1
|
Pfaff SA, Wagner ER, Cosgrove DJ. The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis. THE PLANT CELL 2024; 36:4309-4322. [PMID: 39163271 PMCID: PMC11449099 DOI: 10.1093/plcell/koae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.
Collapse
Affiliation(s)
- Sarah A Pfaff
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Bhattarai M, Wang Q, Hussain Z, Tanim-Al-Hassan M, Chen H, Faik A. New insights on β-glycan synthases using in vitro GT-array (i-GT-ray) platform. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109052. [PMID: 39163652 DOI: 10.1016/j.plaphy.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cellulose and hemicellulose are the major structural β-glycan polysaccharides in cell walls of land plants. They are characterized by a backbone of β-(1,3)- and/or β-(1,4)-linked sugars such as glucose, mannose, or xylose. The backbones of these polymers are produced by processive glycosyltransferases (GTs) called synthases having multiple transmembrane domains anchoring them to the membrane. Thus, they are among the most difficult membrane proteins to test in vitro and to purify. Recently, we developed an in vitro GT-array (i-GTray) platform and showed that non-processive type II membrane GTs could be produced via cell-free system in a soluble and active form and tested in this platform. To determine whether i-GT-ray platform is adequate for the production and testing of β-glycan synthases, we tested five synthases involved in cellulose, xyloglucan, (gluco)mannan, and β-(1,3)(1,4)-mixed-linkage glucan synthesis. Our results revealed unsuspected features of these enzymes. For example, all these synthases could be produced in a soluble and active form and are active in the absence of detergent or membrane lipids, and none of them required a primer for initiation of synthesis. All synthases produced ethanol-insoluble products that were susceptible to the appropriate hydrolases (i.e., cellulase, lichenase, mannanase). Using this platform, we showed that AtCslC4 and AtXXT1 interact directly to form an active xyloglucan synthase that produced xylosylated cello-oligosaccharides (up to three xylosyl residues) when supplied with UDP-Glc and UDP-Xyl. i-GTray platform represents a simple and powerful functional genomics tool for discovery of new insights of synthase activities and can be adapted to other enzymes.
Collapse
Affiliation(s)
- Matrika Bhattarai
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Qi Wang
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zawar Hussain
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Md Tanim-Al-Hassan
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ahmed Faik
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
3
|
Zhong R, Zhou D, Phillips DR, Adams ER, Chen L, Rose JP, Wang BC, Ye ZH. Identification of glycosyltransferases mediating 2-O-arabinopyranosyl and 2-O-galactosyl substitutions of glucuronosyl side chains of xylan. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:234-252. [PMID: 39145524 PMCID: PMC11424249 DOI: 10.1111/tpj.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Xylan is one of the major hemicelluloses in plant cell walls and its xylosyl backbone is often decorated at O-2 with glucuronic acid (GlcA) and/or methylglucuronic acid (MeGlcA) residues. The GlcA/MeGlcA side chains may be further substituted with 2-O-arabinopyranose (Arap) or 2-O-galactopyranose (Gal) residues in some plant species, but the enzymes responsible for these substitutions remain unknown. During our endeavor to investigate the enzymatic activities of Arabidopsis MUR3-clade members of the GT47 glycosyltransferase family, we found that one of them was able to transfer Arap from UDP-Arap onto O-2 of GlcA side chains of xylan, and thus it was named xylan 2-O-arabinopyranosyltransferase 1 (AtXAPT1). The function of AtXAPT1 was verified in planta by its T-DNA knockout mutation showing a loss of the Arap substitution on xylan GlcA side chains. Further biochemical characterization of XAPT close homologs from other plant species demonstrated that while the poplar ones had the same catalytic activity as AtXAPT1, those from Eucalyptus, lemon-scented gum, sea apple, 'Ohi'a lehua, duckweed and purple yam were capable of catalyzing both 2-O-Arap and 2-O-Gal substitutions of xylan GlcA side chains albeit with differential activities. Sequential reactions with XAPTs and glucuronoxylan methyltransferase 3 (GXM3) showed that XAPTs acted poorly on MeGlcA side chains, whereas GXM3 could efficiently methylate arabinosylated or galactosylated GlcA side chains of xylan. Furthermore, molecular docking and site-directed mutagenesis analyses of Eucalyptus XAPT1 revealed critical roles of several amino acid residues at the putative active site in its activity. Together, these findings establish that XAPTs residing in the MUR3 clade of family GT47 are responsible for 2-O-arabinopyranosylation and 2-O-galactosylation of GlcA side chains of xylan.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
4
|
Peng A, Li S, Wang Y, Cheng F, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Mining Candidate Genes for Leaf Angle in Brassica napus L. by Combining QTL Mapping and RNA Sequencing Analysis. Int J Mol Sci 2024; 25:9325. [PMID: 39273273 PMCID: PMC11394825 DOI: 10.3390/ijms25179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Leaf angle (LA) is an important trait of plant architecture, and individuals with narrow LA can better capture canopy light under high-density planting, which is beneficial for increasing the overall yield per unit area. To study the genetic basis and molecular regulation mechanism of leaf angle in rapeseed, we carried out a series of experiments. Quantitative trait loci (QTL) mapping was performed using the RIL population, and seven QTLs were identified. Transcriptome analysis showed that the cell wall formation/biogenesis processes and biosynthesis/metabolism of cell wall components were the most enrichment classes. Most differentially expressed genes (DEGs) involved in the synthesis of lignin, xylan, and cellulose showed down-regulated expression in narrow leaf material. Microscopic analysis suggested that the cell size affected by the cell wall in the junction area of the stem and petiole was the main factor in leaf petiole angle (LPA) differences. Combining QTL mapping and RNA sequencing, five promising candidate genes BnaA01G0125600ZS, BnaA01G0135700ZS, BnaA01G0154600ZS, BnaA10G0154200ZS, and BnaC03G0294200ZS were identified in rapeseed, and most of them were involved in cell wall biogenesis and the synthesis/metabolism of cell wall components. The results of QTL, transcriptome analysis, and cytological analysis were highly consistent, collectively revealing that genes related to cell wall function played a crucial role in regulating the LA trait in rapeseed. The study provides further insights into LA traits, and the discovery of new QTLs and candidate genes is highly beneficial for genetic improvement.
