1
|
Yan M, Jiao G, Shao G, Chen Y, Zhu M, Yang L, Xie L, Hu P, Tang S. Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development. BMC PLANT BIOLOGY 2024; 24:196. [PMID: 38494545 PMCID: PMC10946104 DOI: 10.1186/s12870-024-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.
Collapse
Affiliation(s)
- Mei Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
2
|
Yu H, Teng Z, Liu B, Lv J, Chen Y, Qin Z, Peng Y, Meng S, He Y, Duan M, Zhang J, Ye N. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature. PLANT PHYSIOLOGY 2024; 194:1815-1833. [PMID: 38057158 DOI: 10.1093/plphys/kiad650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT). Expression of OsMYB30 and OsTPP1 was induced by LT during seed germination, and overexpressing either OsMYB30 or OsTPP1 delayed seed germination and increased sensitivity to LT during seed germination. Transcriptomics and qPCR revealed that expression of OsTPP1 was upregulated in OsMYB30-overexpressing lines but downregulated in OsMYB30-knockout lines. In vitro and in vivo experiments revealed that OsMYB30 bound to the promoter of OsTPP1 and regulated the abundance of OsTPP1 transcripts. Overaccumulation of trehalose (Tre) was found in both OsMYB30- and OsTPP1-overexpressing lines, resulting in inhibition of α-amylase 1a (OsAMY1a) gene during seed germination. Both LT and exogenous Tre treatments suppressed the expression of OsAMY1a, and the osamy1a mutant was not sensitive to exogenous Tre during seed germination. Overall, we concluded that OsMYB30 expression was induced by LT to activate the expression of OsTPP1 and increase Tre content, which thus inhibited α-amylase activity and seed germination. This study identified a phytohormone-independent pathway that integrates environmental cues with internal factors to control seed germination.
Collapse
Affiliation(s)
- Huihui Yu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jiahan Lv
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yinke Chen
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonge Qin
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
3
|
Zhong C, He Z, Liu Y, Li Z, Wang X, Jiang C, Kang S, Liu X, Zhao S, Wang J, Zhang H, Zhao X, Yu H. Genome-wide identification of TPS and TPP genes in cultivated peanut ( Arachis hypogaea) and functional characterization of AhTPS9 in response to cold stress. FRONTIERS IN PLANT SCIENCE 2024; 14:1343402. [PMID: 38312353 PMCID: PMC10834750 DOI: 10.3389/fpls.2023.1343402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Introduction Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.
Collapse
Affiliation(s)
- Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zehua He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhao Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuli Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Agricultural Vocational and Technical College, Yingkou, China
| |
Collapse
|
4
|
Gao L, Hu Y. Editorial: Environmental and endogenous signals: crop yield and quality regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1271918. [PMID: 37670873 PMCID: PMC10476621 DOI: 10.3389/fpls.2023.1271918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Affiliation(s)
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022; 12:183. [PMID: 35875179 PMCID: PMC9300813 DOI: 10.1007/s13205-022-03242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient assimilate partitioning between the source and sink organs to achieve increased grain weight is coordinated by the sugar signaling mechanism. The expression of the genes involved in sugar signaling mainly hexokinases 2 (OsHXK2), Sucrose-nonfermentation1-related protein kinase1 (OsSnRK1), trehalose-6-phosphate synthase 1 (OsTPS1) and target of rapamycin (OsTOR) under high temperature stress was examined in tolerant (NL-44) and susceptible (Vandana) varieties of rice. The photosynthetic rate, stomatal conductance, water-use efficiency, photochemical efficiency (Fv/Fm), quantum yield (ϕPSII), pollen viability, spikelet fertility and 1000 grain weight were significantly higher in NL-44 compared to Vandana under stress. The difference in the gene expression levels in the vegetative and grain-filling phases as well as between the tolerant and susceptible varieties, revealed unique pathways of sugar signaling under heat stress. In the vegetative phase, the expression of OsTOR seems to be the difference between NL-44 and Vandana for their differed heat stress tolerance whereas, in the grain-filling phase, the difference between the varieties lay in the regulation of OsHXK2. The comparative changes in the expression levels between the genes under the varying conditions indicate the sugar status in the source and sink organs that are available for translocation or remobilization.
