidoreductase enzymes polyphenol oxidase and Class III peroxidase, in different berry tissues. The obtained results indicate a similar qualitative profile of phenolic compounds in exocarp and mesocarp in both varieties, but their concentrations and antioxidant activity vary significantly. The correlation between phenolic compounds and oxidoreductase enzyme activities in different grape berry tissues is discussed in this article.
Collapse
Affiliation(s)
- Dino Hasanagić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ivan Samelak
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Tanja Maksimović
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Wuyun T, Zhang L, Tosens T, Liu B, Mark K, Morales-Sánchez JÁ, Rikisahedew JJ, Kuusk V, Niinemets Ü. Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum. PLANT DIVERSITY 2024; 46:621-629. [PMID: 39290881 PMCID: PMC11403144 DOI: 10.1016/j.pld.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 09/19/2024]
Abstract
Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (A mass). Paradoxically, "soft and thin-leaved" mosses and spikemosses have very low A mass, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, A mass and LD were negatively correlated. In contrast, A mass was only related to LMA when LMA was greater than 14 g cm- 2. In fact, low A mass reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.
Collapse
Affiliation(s)
- Tana Wuyun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lu Zhang
- College of Landscape and Architecture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Kristiina Mark
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - José Ángel Morales-Sánchez
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Vivian Kuusk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
4
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Rosier CL, Kittredge D, Nainiger B, Duarte O, Austic G, TerAvest D. Validation of low-cost reflectometer to identify phytochemical accumulation in food crops. Sci Rep 2024; 14:2524. [PMID: 38291145 PMCID: PMC10827735 DOI: 10.1038/s41598-024-52713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Diets consisting of greater quantity/diversity of phytochemicals are correlated with reduced risk of disease. This understanding guides policy development increasing awareness of the importance of consuming fruits, grains, and vegetables. Enacted policies presume uniform concentrations of phytochemicals across crop varieties regardless of production/harvesting methods. A growing body of research suggests that concentrations of phytochemicals can fluctuate within crop varieties. Improved awareness of how cropping practices influence phytochemical concentrations are required, guiding policy development improving human health. Reliable, inexpensive laboratory equipment represents one of several barriers limiting further study of the complex interactions influencing crop phytochemical accumulation. Addressing this limitation our study validated the capacity of a low-cost Reflectometer ($500) to measure phytochemical content in selected crops, against a commercial grade laboratory spectrophotometer. Our correlation results ranged from r2 = 0.81 for protein in wheat and oats to r2 = 0.99 for polyphenol content in lettuce in both the Reflectometer and laboratory spectrophotometer assessment, suggesting the Reflectometer provides an accurate accounting of phytochemical content within evaluated crops. Repeatability evaluation demonstrated good reproducibility of the Reflectometer to assess crop phytochemical content. Additionally, we confirmed large variation in phytochemical content within specific crop varieties, suggesting that cultivar is but one of multiple drivers of phytochemical accumulation. Our findings indicate dramatic nutrient variations could exist across the food supply, a point whose implications are not well understood. Future studies should investigate the interactions between crop phytochemical accumulation and farm management practices that influence specific soil characteristics.
Collapse
|
6
|
Lv Y, Fu A, Song X, Wang Y, Chen G, Jiang Y. 1-Methylcyclopropene and UV-C Treatment Effect on Storage Quality and Antioxidant Activity of ‘Xiaobai’ Apricot Fruit. Foods 2023; 12:foods12061296. [PMID: 36981222 PMCID: PMC10048762 DOI: 10.3390/foods12061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The ‘Xiaobai’ apricot fruit is rich in nutrients and is harvested in summer, but the high temperature limits its storage period. To promote commercial quality and extend shelf life, we investigated the effectiveness of Ultraviolet C (UV-C) combined with 1-methylcyclopropene (1-MCP) treatment on ‘Xiaobai’ apricot fruit stored at 4 ± 0.5 °C for 35 days. The results revealed that the combination treatment of 1-MCP and UV-C performed better than either UV-C or 1-MCP alone in fruit quality preservation. The combination treatment could delay the increase in weight loss, ethylene production, and respiration rate; retain the level of soluble solid content, firmness, titratable acid, and ascorbic acid content; promote the total phenolics and flavonoids accumulation; improve antioxidant enzyme activity and relative gene expression, and DPPH scavenging ability; and reduce MDA, H2O2, O2.− production. The combined treatment improved the quality of apricot fruit by delaying ripening and increasing antioxidant capacity. Therefore, combining UV-C and 1-MCP treatment may be an effective way to improve the post-harvest quality and extend the storage period of the ‘Xiaobai’ apricot fruit, which may provide insights into the preservation of ‘Xiaobai’ apricot fruit.
Collapse
Affiliation(s)
- Yunhao Lv
- College of Food Science, Shihezi University, Shihezi 832003, China
| | - Anzhen Fu
- College of Food Science, Shihezi University, Shihezi 832003, China
| | - Xinxin Song
- College of Food Science, Shihezi University, Shihezi 832003, China
| | - Yufei Wang
- College of Food Science, Shihezi University, Shihezi 832003, China
| | - Guogang Chen
- College of Food Science, Shihezi University, Shihezi 832003, China
- Correspondence: (G.C.); (Y.J.)
| | - Ying Jiang
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi 832000, China
- Correspondence: (G.C.); (Y.J.)
| |
Collapse
|
7
|
Fernandes A, Mateus N, de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023; 12:1052. [PMID: 36900569 PMCID: PMC10000549 DOI: 10.3390/foods12051052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.
Collapse
Affiliation(s)
- Ana Fernandes
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
8
|
Aly A, Eliwa N, Taha A, Borik Z. Physiological and biochemical markers of gamma irradiated white radish ( Raphanus sativus). Int J Radiat Biol 2023; 99:1413-1423. [PMID: 36731458 DOI: 10.1080/09553002.2023.2176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE A field experiment was performed to investigate the impact of low-dose gamma rays on growth parameters and bioactive compounds of white radish. MATERIALS AND METHODS White radish seeds were irradiated by gamma rays dose levels (10, 20, 40 and 80 Gy) beside control. Physiological and biochemical markers were done to follow the effect of gamma rays on white radish. RESULTS The results revealed that gamma rays increased growth parameters with increasing irradiation to a dose of 40 Gy. The maximum increments were found at 14.64 (cm), 48.30 (cm), 20.84 (cm) and 5.51 (cm) for leaves number, leaves length, roots length and roots diameter, respectively, with a dose of 40 Gy. By increasing the irradiation dose to 80 Gy, the results showed reduction in all parameters studied. Ascorbic acid gave the maximum increase with the dose of 40 Gy, while phenols, flavonoids, antioxidant activity, peroxidase, and polyphenol oxidase showed the highest increase with the dose 80 of Gy in radish leaves. Similar trend was observed for the radish roots. Furthermore, the protein and isoenzyme profiles of peroxidase and polyphenol oxidase changed and induced alteration by different irradiation dose levels. CONCLUSION Gamma rays can be a useful tool for increasing the growth and biochemical content of white radish plants and perhaps other food crops.