Collapse
Affiliation(s)
- Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Shuyu Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuwen Wang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jun Chen
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Xiaoxiao Zheng
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jie Xiong
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ge Ding
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Bingchao Zhang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wen Zhai
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Laiqiang Song
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lunlin Chen
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
5
|
Shi R, Cao Y, Yang T, Wang Y, Xiang Y, Chen F, Zhang W, Zhou X, Sun C, Fu S, Hu M, Zhang J, Wang X. Genome-Wide Association Study Reveals the Genetic Basis of Crude Fiber Components in Brassica napus L. Shoots at Stem Elongation Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16530-16540. [PMID: 39001851 DOI: 10.1021/acs.jafc.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Brassica napus is currently the principal field crop for producing materials for primary, secondary and tertiary industries. B. napus shoots at stem elongation stage are rich in anthocyanins, vitamin C and mineral elements such as selenium, calcium and zinc, and represent a new type of green vegetable. However, the high crude fiber (CF) content of B. napus shoots affects their taste, and few studies have focused on the quality traits of these vegetables. In this study, we investigated five traits related to the CF components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), hemicellulose (Hem) and cellulose (Cel), of B. napus shoots. Whole-genome resequencing at a depth of ∼20× was utilized to genotype an association panel of 202 diverse accessions, which resulted in the identification of 6,093,649 single nucleotide polymorphisms (SNPs) and 996,252 indels, respectively. A genome-wide association study (GWAS) was performed for the five CF-related traits based on the phenotypic data observed in four environments. A total of 1,285 significant SNPs were detected at the threshold of -log10 (p) = 5.16, and 97 significant association regions were obtained. In addition, seven candidate genes located on chromosomes A2 (one gene), A8 (three genes), A9 (two genes) and C9 (one gene) related to CF traits were identified, and ten lines containing low CF contents were selected as excellent germplasm resources for breeding. Our results contributed new insights into the genetic basis of CF traits and suggested germplasm resources for the quality improvement of B. napus shoots.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yu Cao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Tinghai Yang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Yaping Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Yanan Xiang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Feng Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Xiaoying Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Chengming Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| |
Collapse
|
6
|
Zhong R, Phillips DR, Clark KD, Adams ER, Lee C, Ye ZH. Biochemical Characterization of Rice Xylan Biosynthetic Enzymes in Determining Xylan Chain Elongation and Substitutions. PLANT & CELL PHYSIOLOGY 2024; 65:1065-1079. [PMID: 38501734 DOI: 10.1093/pcp/pcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Grass xylan consists of a linear chain of β-1,4-linked xylosyl residues that often form domains substituted only with either arabinofuranose (Araf) or glucuronic acid (GlcA)/methylglucuronic acid (MeGlcA) residues, and it lacks the unique reducing end tetrasaccharide sequence found in dicot xylan. The mechanism of how grass xylan backbone elongation is initiated and how its distinctive substitution pattern is determined remains elusive. Here, we performed biochemical characterization of rice xylan biosynthetic enzymes, including xylan synthases, glucuronyltransferases and methyltransferases. Activity assays of rice xylan synthases demonstrated that they required short xylooligomers as acceptors for their activities. While rice xylan glucuronyltransferases effectively glucuronidated unsubstituted xylohexaose acceptors, they transferred little GlcA residues onto (Araf)-substituted xylohexaoses and rice xylan 3-O-arabinosyltransferase could not arabinosylate GlcA-substituted xylohexaoses, indicating that their intrinsic biochemical properties may contribute to the distinctive substitution patterns of rice xylan. In addition, we found that rice xylan methyltransferase exhibited a low substrate binding affinity, which may explain the partial GlcA methylation in rice xylan. Furthermore, immunolocalization of xylan in xylem cells of both rice and Arabidopsis showed that it was deposited together with cellulose in secondary walls without forming xylan-rich nanodomains. Together, our findings provide new insights into the biochemical mechanisms underlying xylan backbone elongation and substitutions in grass species.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kevin D Clark
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Chanhui Lee