Collapse
Affiliation(s)
- K. Stephen
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. G. Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Shanija
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Saravanan
- ICAR-CTCRI, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
6
|
Hu Y, Liu J, Lin Y, Xu X, Xia Y, Bai J, Yu Y, Xiao F, Ding Y, Ding C, Chen L. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to-panicle transport of nonstructural carbohydrates during rice grain filling. PLANT PHYSIOLOGY 2022; 189:1694-1714. [PMID: 35294032 PMCID: PMC9237689 DOI: 10.1093/plphys/kiac124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
The remobilization of nonstructural carbohydrates (NSCs) reserved in rice (Oryza sativa) sheaths is essential for grain filling. This assimilate distribution between plant tissues and organs is determined by sucrose non-fermenting-1-related protein kinase 1 (SnRK1). However, the SnRK1-mediated mechanism regulating the sheath-to-panicle transport of NSCs in rice remains unknown. In this study, leaf cutting treatment was used to accelerate NSC transport in the rice sheaths. Accelerated NSC transport was accompanied by increased levels of OsSnRK1a mRNA expression, SnRK1a protein expression, catalytic subunit phosphorylation of SnRK1, and SnRK1 activity, indicating that SnRK1 activity plays an important role in sheath NSC transport. We also discovered that trehalose-6-phosphate, a signal of sucrose availability, slightly reduced SnRK1 activity in vitro. Since SnRK1 activity is mostly regulated by OsSnRK1a transcription in response to low sucrose content, we constructed an snrk1a mutant to verify the function of SnRK1 in NSC transport. NSCs accumulated in the sheaths of snrk1a mutant plants and resulted in a low seed setting rate and grain weight, verifying that SnRK1 activity is essential for NSC remobilization. Using phosphoproteomics and parallel reaction monitoring, we identified 20 SnRK1-dependent phosphosites that are involved in NSC transport. In addition, the SnRK1-mediated phosphorylation of the phosphosites directly affected starch degradation, sucrose metabolism, phloem transport, sugar transport across the tonoplast, and glycolysis in rice sheaths to promote NSC transport. Therefore, our findings reveal the importance, function, and possible regulatory mechanism of SnRK1 in the sheath-to-panicle transport of NSCs in rice.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongchao Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Lin Chen
- Authors for correspondence: (L.C); (C.D.)
| |
Collapse
|
7
|
Genome-Wide Identification of Cotton (Gossypium spp.) Trehalose-6-Phosphate Phosphatase (TPP) Gene Family Members and the Role of GhTPP22 in the Response to Drought Stress. PLANTS 2022; 11:plants11081079. [PMID: 35448808 PMCID: PMC9024796 DOI: 10.3390/plants11081079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Trehalose-6-phosphate phosphatase (TPP) is a key enzyme involved in trehalose synthesis in higher plants. Previous studies have shown that TPP family genes increase yields without affecting plant growth under drought conditions, but their functions in cotton have not been reported. In this study, 17, 12, 26 and 24 TPP family genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. The 79 TPP family genes were divided into three subgroups by phylogenetic analysis. Virus-induced gene silencing (VIGS) of GhTPP22 produced TRV::GhTPP22 plants that were more sensitive to drought stress than the control plants, and the relative expression of GhTPP22 was decreased, as shown by qRT–PCR. Moreover, we analysed the gene structure, targeted small RNAs, and gene expression patterns of TPP family members and the physicochemical properties of their encoded proteins. Overall, members of the TPP gene family in cotton were systematically identified, and the function of GhTPP22 under drought stress conditions was preliminarily verified. These findings provide new information for improving drought resistance for cotton breeding in the future.