Collapse
Affiliation(s)
- Amina Aly
- Natural Product Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noha Eliwa
- Natural Product Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed Taha
- Faculty of Biotechnology, October University for Modern Science and Art (MSA), Giza, Egypt
| | - Zeyad Borik
- Faculty of Biotechnology, October University for Modern Science and Art (MSA), Giza, Egypt
| |
Collapse
|
9
|
Molecular characterization of chilli leaf curl Ahmedabad virus: homology modelling and evaluation of viral proteins interacting with host protein SnRK1 and docking against flavonoids-an in silico approach. Theory Biosci 2023; 142:47-60. [PMID: 36607541 DOI: 10.1007/s12064-022-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Chilli leaf curl Ahmedabad virus (ChiLCAV), a begomovirus belonging to the family Geminiviridae, has been reported for its occurrence in India, infecting chilli and tomato plants. The viral proteins associated with ChiLCAV involves in the primary pathogenesis and transmission of the virus by whitefly. Viral protein interactions with host proteins show the dynamics of structural binding and interaction in their infection cycle. At the same time, plants have multiple defence mechanisms against bacterial and viral infections. Secondary metabolites play a significant role in the inborne defence mechanism of plants. Host proteins are also the prime producers of secondary metabolites. In the present study, we evaluated the host protein SnRK1 interaction with all six viral proteins (V1, V2, C1, C2, C3 and C4). Apart from C4, all the other viral proteins showed appreciable binding and interaction with SnRK1. SnRK1 has the regulation mechanism for the accumulation of diterpenoids, secondary metabolites. Flavonoids are secondary metabolites produced by the plant under stress conditions. Further, we studied the binding and interaction of six selected flavonoids produced by Solanaceae family members with all the ChiLCAV proteins. All six selected flavonoids showed considerable binding energy with all viral proteins. Each flavonoid showed high binding energy with different viral proteins. Molecular docking is carried out for both flavonoids and the host protein SnRK1. These in silico interactions and docking studies could be useful for understanding the plants defence mechanism against viral infections at the molecular level.
Collapse
|
10
|
Parveen N, Kandhol N, Sharma S, Singh VP, Chauhan DK, Ludwig-Müller J, Corpas FJ, Tripathi DK. Auxin Crosstalk with Reactive Oxygen and Nitrogen Species in Plant Development and Abiotic Stress. PLANT & CELL PHYSIOLOGY 2023; 63:1814-1825. [PMID: 36208156 DOI: 10.1093/pcp/pcac138] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone auxin acts as an important signaling molecule having regulatory functions during the growth and development of plants. Reactive oxygen species (ROS) are also known to perform signaling functions at low concentrations; however, over-accumulation of ROS due to various environmental stresses damages the biomolecules and cell structures and leads to cell death, and therefore, it can be said that ROS act as a double-edged sword. Nitric oxide (NO), a gaseous signaling molecule, performs a wide range of favorable roles in plants. NO displays its positive role in photomorphogenesis, root growth, leaf expansion, seed germination, stomatal closure, senescence, fruit maturation, mitochondrial activity and metabolism of iron. Studies have revealed the early existence of these crucial molecules during evolution. Moreover, auxin, ROS and NO together show their involvement in various developmental processes and abiotic stress tolerance. Redox signaling is a primary response during exposure of plants to stresses and shows a link with auxin signaling. This review provides updated information related to crosstalk between auxin, ROS and NO starting from their evolution during early Earth periods and their interaction in plant growth and developmental processes as well as in the case of abiotic stresses to plants.
Collapse
Affiliation(s)
- Nishat Parveen
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj-211004, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, CMP, Degree Collage, University of Allahabad, Prayagraj-211002, India
| | - Devendra Kumar Chauhan
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Jutta Ludwig-Müller
- Department of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Professor Albareda, 1, Granada 18008, Spain
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| |
Collapse
|
11
|
Xie L, Song Y, Petersen K, Solhaug KA, Lind OC, Brede DA, Salbu B, Tollefsen KE. Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157457. [PMID: 35868377 DOI: 10.1016/j.scitotenv.2022.157457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m-2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h-1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h-1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Karina Petersen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Økernveien 94, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, N-1432 Ås, Norway.
| |
Collapse
|
12
|
Cox KL, Manchego J, Meyers BC, Czymmek KJ, Harkess A. Automated imaging of duckweed growth and development. PLANT DIRECT 2022; 6:e439. [PMID: 36186894 PMCID: PMC9510441 DOI: 10.1002/pld3.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/20/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Duckweeds are the smallest angiosperms, possessing a simple body architecture and highest rates of biomass accumulation. They can grow near-exponentially via clonal propagation. Understanding their reproductive biology, growth, and development is essential to unlock their potential for phytoremediation, carbon capture, and nutrition. However, there is a lack of non-laborious and convenient methods for spatially and temporally imaging an array of duckweed plants and growth conditions in the same experiment. We developed an automated microscopy approach to record time-lapse images of duckweed plants growing in 12-well cell culture plates. As a proof-of-concept experiment, we grew duckweed on semi-solid media with and without sucrose and monitored its effect on their growth over 3 days. Using the PlantCV toolkit, we quantified the thallus area of individual plantlets over time, and showed that L. minor grown on sucrose had an average growth rate four times higher than without sucrose. This method will serve as a blueprint to perform automated high-throughput growth assays for studying the development patterns of duckweeds from different species, genotypes, and conditions.
Collapse
Affiliation(s)
- Kevin L. Cox
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | | | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Department of BiologyUniversity of MissouriColumbiaMissouriUSA
| | | | - Alex Harkess
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
13
|
Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum lycopersicum L.) Plants Associated with a Gene Expression Analysis in Response to Short Daily UV Treatments. PLANTS 2022; 11:plants11141829. [PMID: 35890464 PMCID: PMC9319050 DOI: 10.3390/plants11141829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
Tomato (Solanum lycopersicum L.) is globally recognised as a high-value crop both for commercial profit and nutritional benefits. In contrast to the extensive data regarding the changes in the metabolism of tomato fruit exposed to UV radiation, less is known about the foliar and root metabolome. Using an untargeted metabolomic approach through UHPLC-ESI-QTOF-MS analysis, we detected thousands of metabolites in the leaves (3000) and roots (2800) of Micro-Tom tomato plants exposed to 11 days of short daily UV radiation, applied only on the aboveground organs. Multivariate statistical analysis, such as OPLS-DA and volcano, were performed to allow a better understanding of the modifications caused by the treatment. Based on the unexpected modulation to the secondary metabolism, especially the phenylpropanoid pathway, of which compounds were down and up accumulated respectively in leaves and roots of treated plants, a phenolic profiling was carried out for both organs. The phenolic profile was associated with a gene expression analysis to check the transcription trend of genes involved in the UVR8 signalling pathway and the early steps of the phenolic biosynthesis. The retention of the modifications at metabolic and phenolic levels was also investigated 3 days after the UV treatment, showing a prolonged effect on the modulation once the UV treatment had ceased.