Collapse
|
8
|
Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. MOLECULAR PLANT 2022; 15:706-722. [PMID: 35093592 DOI: 10.1016/j.molp.2022.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Tre6P (trehalose-6-phosphate) mediates sensing of carbon availability to maintain sugar homeostasis in plants, which underpins crop yield and resilience. However, how Tre6P responds to fluctuations in sugar levels and regulates the utilization of sugars for growth remains to be addressed. Here, we report that the sugar-inducible rice NAC transcription factor OsNAC23 directly represses the transcription of the Tre6P phosphatase gene TPP1 to simultaneously elevate Tre6P and repress trehalose levels, thus facilitating carbon partitioning from source to sink organs. Meanwhile, OsNAC23 and Tre6P suppress the transcription and enzyme activity of SnRK1a, a low-carbon sensor and antagonist of OsNAC23, to prevent the SnRK1a-mediated phosphorylation and degradation of OsNAC23. Thus, OsNAC23, Tre6P, and SnRK1a form a feed-forward loop to sense sugar and maintain sugar homeostasis by transporting sugars to sink organs. Importantly, plants over-expressing OsNAC23 exhibited an elevated photosynthetic rate, sugar transport, and sink organ size, which consistently increased rice yields by 13%-17% in three elite-variety backgrounds and two locations, suggesting that manipulation of OsNAC23 expression has great potential for rice improvement. Collectively, these findings enhance our understanding of Tre6P-mediated sugar signaling and homeostasis, and provide a new strategy for genetic improvement of rice and possibly also other crops.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Guiai Jiao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
9
|
Yang Y, Yao Y, Li J, Zhang J, Zhang X, Hu L, Ding D, Bakpa EP, Xie J. Trehalose Alleviated Salt Stress in Tomato by Regulating ROS Metabolism, Photosynthesis, Osmolyte Synthesis, and Trehalose Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:772948. [PMID: 35360323 PMCID: PMC8963455 DOI: 10.3389/fpls.2022.772948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Trehalose plays a critical role in plant response to salinity but the involved regulatory mechanisms remain obscure. Here, this study explored the mechanism of exogenous trehalose-induced salt tolerance in tomato plants by the hydroponic test method. Our results indicated that 10 mM trehalose displayed remarkable plant biomass by improving growth physiology, which were supported by the results of chlorophyll fluorescence and rapid light-response curve. In the salinity environment, trehalose + NaCl treatment could greatly inhibit the decrease of malondialdehyde level, and it increases the contents of other osmotic substances, carbohydrates, K+, and K+/Na+ ratio. Meanwhile, trehalose still had similar effects after recovery from salt stress. Furthermore, trehalose pretreatment promoted trehalose metabolism; significantly increased the enzymatic activity of the trehalose metabolic pathway, including trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), and trehalase (TRE); and upregulated the expression of SlTPS1, SlTPS5, SlTPS7, SlTPPJ, SlTPPH, and SlTRE under saline conditions. However, the transcriptional levels of SlTPS1, SlTPS5, and SlTPS7 genes and the activity of TPS enzyme were reversed after recovery. In addition, we found that hydrogen peroxide (H2O2) and superoxide anion (O2 -) were accumulated in tomato leaves because of salt stress, but these parameters were all recovered by foliar-applied trehalose, and its visualization degree was correspondingly reduced. Antioxidant enzyme activities (SOD, POD, and CAT) and related gene expression (SlCu/Zn-SOD, SlFe-SOD, SlMn-SOD, SlPOD, and SlCAT) in salt-stressed tomato leaves were also elevated by trehalose to counteract salt stress. Collectively, exogenous trehalose appeared to be the effective treatment in counteracting the negative effects of salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Yang H, Nukunya K, Ding Q, Thompson BE. Tissue-specific transcriptomics reveal functional differences in floral development. PLANT PHYSIOLOGY 2022; 188:1158-1173. [PMID: 34865134 PMCID: PMC8825454 DOI: 10.1093/plphys/kiab557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 05/22/2023]
Abstract
Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.