Collapse
|
14
|
Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents. Sci Rep 2022; 12:11082. [PMID: 35773375 PMCID: PMC9246975 DOI: 10.1038/s41598-022-14949-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Nuclear technology is currently used as a tool in mutation breeding to improve crops by increasing genetic variation. The ionization of gamma rays produces large amounts of free radicals, simulating stressors in the natural environment. To avoid gamma-ray-induced oxidative stress, plants use antioxidant defense systems. Exposure of plants to irradiation can affect the germination, growth, and production of metabolites. Plants' sensitivity to irradiation depends on genetic and environmental factors such as moisture content. For this purpose, the effects of different gamma irradiation doses [0, 100, 200, 300, and 400 Gray (Gy)] and different seed moisture contents (7, 13, and 19%) on traits such as seed germination, seedling growth, molecular and biochemical alterations in antioxidant enzymes were examined in the current study. Based on the results, the highest seed germination percentage was observed in the interaction effect of seed moisture at 13% with an irradiation dose of 400 Gy (98.89%). Seedling survival percent and seedling length decreased with increasing doses of gamma irradiation at different seed moisture contents. Increasing gamma irradiation doses were reduced root and stem fresh and dry weight, and root and stem length. The highest level of catalase enzyme activity and expression was observed at 200 and 300 Gy irradiation doses at different moisture contents. The peroxidase and polyphenol oxidase gene expression were reduced at all contents of gamma irradiation doses and seed moisture compared to the control. It can be concluded that the dose of 200-300 Gy of gamma irradiation reduced plant growth by 30% in terms of fresh and dry weight and length of plants, as well as enhanced the expression of antioxidant enzymes. The results of this study could help plant breeders select an appropriate dose rate in wheat for further research.
Collapse
|
15
|
Leroy M, Pey B, Jassey VEJ, Liné C, Elger A, Probst A, Flahaut E, Silvestre J, Larue C. Interactive effects of metals and carbon nanotubes in a microcosm agrosystem. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128613. [PMID: 35359102 DOI: 10.1016/j.jhazmat.2022.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).
Collapse
Affiliation(s)
- Mathieu Leroy
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Benjamin Pey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Vincent E J Jassey
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Clarisse Liné
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Arnaud Elger
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Anne Probst
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jérôme Silvestre
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Camille Larue
- Laboratoire Écologie Fonctionnelle Et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
16
|
In-Vivo In-Vitro Screening of Ocimum basilicum L. Ecotypes with Differential UV-B Radiation Sensitivity. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated UV-B radiation (UV-B) has been previously reported to affect plant development, physiology, and promote the biosynthesis of UV-absorbing compounds. Sweet basil (Ocimum basilicum L.) is an aromatic herb, widely cultivated worldwide for its use in the food, pharmaceuticals, and cosmetics industry. This species exhibits high diversity among different ecotypes based on their geographical locations. There has been little research on intra-specific photosynthetic and metabolic differences in UV-B tolerance across ecotypes from different geographical areas. This study evaluated the protection responses to high UV-B radiation of nine O. basilicum accessions with different geographic origins. Specifically, the changes in chlorophyll a fluorescence parameters and the leaf rosmarinic acid (RA) compound were assessed using an “in vivo-vitro system” in a closed-type plant production system. Our results revealed a significant variation in UV-B protection mechanisms among accessions when plants were treated with high UV-B doses. The accumulation of RA increased significantly by UV-B light treatment in OCI142, OCI148, OCI30, OCI160, and OCI102, with the highest concentration measured in OCI160 plants. This ecotype showed the highest value of the Fv/Fm ratio, 0.70, after 48 h. Recovery of leaf functionality was more rapid in OCI160 than in other sweet basil accessions, which may indicate better photosynthetic capacity associated with enhanced biosynthesis of UV absorbing compounds. This study shows that the biosynthesis of the UV-absorbing compound (RA) represents an effective mechanism to reduce the photoinhibitory and photooxidative damage caused by high UV stress.
Collapse
|
17
|
Hormonal Regulation in Different Varieties of Chenopodium quinoa Willd. Exposed to Short Acute UV-B Irradiation. PLANTS 2021; 10:plants10050858. [PMID: 33922810 PMCID: PMC8145599 DOI: 10.3390/plants10050858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m−2 d−1 may induce UV-B-specific signaling while 18.24 kJ m−2 d−1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa’s geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.
Collapse
|
18
|
Trifković T, Hasanagić D, Kukavica B. Affinity of class I and class III peroxidases for H2O2 in pepper leaves of different maturity. KRAGUJEVAC JOURNAL OF SCIENCE 2021. [DOI: 10.5937/kgjsci2143073t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Paper deals with activities of Class III peroxidases (POX, EC 1.11.1.7) and Class I peroxidases (ascorbate peroxidase, APX, EC 1.11.1.11) as well as the Km of these enzymes for hydrogen peroxide (H2O2) in the pepper leaves of different maturity. The obtained results suggest that the youngest pepper leaves compared to more mature ones have different strategies for H2O2 removal. There was an increase in APX activity with leaf maturity, while POX activity had the opposite trend, and its lowest activity was observed in the oldest leaves. The accumulation of reducing substrates i.e., ascorbate and total phenols was in positive correlation with corresponding enzymes following leaf maturity. The comparison of POX and APX affinity for H2O2 in pepper leaves of different maturity and their relationship between these enzymes' activities were showed.
Collapse
|
19
|
Rácz A, Czégény G, Csepregi K, Hideg É. Ultraviolet-B acclimation is supported by functionally heterogeneous phenolic peroxidases. Sci Rep 2020; 10:16303. [PMID: 33004945 PMCID: PMC7530754 DOI: 10.1038/s41598-020-73548-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Tobacco plants were grown in plant chambers for four weeks, then exposed to one of the following treatments for 4 days: (1) daily supplementary UV-B radiation corresponding to 6.9 kJ m-2 d-1 biologically effective dose (UV-B), (2) daily irrigation with 0.1 mM hydrogen peroxide, or (3) a parallel application of the two treatments (UV-B + H2O2). Neither the H2O2 nor the UV-B treatments were found to be damaging to leaf photosynthesis. Both single factor treatments increased leaf H2O2 contents but had distinct effects on various H2O2 neutralising mechanisms. Non-enzymatic H2O2 antioxidant capacities were increased by direct H2O2 treatment only, but not by UV-B. In contrast, enzymatic H2O2 neutralisation was mostly increased by UV-B, the responses showing an interesting diversity. When class-III peroxidase (POD) activity was assayed using an artificial substrate (ABTS, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)), both treatments appeared to have a positive effect. However, only UV-B-treated leaves showed higher POD activities when phenolic compounds naturally occurring in tobacco leaves (chlorogenic acid or quercetin) were used as substrates. These results demonstrate a substrate-dependent, functional heterogeneity in POD and further suggest that the selective activation of specific isoforms in UV-B acclimated leaves is not triggered by excess H2O2 in these leaves.
Collapse
Affiliation(s)
- Arnold Rácz
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Gyula Czégény
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Kristóf Csepregi
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Éva Hideg
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| |
Collapse
|
20
|
Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020; 146:104720. [PMID: 32910994 DOI: 10.1016/j.fitote.2020.104720] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Infectious diseases are the leading cause of death in 21st century due to antimicrobial resistance and scarcity of new molecules to undertake rising infections. There could be a multiple reasons behind antimicrobial resistance whether it is increased drug metabolism or bacterial endotoxins. The demand of effective medication is increasing day by day to treat microbial infections and combat antimicrobial resistance. In recent years most of the synthetic antimicrobials developed resistance so natural products could provide better options to fulfill this demand. There has been increasing interest in the research on flavonoids because various flavonoids were found to be effective against pathogenic microorganisms. OBJECTIVE The objective of this article will be to explore antimicrobial activity of flavonoids with special focus on their possible mechanism of action. METHODS The article reviewed recent literature related to flavonoids with antimicrobial activity, which were isolated from various sources and the compounds showing fairly good activity against tested microbial species were discussed. RESULTS By throughout literature review it has been found that flavonoids show antimicrobial effect by inhibiting virulence factors, efflux pump, biofilm formation, membrane disruption, cell envelop synthesis, nucleic acid synthesis, and bacterial motility inhibition. CONCLUSION Most of the antimicrobial drugs available now a days are ineffective due to development of resistance to them. Flavonoids have the potential to overcome this emerging crisis as this class of natural products showed the antimicrobial activity by different mechanisms than those of conventional drugs, so flavonoid could be an effective treatment of pathogenic infections.
Collapse
Affiliation(s)
- Avadh Biharee
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Aditi Sharma
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India..
| |
Collapse
|
21
|
Rasera GB, Hilkner MH, de Castro RJS. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination? Food Res Int 2020; 133:109115. [PMID: 32466905 DOI: 10.1016/j.foodres.2020.109115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
This work aimed to investigate how the variation of free and insoluble-bound phenolics affected the antioxidant properties of mustard grains from two varieties (black - Brassica nigra and white - Sinapsis alba) during different germination parameters. The germination conditions selected for each mustard variety to improve their antioxidant properties were different, as follows: (a) for white mustard - 72 h of germination at 25 °C in the dark and (b) for black mustard - 48 h of germination at 25 °C alternating dark and light periods. At these conditions, increases of 49, 72, 80, 68, 42, 66 and 45% were detected for total phenolic compounds (TPC), total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, for soluble extracts of white mustard compared to the non-germinated white mustard. The soluble extracts from black mustard, in turn, presented increases of 44, 18, 55, 29, 3, 160 and 42% for TPC, total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, compared to the non-germinated sample. Gallic acid, 3,4-di-hydroxybenzoic acid, sinapic acid, ferulic acid, coumaric acid, and rutin were identified by UPLC-MS/MS and were the main compounds detected in mustard extracts. Given the results obtained, germinated mustard grains have the potential for application as a functional and nutraceutical food.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Marina Hermenegildo Hilkner
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
22
|
Overexpression of a Novel Cytochrome P450 Promotes Flavonoid Biosynthesis and Osmotic Stress Tolerance in Transgenic Arabidopsis. Genes (Basel) 2019; 10:genes10100756. [PMID: 31561549 PMCID: PMC6826380 DOI: 10.3390/genes10100756] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Flavonoids are mainly associated with growth, development, and responses to diverse abiotic stresses in plants. A growing amount of data have demonstrated the biosynthesis of flavonoids through multienzyme complexes of which the membrane-bounded cytochrome P450 supergene family shares a crucial part. However, the explicit regulation mechanism of Cytochrome P450s related to flavonoid biosynthesis largely remains elusive. In the present study, we reported the identification of a stress-tolerant flavonoid biosynthetic CtCYP82G24 gene from Carthamus tinctorius. The transient transformation of CtCYP82G24 determined the subcellular localization to the cytosol. Heterologously expressed CtCYP82G24 was effective to catalyze the substrate-specific conversion, promoting the de novo biosynthesis of flavonoids in vitro. Furthermore, a qRT-PCR assay and the accumulation of metabolites demonstrated that the expression of CtCYP82G24 was effectively induced by Polyethylene glycol stress in transgenic Arabidopsis. In addition, the overexpression of CtCYP82G24 could also trigger expression levels of several other flavonoid biosynthetic genes in transgenic plants. Taken together, our findings suggest that CtCYP82G24 overexpression plays a decisive regulatory role in PEG-induced osmotic stress tolerance and alleviates flavonoid accumulation in transgenic Arabidopsis.
Collapse
|
23
|
Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9040194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The plastic mulch has raised a disposal issue, which has been diverting the research focus on biodegradable film as an alternative. Research was carried out in southern Italy in 2016–2017 and 2017–2018 in order to assess the effects of three crop cycles (autumn-winter, winter, spring) in factorial combination with three soil mulching types (a MaterBi biodegradable black film; a brown photoselective low density polyethylene (LDPE) film; a black-standard LDPE film) and a non-mulched control, on leaves yield, quality and antioxidants of greenhouse grown Diplotaxis tenuifolia (L.) D.C. The spring cycle was the shortest and best enhanced plant growth and yield. The non-mulched control caused an 11% yield reduction compared to the mulching treatments average (12.4 t ha−1). The soil temperature was highest under photoselective and standard LDPE films. The Soil Plant Analysis Development (SPAD) index was 17.4% higher in the leaves grown in mulched soil. Winter season and biodegradable mulch led to higher leaf dry residue and organic acids. Leaf nitrate content was highest in winter and under mulching. The spring cycle, the biodegradable and photoselective LDPE film resulted in the highest antioxidant compound content and activity. The biodegradable polymer improved leaf quality, showing suitable features for sustainable production.