Collapse
Affiliation(s)
- Hailong Yang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Kate Nukunya
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Queying Ding
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Beth E Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
- Author for communication:
| |
Collapse
|
11
|
Li R, Zheng W, Jiang M, Zhang H. A review of starch biosynthesis in cereal crops and its potential breeding applications in rice ( Oryza Sativa L.). PeerJ 2022; 9:e12678. [PMID: 35036154 PMCID: PMC8710062 DOI: 10.7717/peerj.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Starch provides primary storage of carbohydrates, accounting for approximately 85% of the dry weight of cereal endosperm. Cereal seeds contribute to maximum annual starch production and provide the primary food for humans and livestock worldwide. However, the growing demand for starch in food and industry and the increasing loss of arable land with urbanization emphasizes the urgency to understand starch biosynthesis and its regulation. Here, we first summarized the regulatory signaling pathways about leaf starch biosynthesis. Subsequently, we paid more attention to how transcriptional factors (TFs) systematically respond to various stimulants via the regulation of the enzymes during starch biosynthesis. Finally, some strategies to improve cereal yield and quality were put forward based on the previous reports. This review would collectively help to design future studies on starch biosynthesis in cereal crops.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China.,College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
12
|
Majláth I, Éva C, Hamow KÁ, Kun J, Pál M, Rahman A, Palla B, Nagy Z, Gyenesei A, Szalai G, Janda T. Methylglyoxal induces stress signaling and promotes the germination of maize at low temperature. PHYSIOLOGIA PLANTARUM 2022; 174:e13609. [PMID: 34851527 DOI: 10.1111/ppl.13609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Maize is sensitive to cold injury, especially during germination. Since cold causes oxidative stress, compounds that promote the accumulation of free radical forms, such as the reactive aldehyde (RA) methylglyoxal (MG), may be suitable to trigger a systemic defense response. In this study, maize seeds were soaked in MG solution for one night at room temperature, before germination test at 13°C. The exogenous MG enhanced the germination and photosynthetic performance of maize at low temperature. Transcriptome analysis, hormonal, and flavonoid profiling indicated MG-induced changes in photosystem antenna proteins, pigments, late embryogenesis abundant proteins, abscisic acid (ABA) derivatives, chaperons, and certain dihydroflavonols, members of the phenylpropanoid pathway. MG-response of the two maize cultivars (A654 and Cm174) were somewhat different, but we recorded higher endogenous hydrogen peroxide (H2 O2 ) and lower nitric oxide (NO) level in at least one of the treated genotypes. These secondary signal molecules may provoke some of the changes in the hormonal, metabolic and gene expression profile. Decreased auxin transport, but increased ABA degradation and cytokinin and jasmonic acid (JA) synthesis, as well as an altered carbohydrate metabolism and transport (amylases, invertases, and SWEET transporters) could have promoted germination of MG-pretreated seeds. While LEA accumulation could have protected against osmotic stress and catalase expression and production of many antioxidants, like para-hydroxybenzoic acid (p-HBA) and anthocyanins may have balanced the oxidative environment for maize germination. Our results showed that MG-pretreatment could be an effective way to promote cold germination and its effect was more pronounced in the originally cold-sensitive maize genotype.