Collapse
|
24
|
Sarwar MW, Riaz A, Nahid N, Al Qahtani A, Ahmed N, Nawaz-Ul-Rehman MS, Younus A, Mubin M. Homology modeling and docking analysis of ßC1 protein encoded by Cotton leaf curl Multan betasatellite with different plant flavonoids. Heliyon 2019; 5:e01303. [PMID: 30899831 PMCID: PMC6407081 DOI: 10.1016/j.heliyon.2019.e01303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/26/2018] [Accepted: 02/22/2019] [Indexed: 01/11/2023] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) belonging to begomoviruses (Family Geminiviridae) can infect cotton and many other agricultural crops. Betasatellite associated with CLCuMuV i.e., cotton leaf curl Multan betasatellite (CLCuMuB) is a small circular single-stranded deoxyribose nucleic acid (ssDNA) molecule that is essential for CLCuMuV to induce disease symptoms. Betasatellite molecule contains a ßC1 gene encoding for a pathogenicity determinant multifunctional protein, which extensively interacts with host plant machinery to cause virus infection. In this study the interaction of ßC1 with selected plant flavonoids has been studied. The study was focused on sequence analysis, three-dimensional structural modeling and docking analysis of ßC1 protein of CLCuMuB. Sequence analysis and physicochemical properties showed that ßC1 is negatively charged protein having more hydrophilic regions and is not very stable. Three-dimensional model of this protein revealed three helical, four beta pleated sheets and four coiled regions. The score of docking experiments using flavonoids as ligand indicated that plant flavonoids robinetinidol-(4alpha,8)-gallocatechin, quercetin 7-O-beta-D-glucoside, swertianolin, 3',4',5-trihydroxy-3-methoxyflavon-7-olate, agathisflavone, catiguanin B, 3',4',5,6-tetrahydroxy-3,7-dimethoxyflavone, quercetin-7-O-[alpha-L-rhamnopyranosyl(1->6)-beta-D-galactopyranoside], prunin 6″-O-gallate and luteolin 7-O-beta-D-glucosiduronic acid have strong binding with active site of ßC1 protein. The results obtained from this study clearly indicate that flavonoids are involved in defense against the virus infection, as these molecules binds to the active site of ßC1 protein. This information might be interesting to study plant defense mechanism based on the special compounds produced by the plants.
Collapse
Affiliation(s)
- Muhammad Waseem Sarwar
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Adeel Riaz
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Nazia Nahid
- Bioinformatics and Biotechnology Department, GC University Faisalabad, Pakistan
| | - Ahmed Al Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Nisar Ahmed
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - M. Shah Nawaz-Ul-Rehman
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-sciences Lab, Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Mubin
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
25
|
Sun C, Dudley S, McGinnis M, Gan J. Hydrogen peroxide mediates triclosan-induced inhibition of root growth in wheat seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:472-479. [PMID: 30216879 DOI: 10.1016/j.envpol.2018.08.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/03/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Triclosan, an extensively used antimicrobial agent, enters agroecosystems when sewage sludge and reclaimed water are applied to agricultural fields, and may trigger a series of plant physiological and biochemical responses. However, few studies have investigated the mechanism by which plant development is affected by triclosan. Here, microscopic, pharmacological and biochemical analyses, and histochemical dye staining were used to explore the effects of triclosan on root growth in wheat plants. Exposure to triclosan inhibited root elongation, and significantly triggered hydrogen peroxide (H2O2) production and lipid peroxidation in wheat roots. The inhibition of root growth by triclosan was reversed by dimethylthiourea, a H2O2 scavenger, indicating that alterations of endogenous H2O2 concentrations in root cells were likely linked to triclosan-induced root growth inhibition. The addition of butylated hydroxyanisole, a lipophilic antioxidant, during triclosan treatment completely prevented the increase of lipid peroxidation, but did not alleviate triclosan-induced reduction of root growth. In triclosan-treated wheat roots, the level of indole-3-acetic acid decreased by 68.3%, while the contents of two indole-3-acetic acid oxidative metabolites, indole-3-aldehyde and indole-3-carboxylic acid, increased by 71.3% and 314.4%, respectively. Moreover, the oxidation of auxin induced by triclosan in wheat roots was prevented by dimethylthiourea. These results together suggested that the triclosan-enhanced production of H2O2 induced auxin oxidation, thus leading to the suppression of root growth. Findings of this study improve our mechanistic understanding on how antimicrobial agents such as triclosan affect plant root growth.
Collapse
Affiliation(s)
- Chengliang Sun
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| | - Stacia Dudley
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Michelle McGinnis
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
26
|
Odongo GA, Schlotz N, Baldermann S, Neugart S, Huyskens-Keil S, Ngwene B, Trierweiler B, Schreiner M, Lamy E. African Nightshade ( Solanum scabrum Mill.): Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model. Nutrients 2018; 10:nu10101532. [PMID: 30336641 PMCID: PMC6213403 DOI: 10.3390/nu10101532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB1 induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.
Collapse
Affiliation(s)
- Grace Akinyi Odongo
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106 Freiburg, Germany.
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany.
| | - Nina Schlotz
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106 Freiburg, Germany.
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Susanne Huyskens-Keil
- Division Urban Plant Ecophysiology, Faculty of Life Science, Humboldt University Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | - Benard Ngwene
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Bernhard Trierweiler
- Max Rubner-Institut, Federal Research Centre for Nutrition and Food, Institute of Safety and Quality of Fruits and Vegetables, Haid-und-Neu Strasse 9, D-76131 Karlsruhe, Germany.
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute for Infection Prevention and Hospital Epidemiology, University Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Strasse 115b, 79106 Freiburg, Germany.
| |
Collapse
|
27
|
Šuškalo N, Hasanagić D, Topalić-Trivunović L, Kukrić Z, Samelak I, Savić A, Kukavica B. Antioxidative and antifungal response of woody species to environmental conditions in the urban area. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1095-1106. [PMID: 29992397 DOI: 10.1007/s10646-018-1963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The complexity of ecological conditions in urban areas imposes the plant species need for the development of various biochemical and physiological adaptive strategies. The aim of our research was to examine the antioxidative and antifungal metabolism of species Pinus nigra, Picea omorika, Tilia cordata and Betula pendula from the area of Banja Luka City (urban area) during two vegetation seasons (spring and autumn) and compared with the same species from forest habitats. Changes in the protein concentration, activity and isoenzyme profiles of peroxidases (POD, EC 1.11.1.7), content and antioxidative activity of total phenols and antifungal activity in leaves and needles of the plants from the urban area and forest habitats were monitored. The obtained results indicate that urban areas induce changes in antioxidative metabolism in all examined species, but that the response is species specific. The most sensitive parameter that indicates different adaptation strategy of Pinus nigra, Picea omorika, Tilia cordata and Betula pendula to environment conditions in the urban area were peroxidase isoenzyme patterns. Less specific parameter was phenol content even though there are some indications for role of their antioxidative capacity in the adjustment to specific habitat. In addition, each species had different metabolic strategy to cope with the changes caused by the urban environment.
Collapse
Affiliation(s)
- Nevena Šuškalo
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja Luka, Bosnia and Herzegovina
| | - Dino Hasanagić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja Luka, Bosnia and Herzegovina.
| | | | - Zoran Kukrić
- University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
| | - Ivan Samelak
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja Luka, Bosnia and Herzegovina
| | - Aleksandar Savić
- University of Banja Luka, Faculty of Technology, Banja Luka, Bosnia and Herzegovina
| | - Biljana Kukavica
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
28
|
Liu H, Ren X, Zhu J, Wu X, Liang C. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress. PLANTA 2018; 248:647-659. [PMID: 29855701 DOI: 10.1007/s00425-018-2922-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
Collapse
Affiliation(s)
- Hongyue Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqian Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiuzheng Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Brunetti C, Fini A, Sebastiani F, Gori A, Tattini M. Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant-Environment Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1042. [PMID: 30079075 PMCID: PMC6062965 DOI: 10.3389/fpls.2018.01042] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 05/18/2023]
Abstract
The old observation that plants preferentially synthesize flavonoids with respect to the wide range of phenylpropanoid structures when exposed to high doses of UV-B radiation has supported the view that flavonoids are primarily involved in absorbing the shortest solar wavelengths in photoprotection. However, there is compelling evidence that the biosynthesis of flavonoids is similarly upregulated in response to high photosynthetically active radiation in the presence or in the absence of UV-radiation, as well as in response to excess metal ions and photosynthetic redox unbalance. This supports the hypothesis that flavonoids may play prominent roles as scavengers of reactive oxygen species (ROS) generated by light excess. These 'antioxidant' functions of flavonoids appears robust, as maintained between different life kingdoms, e.g., plants and animals. The ability of flavonoids to buffer stress-induced large alterations in ROS homeostasis and, hence, to modulate the ROS-signaling cascade, is at the base of well-known functions of flavonoids as developmental regulators in both plants and animals. There is both long and very recent evidence indeed that, in plants, flavonoids may strongly affect phytohormone signaling, e.g., auxin and abscisic acid signaling. This function is served by flavonoids in a very low (nM) concentration range and involves the ability of flavonoids to inhibit the activity of a wide range of protein kinases, including but not limited to mitogen-activated protein kinases, that operate downstream of ROS in the regulation of cell growth and differentiation. For example, flavonoids inhibit the transport of auxin acting on serine-threonine PINOID (PID) kinases that regulate the localization of auxin efflux facilitators PIN-formed (PIN) proteins. Flavonoids may also determine auxin gradients at cellular and tissue levels, and the consequential developmental processes, by reducing auxin catabolism. Recent observations lead to the hypothesis that regulation/modulation of auxin transport/signaling is likely an ancestral function of flavonoids. The antagonistic functions of flavonoids on ABA-induced stomatal closure also offer novel hypotheses on the functional role of flavonoids in plant-environment interactions, in early as well as in modern terrestrial plants. Here, we surmise that the regulation of phytohormone signaling might have represented a primary function served by flavonols for the conquest of land by plants and it is still of major significance for the successful acclimation of modern terrestrial plants to a severe excess of radiant energy.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Florence, Italy
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Federico Sebastiani
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Florence, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Florence, Italy
| |
Collapse
|
30
|
Cardenia V, Sgarzi F, Mandrioli M, Tribuzio G, Rodriguez-Estrada MT, Toschi TG. Durum Wheat Bran By-Products: Oil and Phenolic Acids to be Valorized by Industrial Symbiosis. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vladimiro Cardenia
- University of Bologna; Interdepartmental Centre for Industrial Agrofood Research; 47521 Cesena Italy
| | - Federica Sgarzi
- University of Bologna; Interdepartmental Centre for Industrial Agrofood Research; 47521 Cesena Italy
| | - Mara Mandrioli
- Department of Agricultural and Food Sciences; University of Bologna; 40127 Bologna Italy
| | | | - Maria T. Rodriguez-Estrada
- University of Bologna; Interdepartmental Centre for Industrial Agrofood Research; 47521 Cesena Italy
- Department of Agricultural and Food Sciences; University of Bologna; 40127 Bologna Italy
| | - Tullia Gallina Toschi
- University of Bologna; Interdepartmental Centre for Industrial Agrofood Research; 47521 Cesena Italy
- Department of Agricultural and Food Sciences; University of Bologna; 40127 Bologna Italy
| |
Collapse
|
31
|
Ruuhola T, Nybakken L, Randriamanana T, Lavola A, Julkunen-Tiitto R. Effects of long-term UV-exposure and plant sex on the leaf phenoloxidase activities and phenolic concentrations of Salix myrsinifolia (Salisb.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:55-62. [PMID: 29501893 DOI: 10.1016/j.plaphy.2018.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 05/24/2023]
Abstract
The accumulation of flavonoids on the leaf surface is a well-characterized protective mechanism against UV-B radiation. Other protective mechanisms, such as the induction of antioxidative enzymes and peroxidase-mediated lignification may also be important. The effects of UV-B radiation have mainly been considered in short-term studies, whereas ecologically more relevant long-term field studies are still rare. Here we examined the effects of long-term exposure to enhanced UV-B radiation on the activities of two antioxidative enzymes, polyphenol oxidase (PPO; EC 1.10.2.2 and EC 1.14.18.1) and guaiacol peroxidase (POD; EC 1.11.1.7), as well as the phenolic concentrations in two sexes of the dioecious species, Salix myrsinifolia. After three consecutive growth seasons with enhanced UV-B radiation, we found that PPO activity was decreased by UV radiation in male plants, which might explain their lower UV-B tolerance when compared to female plants. In addition, male plants had higher specific activity than did female plants under ambient conditions, supporting the idea that males of S. myrsinifolia are generally more growth-oriented than females. By contrast, neither UV treatment nor sex had significant effects on the POD activities of willows. Gender differences in the concentrations of phenolic compounds are in line with the general concept that males are less well defended than females. We suggest that the inability to increase PPO and POD activity, along with lower accumulation of UV-B absorbing compounds under UV-B exposure, might be one of the reasons why males had thinner leaves and were less tolerant of UV-B than were females.
Collapse
Affiliation(s)
- Teija Ruuhola
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland
| | - Line Nybakken
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland; Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Tendry Randriamanana
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland.
| | - Anu Lavola
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Natural Products Laboratory, University of Eastern Finland (UEF), P.O. Box, 111, FI-80101, Joensuu, Finland
| |
Collapse
|
32
|
Rácz A, Hideg É, Czégény G. Selective responses of class III plant peroxidase isoforms to environmentally relevant UV-B doses. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:101-106. [PMID: 29272746 DOI: 10.1016/j.jplph.2017.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/14/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Efficient hydrogen peroxide detoxification is an essential aspect of plant defence against a large variety of stressors. Among others, class III peroxidase (POD, EC 1.11.1.7) enzymes provide this function. Previous studies have shown that PODs are present in several isoforms and have in general low substrate specificities. The aim of our work was to study how various assays based on using various substrates reflect differences in peroxidase activities of tobacco leaves due to either developmental or environmental factors. The former factor was studied comparing fully developed leaves of the 3rd and 5th nodes; and the latter was achieved using plants acclimated to low doses of supplementary UV-B (280-315 nm) in growth chambers. To investigate the above, POD activities were measured using three different, commonly used chromophore substrates: ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)), guaiacol (2-methoxyphenol), OPD (o-phenylenediamine) and a fourth substrate, the secondary metabolite quercetin. All substrates registered a UV-B induced increase in leaf peroxidases as compared to untreated controls, although to different extents. However, age-related differences between upper and lower leaves were only detectable when either ABTS or quercetin were used as substrates. Additionally, native PAGE separation of POD isoforms followed by visualisation using one of the substrates showed that leaf acclimation to supplementary UV-B is realized via a selective activation of POD isoforms.