Collapse
Affiliation(s)
- Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Altafur Rahman
- Department of Genetics and Plant Breeding, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Balázs Palla
- Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Zoltán Nagy
- Cereal Research Non-Profit Ltd., Szeged, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| |
Collapse
|
13
|
Fichtner F, Lunn JE. The Role of Trehalose 6-Phosphate (Tre6P) in Plant Metabolism and Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:737-760. [PMID: 33428475 DOI: 10.1146/annurev-arplant-050718-095929] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Trehalose 6-phosphate (Tre6P) has a dual function as a signal and homeostatic regulator of sucrose levels in plants. In source leaves, Tre6P regulates the production of sucrose to balance supply with demand for sucrose from growing sink organs. As a signal of sucrose availability, Tre6P influences developmental decisions that will affect future demand for sucrose, such as flowering, embryogenesis, and shoot branching, and links the growth of sink organs to sucrose supply. This involves complex interactions with SUCROSE-NON-FERMENTING1-RELATED KINASE1 that are not yet fully understood. Tre6P synthase, the enzyme that makes Tre6P, plays a key role in the nexus between sucrose and Tre6P, operating in the phloem-loading zone of leaves and potentially generating systemic signals for source-sink coordination. Many plants have large and diverse families of Tre6P phosphatase enzymes that dephosphorylate Tre6P, some of which have noncatalytic functions in plant development.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia;
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
14
|
Wang G, Li X, Ye N, Huang M, Feng L, Li H, Zhang J. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. THE NEW PHYTOLOGIST 2021; 230:1925-1939. [PMID: 33629374 DOI: 10.1111/nph.17300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Seed germination is essential for direct seeding in rice. It has been demonstrated that trehalose-6-phosphate phosphatase 1 (OsTPP1) plays roles in improving yield and stress tolerance in rice. In this study, the roles of OsTPP1 on seed germination in rice were investigated. The tpp1 mutant germinated slower than the wild-type (WT), which can be restored by exogenous trehalose. tpp1 seeds showed higher ABA content compared with WT seeds. The tpp1 mutant was hypersensitive to ABA and ABA catabolism inhibitor (Dinicozanole). Furthermore, two ABA catabolism genes were downregulated in the tpp1 mutant which were responsible for increased ABA concentrations, and exogenous trehalose increased transcripts of ABA catabolism genes, suggesting that OsTPP1 and ABA catabolism genes acted in the same signaling pathway. Further analysis showed that a transcription factor of OsGAMYB was an activator of OsTPP1, and expression of OsGAMYB was decreased by both the exogenous and endogenous ABA, subsequently reducing the expression of OsTPP1, which suggested a new signaling pathway required for seed germination in rice. In addition, ABA-responsive genes, especially OsABI5, were invoved in OsTPP1-mediated seed germination. Overall, our study provided new pathways in seed germination that OsTPP1 controlled seed germination through crosstalk with the ABA catabolism pathway.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Mingkun Huang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Joshi R, Sahoo KK, Singh AK, Anwar K, Pundir P, Gautam RK, Krishnamurthy SL, Sopory SK, Pareek A, Singla-Pareek SL. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:653-668. [PMID: 31626290 PMCID: PMC6946002 DOI: 10.1093/jxb/erz462] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Edaphic factors such as salinity, sodicity, and drought adversely affect crop productivity, either alone or in combination. Despite soil sodicity being reported as an increasing problem worldwide, limited efforts have been made to address this issue. In the present study, we aimed to generate rice with tolerance to sodicity in conjunction with tolerance to salinity and drought. Using a fusion gene from E. coli coding for trehalose-6-phosphate synthase/phosphatase (TPSP) under the control of an ABA-inducible promoter, we generated marker-free, high-yielding transgenic rice (in the IR64 background) that can tolerate high pH (~9.9), high EC (~10.0 dS m-1), and severe drought (30-35% soil moisture content). The transgenic plants retained higher relative water content (RWC), chlorophyll content, K+/Na+ ratio, stomatal conductance, and photosynthetic efficiency compared to the wild-type under these stresses. Positive correlations between trehalose overproduction and high-yield parameters were observed under drought, saline, and sodic conditions. Metabolic profiling using GC-MS indicated that overproduction of trehalose in leaves differently modulated other metabolic switches, leading to significant changes in the levels of sugars, amino acids, and organic acids in transgenic plants under control and stress conditions. Our findings reveal a novel potential technological solution to tackle multiple stresses under changing climatic conditions.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Khirod Kumar Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anil Kumar Singh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Pundir
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - Raj Kumar Gautam