Collapse
Affiliation(s)
- Arnold Rácz
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Hungary
| | - Gyula Czégény
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Hungary.
| |
Collapse
|
33
|
Takshak S, Agrawal SB. Exogenous application of IAA alleviates effects of supplemental ultraviolet-B radiation in the medicinal plant Withania somnifera Dunal. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:904-916. [PMID: 28707323 DOI: 10.1111/plb.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Supplemental (s)-UV-B radiation has adverse effects on the majority of plants. The present study was conducted to evaluate the effects of exogenous application of the growth hormone indole acetic acid (IAA) on various morphological, physiological and biochemical characteristics of Withania somnifera, an indigenous medicinal plant, subjected to s-UV-B. The s-UV-B-treated plants received ambient + 3.6 kJm-2 ·day-1 biologically effective UV-B, and IAA was applied at two doses (200 and 400 ppm) to s-UV-B-exposed plants. The plant was forced to compromise its growth, development and photosynthetic patterns to survive under s-UV-B by increasing concentrations of secondary metabolites and antioxidants (thiol, proline, ascorbic acid, α-tocopherol, ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, superoxide dismutase) to counteract oxidative stress. Increases in secondary metabolites were evidenced as increased activity of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, 4-coumarate CoA ligase, chalcone isomerase and dihydroflavonol reductase. Application of different IAA doses reversed the detrimental effects of s-UV-B on W. somnifera by improving growth and photosynthesis and reducing concentrations of secondary metabolites and non-enzymatic antioxidants. Antioxidant enzymes, however, had a synergistic effect on s-UV-B treatment and IAA application. The effects of s-UV-B on W. somnifera are ameliorated to varying degrees upon exogenous IAA application, and synergistic enhancement of antioxidant enzymes under s-UV-B+IAA treatment might be responsible for the partial recuperation of growth and plant protein content, as a UV-B-exposed plant is forced to allocate most of its photosynthate towards production of enzymes related to antioxidant defence.
Collapse
Affiliation(s)
- S Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
34
|
Bielach A, Hrtyan M, Tognetti VB. Plants under Stress: Involvement of Auxin and Cytokinin. Int J Mol Sci 2017; 18:E1427. [PMID: 28677656 PMCID: PMC5535918 DOI: 10.3390/ijms18071427] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Monika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Czech 62500, Brno, Czech Republic.
| |
Collapse
|
35
|
Shahidi F, Yeo JD. Insoluble-Bound Phenolics in Food. Molecules 2016; 21:molecules21091216. [PMID: 27626402 PMCID: PMC6274541 DOI: 10.3390/molecules21091216] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This contribution provides a review of the topic of insoluble-bound phenolics, especially their localization, synthesis, transfer and formation in plant cells, as well as their metabolism in the human digestive system and corresponding bioactivities. In addition, their release from the food matrix during food processing and extraction methods are discussed. The synthesis of phenolics takes place mainly at the endoplasmic reticulum and they are then transferred to each organ through transport proteins such as the ATP-binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporter at the organ’s compartment membrane or via transport vesicles such as cytoplasmic and Golgi vesicles, leading to the formation of soluble and insoluble-bound phenolics at the vacuole and cell wall matrix, respectively. This part has not been adequately discussed in the food science literature, especially regarding the synthesis site and their transfer at the cellular level, thus this contribution provides valuable information to the involved scientists. The bound phenolics cannot be absorbed at the small intestine as the soluble phenolics do (5%–10%), thus passing into the large intestine and undergoing fermentation by a number of microorganisms, partially released from cell wall matrix of foods. Bound phenolics such as phenolic acids and flavonoids display strong bioactivities such as anticancer, anti-inflammation and cardiovascular disease ameliorating effects. They can be extracted by several methods such as acid, alkali and enzymatic hydrolysis to quantify their contents in foods. In addition, they can also be released from the cell wall matrix during food processing procedures such as fermentation, germination, roasting, extrusion cooking and boiling. This review provides critical information for better understanding the insoluble-bound phenolics in food and fills an existing gap in the literature.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Ju-Dong Yeo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
36
|
Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F. Hormone-controlled UV-B responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4469-82. [PMID: 27401912 DOI: 10.1093/jxb/erw261] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | - Filip Vandenbussche
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
37
|
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. PLANT, CELL & ENVIRONMENT 2016; 39:1127-39. [PMID: 26763171 DOI: 10.1111/pce.12712] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
38
|
Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome Response Mediated by Cold Stress in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2016; 7:374. [PMID: 27066029 PMCID: PMC4811897 DOI: 10.3389/fpls.2016.00374] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 05/18/2023]
Abstract
Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.
Collapse
|
39
|
Takshak S, Agrawal SB. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:124-38. [PMID: 26461242 DOI: 10.1016/j.plaphy.2015.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 05/04/2023]
Abstract
Supplementary ultraviolet-B (ambient+3.6 kJ m(-2) day(-1)) induced changes on morphological, physiological, and biochemical characteristics (specifically the defence strategies: UV-B protective compounds and antioxidants) of Coleus forskohlii were investigated under field conditions at 30, 60, and 90 days after transplantation. Levels of secondary metabolites increased under s-UV-B stress; flavonoids and phenolics (primary UV-B screening agents) were recorded to be higher in leaves which are directly exposed to s-UV-B. This was also verified by enhanced activities of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR). Antioxidants, both enzymatic (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) and non-enzymatic (ascorbic acid and α-tocopherol) also increased in the treated organs of the test plant, higher contents being recorded in roots except for ascorbic acid. On the contrary, protein and chlorophyll content (directly implicated in regulating plant growth and development) declined under s-UV-B. These alterations in plant biochemistry led the plant to compromise on its photosynthate allocation towards growth and biomass production as evidenced by a reduction in its height and biomass. The study concludes that s-UV-B is a potent stimulating factor in increasing the concentrations of defense compounds and antioxidants in C. forskohlii to optimize its performance under stress.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
40
|
Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. Anal Chim Acta 2015; 885:199-206. [DOI: 10.1016/j.aca.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 11/17/2022]
|
41
|
Wang Z, Mao JL, Zhao YJ, Li CY, Xiang CB. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:186-97. [PMID: 24798139 DOI: 10.1111/jipb.12213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/04/2014] [Indexed: 05/03/2023]
Abstract
L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | | | | | | | | |
Collapse
|
42
|
Bioactive Phytochemicals: Bioactivity, Sources, Preparations, and/or Modifications viaSilver Tetrafluoroborate Mediation. J CHEM-NY 2015. [DOI: 10.1155/2015/629085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This review provides an overview of the biological activities, natural occurrences, and the silver tetrafluoroborate- (AgBF4-) mediated synthesis of proanthocyanidins, glycosides, N-heterocyclic alkaloid analogues (of pyrrole, morphine, quinoline, isoquinoline, and indole), furan analogues, and halocompounds. AgBF4has been reviewed as an effective reaction promoter, used extensively in the synthesis of relevant biologically active compoundsviacarbon-carbon and carbon-heteroatom bonds formation. The literatures from 1979 to April 2014 were reviewed.
Collapse
|
43
|
Izbiańska K, Arasimowicz-Jelonek M, Deckert J. Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:61-7. [PMID: 25194698 DOI: 10.1016/j.ecoenv.2014.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 05/10/2023]
Abstract
Over the past decade, there has been increasing interest in the role of phenolic compounds, especially flavonoids in plants in response to heavy metal stress. In this study, it was found that treatment of yellow lupine (Lupinus luteus L.) with Pb (150mg/l Pb(NO3)2) increased flavonoid contents in both cotyledons (by ca. 67%) and roots (by ca. 54%). Moreover, seedling roots preincubated with flavonoid extracts, derived from Pb-treated lupine cotyledons, exhibited enhanced tolerance to the heavy metal. Flavonoid preincubated lupine seedlings, growing for 48h in the presence of Pb(NO3)2, showed mitigated symptoms of lead stress, which was manifested by a significant increase in the root length and its biomass. Additionally, in seedlings pretreated with the natural flavonoid preparations an impressive rise of the antioxidant capacity was observed. Simultaneously, root cells exhibited reduced accumulation of both H2O2 and O2(-), which was associated with the decreased TBARS content and the number of dying cells under Pb stress. Taken together, accumulation of flavonoids could be an effective event in the plant׳s spectrum of defense responses to heavy metal stress, and the protective role of flavonoids against heavy metals might be associated with their ability to scavenge reactive oxygen species overproduced under lead stress.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
| | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland.
| |
Collapse
|
44
|
Tattini M, Landi M, Brunetti C, Giordano C, Remorini D, Gould KS, Guidi L. Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation. PHYSIOLOGIA PLANTARUM 2014; 152:585-98. [PMID: 24684471 DOI: 10.1111/ppl.12201] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 05/07/2023]
Abstract
The putative photoprotective role of foliar anthocyanins continues to attract heated debate. Strikingly different experimental set-ups coupled with a poor knowledge of anthocyanin identity have likely contributed to such disparate opinions. Here, the photosynthetic responses to 30 or 100% solar irradiance were compared in two cultivars of basil, the green-leafed Tigullio (TG) and the purple-leafed Red Rubin (RR). Coumaroyl anthocyanins in RR leaf epidermis significantly mitigated the effects of high light stress. In full sunlight, RR leaves displayed several shade-plant traits; they transferred less energy than did TG to photosystem II (PSII), and non-photochemical quenching was lower. The higher xanthophyll cycle activity in TG was insufficient to prevent inactivation of PSII in full sunlight. However, TG was the more efficient in the shade; RR was far less able to accommodate a large change in irradiance. Investment of carbon to phenylpropanoid biosynthesis was more in RR than in TG in the shade, and was either greatly enhanced in TG or varied little in RR because of high sunlight. The metabolic cost of photoprotection was lower whereas light-induced increase in biomass production was higher in RR than in TG, thus making purple basil the more light tolerant. Purple basil appears indeed to display the conservative resource-use strategy usually observed in highly stress tolerant species. We conclude that the presence of epidermal coumaroyl anthocyanins confers protective benefits under high light, but it is associated with a reduced plasticity to accommodate changing light fluxes as compared with green leaves.
Collapse
Affiliation(s)
- Massimiliano Tattini
- The National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Plant Protection, Florence, I-50019, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Yarullina LG, Kasimova RI, Akhatova AR. Comparison of the transcriptional activity of protective protein genes in different wheat cultivars infected with Septoria nodorum Berk. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814060179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014; 19:16240-65. [PMID: 25310150 PMCID: PMC6270724 DOI: 10.3390/molecules191016240] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are small molecular secondary metabolites synthesized by plants with various biological activities. Due to their physical and biochemical properties, they are capable of participating in plants' interactions with other organisms (microorganisms, animals and other plants) and their reactions to environmental stresses. The majority of their functions result from their strong antioxidative properties. Although an increasing number of studies focus on the application of flavonoids in medicine or the food industry, their relevance for the plants themselves also deserves extensive investigations. This review summarizes the current knowledge on the functions of flavonoids in the physiology of plants and their relations with the environment.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamil Kostyn
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
47
|
Yarullina LG, Kasimova RI, Akhatova AR. Activity of protective proteins in wheat plants treated with chitooligosaccharides with different degrees of acetylation and infection with Bipolaris sorokiniana. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814050135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Carrillo LC, Londoño-Londoño J, Gil A. Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.06.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:35-45. [PMID: 23583204 DOI: 10.1016/j.plaphy.2013.03.014] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/18/2013] [Indexed: 05/18/2023]
Abstract
We discuss on the relative significance of different functional roles potentially served by flavonoids in photoprotection, with special emphasis to their ability to scavenge reactive oxygen species (ROS) and control the development of individual organs and whole plant. We propose a model in which chloroplast-located flavonoids scavenge H2O2 and singlet oxygen generated under excess light-stress, thus avoiding programmed cell death. We also draw a picture in which vacuolar flavonoids in conjunction with peroxidases and ascorbic acid constitute a secondary antioxidant system aimed at detoxifying H2O2, which may diffuse out of the chloroplast at considerable rates and enter the vacuole following excess light stress-induced depletion of ascorbate peroxidase. We hypothesize for flavonols key roles as developmental regulators in early and current-day land-plants, based on their ability to modulate auxin movement and auxin catabolism. We show that antioxidant flavonoids display the greatest capacity to regulate key steps of cell growth and differentiation in eukaryotes. These regulatory functions of flavonoids, which are shared by plants and animals, are fully accomplished in the nM concentration range, as likely occurred in early land plants. We therefore conclude that functions of flavonoids as antioxidants and/or developmental regulators flavonoids are of great value in photoprotection. We also suggest that UV-B screening was just one of the multiple functions served by flavonoids when early land-plants faced an abrupt increase in sunlight irradiance.
Collapse
Affiliation(s)
- Giovanni Agati
- Istituto di Fisica Applicata 'Carrara', IFAC, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:965-75. [PMID: 23683587 DOI: 10.1016/j.jplph.2013.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 05/22/2023]
Abstract
Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.
Collapse
Affiliation(s)
- Yan Feng Hu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|