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - S L Krishnamurthy
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - S K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Correspondence: or
| |
Collapse
|
16
|
Macovei A, Pagano A, Cappuccio M, Gallotti L, Dondi D, De Sousa Araujo S, Fevereiro P, Balestrazzi A. A Snapshot of the Trehalose Pathway During Seed Imbibition in Medicago truncatula Reveals Temporal- and Stress-Dependent Shifts in Gene Expression Patterns Associated With Metabolite Changes. FRONTIERS IN PLANT SCIENCE 2019; 10:1590. [PMID: 31921241 PMCID: PMC6930686 DOI: 10.3389/fpls.2019.01590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Trehalose, a non-reducing disaccharide with multiple functions, among which source of energy and carbon, stress protectant, and signaling molecule, has been mainly studied in relation to plant development and response to stress. The trehalose pathway is conserved among different organisms and is composed of three enzymes: trehalose-6-phosphate synthase (TPS), which converts uridine diphosphate (UDP)-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P), trehalose-6-phosphatase (TPP), which dephosphorylates T6P to produce trehalose, and trehalase (TRE), responsible for trehalose catabolism. In plants, the trehalose pathway has been mostly studied in resurrection plants and the model plant Arabidopsis thaliana, where 11 AtTPS, 10 AtTPP, and 1 AtTRE genes are present. Here, we aim to investigate the involvement of the trehalose pathway in the early stages of seed germination (specifically, seed imbibition) using the model legume Medicago truncatula as a working system. Since not all the genes belonging to the trehalose pathway had been identified in M. truncatula, we first conducted an in silico analysis using the orthologous gene sequences from A. thaliana. Nine MtTPSs, eight MtTPPs, and a single MtTRE gene were hereby identified. Subsequently, the expression profiles of all the genes (together with the sucrose master-regulator SnRK1) were investigated during seed imbibition with water or stress agents (polyethylene glycol and sodium chloride). The reported data show a temporal distribution and preferential expression of specific TPS and TPP isoforms during seed imbibition with water. Moreover, it was possible to distinguish a small set of genes (e.g., MtTPS1, MtTPS7, MtTPS10, MtTPPA, MtTPPI, MtTRE) having a potential impact as precocious hallmarks of the seed response to stress. When the trehalose levels were measured by high-performance liquid chromatography, a significant decrease was observed during seed imbibition, suggesting that trehalose may act as an energy source rather than osmoprotectant. This is the first report investigating the expression profiles of genes belonging to the trehalose pathway during seed imbibition, thus ascertaining their involvement in the pre-germinative metabolism and their potential as tools to improve seed germination efficiency.
Collapse
Affiliation(s)
- Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Michela Cappuccio
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
| | - Lucia Gallotti
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Susana De Sousa Araujo
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
| | - Pedro Fevereiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
- *Correspondence: Alma Balestrazzi,
| |
Collapse
|
17
|
Turc O, Tardieu F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3245-3254. [PMID: 29546424 DOI: 10.1093/jxb/ery078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is also a trait selected for by evolutionary processes. The youngest reproductive organs must be prone to abortion so older organs can finish their development in case of limited resources. Water deficit increases natural abortion via two developmentally driven processes, namely a signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically encountered in dryland agriculture, these developmental mechanisms account for 90% of drought-associated abortion and are irreversible 3 d after silk emergence. Consistently, transcripts and enzyme activities suggest that the molecular events associated with abortion affect expansive growth in silks whereas ovaries maintain a favourable carbon status. Abortion due to carbon starvation is only observed for severe drought scenarios occurring after silking. Both kinetic and genetic evidence indicates that vegetative and reproductive structures share a partly common hydraulic control of expansive growth. Hence, the control of expansive growth of reproductive structures probably has a prominent effect on abortion for mild water deficits occurring at flowering time, while carbon starvation dominates in severe post-flowering drought scenarios.
Collapse
Affiliation(s)
- Olivier Turc
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - François Tardieu
- LEPSE, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
18
|
Paul MJ, Gonzalez-Uriarte A, Griffiths CA, Hassani-Pak K. The Role of Trehalose 6-Phosphate in Crop Yield and Resilience. PLANT PHYSIOLOGY 2018; 177:12-23. [PMID: 29592862 PMCID: PMC5933140 DOI: 10.1104/pp.17.01634] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/19/2018] [Indexed: 05/19/2023]
Abstract
T6P can be targeted through genetic and chemical methods for crop yield improvements in different environments through the effect of T6P on carbon allocation and biosynthetic pathways.
Collapse
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | - Cara A Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Keywan Hassani-Pak
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
19
|
Matsoukas IG. Crosstalk between Photoreceptor and Sugar Signaling Modulates Floral Signal Transduction. Front Physiol 2017; 8:382. [PMID: 28659814 PMCID: PMC5466967 DOI: 10.3389/fphys.2017.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, integrated genetic, cellular, proteomic and genomic approaches have begun to unravel the surprisingly crosstalk between photoreceptors and sugar signaling in regulation of floral signal transduction. Although a number of physiological factors in the pathway have been identified, the molecular genetic interactions of some components are less well understood. The further elucidation of the crosstalk mechanisms between photoreceptors and sugar signaling will certainly contribute to our better understanding of the developmental circuitry that controls floral signal transduction. This article summarizes our current knowledge of this crosstalk, which has not received much attention, and suggests possible directions for future research.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- School of Life Sciences, University of WarwickCoventry, United Kingdom
| |
Collapse
|
20
|
Affiliation(s)
- Sjef Smeekens
- Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Gol L, Tomé F, von Korff M. Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1399-1410. [PMID: 28431134 DOI: 10.1093/jxb/erx055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The timing of plant reproduction has a large impact on yield in crop plants. Reproductive development in temperate cereals comprises two major developmental transitions. During spikelet initiation, the identity of the shoot meristem switches from the vegetative to the reproductive stage and spikelet primordia are formed on the apex. Subsequently, floral morphogenesis is initiated, a process strongly affected by environmental variation. Recent studies in cereal grasses have suggested that this later phase of inflorescence development controls floret survival and abortion, and is therefore crucial for yield. Here, we provide a synthesis of the early morphological and the more recent genetic studies on shoot development in wheat and barley. The review explores how photoperiod, abiotic stress, and nutrient signalling interact with shoot development, and pinpoints genetic factors that mediate development in response to these environmental cues. We anticipate that research in these areas will be important in understanding adaptation of cereal grasses to changing climate conditions.
Collapse
Affiliation(s)
- Leonard Gol
- Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Filipa Tomé
- Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', D-40225 Düsseldorf, Germany
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', D-40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Figueroa CM, Lunn JE. A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose. PLANT PHYSIOLOGY 2016; 172:7-27. [PMID: 27482078 PMCID: PMC5074632 DOI: 10.1104/pp.16.00417] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signal metabolite in plants, linking growth and development to carbon status. The Suc-Tre6P nexus model postulates that Tre6P is both a signal and negative feedback regulator of Suc levels, forming part of a mechanism to maintain Suc levels within an optimal range and functionally comparable to the insulin-glucagon system for regulating blood Glc levels in animals. The target range and sensitivity of the Tre6P-Suc feedback control circuit can be adjusted according to the cell type, developmental stage, and environmental conditions. In source leaves, Tre6P modulates Suc levels by affecting Suc synthesis, whereas in sink organs it regulates Suc consumption. In illuminated leaves, Tre6P influences the partitioning of photoassimilates between Suc, organic acids, and amino acids via posttranslational regulation of phosphoenolpyruvate carboxylase and nitrate reductase. At night, Tre6P regulates the remobilization of leaf starch reserves to Suc, potentially linking starch turnover in source leaves to carbon demand from developing sink organs. Use of Suc for growth in developing tissues is strongly influenced by the antagonistic activities of two protein kinases: SUC-NON-FERMENTING-1-RELATED KINASE1 (SnRK1) and TARGET OF RAPAMYCIN (TOR). The relationship between Tre6P and SnRK1 in developing tissues is complex and not yet fully resolved, involving both direct and indirect mechanisms, and positive and negative effects. No direct connection between Tre6P and TOR has yet been described. The roles of Tre6P in abiotic stress tolerance and stomatal regulation are also discussed.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina (C.M.F.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| | - John E Lunn
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina (C.M.F.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| |
Collapse
|