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Shi Y, Chen Z, Shen M, Li Q, Wang S, Jiang J, Zeng W. Identification and Functional Verification of the Glycosyltransferase Gene Family Involved in Flavonoid Synthesis in Rubus chingii Hu. PLANTS (BASEL, SWITZERLAND) 2024; 13:1390. [PMID: 38794460 PMCID: PMC11125054 DOI: 10.3390/plants13101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Glycosylation is catalyzed by UDP-glycosyltransferase (UGT) and plays an important role in enriching the diversity of flavonoids. Rubus plants contain a lot of natural flavonoid glycosides, which are important plants with a homology of medicine and food. However, information about the Rubus UGT gene family is very limited. In this study, we carried out genome-wide analysis and identified the 172, 121, 130, 121 UGT genes in R. chingii, R. corchorifolius, R. idaeus, and R. occidentalis, respectively, and divided them into 18 groups. The analysis of the protein motif and gene structure showed that there were structural and functional conservations in the same group, but there were differences among different groups. Gene replication analysis showed that raspberry and dicotyledons had a higher homology. The expansion of the UGTs gene family was mainly driven by tandem replication events, and experienced purified selection during the long evolution of the raspberry. Cis-acting element analysis showed that they were related to plant growth and development, hormone regulation, and stress response. In addition, according to a comprehensive analysis of the co-expression network constructed by transcriptome data and phylogenetic homology, RchUGT169 was identified as a flavonoid glucosyltransferase. Through the transient expression in tobacco, it was verified that RchUGT169 could catalyze the conversion of kaempferol and quercetin to the corresponding flavonoid glycosides. In conclusion, this research enriched the understanding of the diversity of UGTs in Rubus and determined that RcUGT169 can catalyze flavonoids.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Mingkai Shen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Qianfan Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Shunli Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| |
Collapse
|
8
|
Huang J, Ma S, Zhou M, Liu Z, Liang Q. Cytochemical localization and synthesis mechanism of the glucomannan in pseudobulbs of Bletilla striata Reichb. f. HORTICULTURE RESEARCH 2024; 11:uhae092. [PMID: 38799126 PMCID: PMC11116825 DOI: 10.1093/hr/uhae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
The dried pseudobulbs of Bletilla striata, an important traditional Chinese medicine named BaiJi, have an extraordinary polysaccharide content and excellent prospects for medicinal effects. However, the distribution and molecular mechanism underlying biosynthesis are poorly understood. In this study, chemical and immunologic analyses were performed in representative tissues of B. striata, and the results showed that what are conventionally termed Bletilla striata polysaccharides (BSPs) are water-soluble polysaccharides deposited only in pseudobulbs. The structural component of BSPs is glucomannan, with a mannose:glucose mass ratio of ~3:2. BSPs are present in the parenchyma of the pseudobulbs in cells known as glucomannan idioblasts and distributed in the cytoplasm within cellular membranes, but are not contained in the vacuole. Comparative transcriptomics and bioinformatics analyses mapped the pathway from sucrose to BSP and identified BsGPI, BsmanA, and BsCSLAs as the key genes of BSP biosynthesis, suggesting that the functional differentiation of the cellulose synthase-like family A (CSLA) may be critical for the flow of glucomannan to the BSP or cell wall. Subsequently, virus-mediated gene silencing showed that silencing of two CSLAs (Bs03G11846 and Bs03G11849) led to a decrease in BSP content, and yeast two-hybrid and luciferase complementation experiments confirmed that four CSLAs (Bs03G11846, Bs03G11847, Bs03G11848, and Bs03G11849) can form homo- or heterodimers, suggesting that multiple CSLAs may form a large complex that functions in BSP synthesis. Our results provide cytological evidence of BSP and describe the isolation and characterization of candidate genes involved in BSP synthesis, laying a solid foundation for further research on its regulation mechanisms and the genetic engineering breeding of B. striata.
Collapse
Affiliation(s)
- Junfeng Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shuang Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ming Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi City 435002, China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Javaid T, Bhattarai M, Venkataraghavan A, Held M, Faik A. Specific protein interactions between rice members of the GT43 and GT47 families form various central cores of putative xylan synthase complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:856-878. [PMID: 38261531 DOI: 10.1111/tpj.16640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.
Collapse
Affiliation(s)
- Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | | | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
10
|
Zhang L, Zhou Y, Zhang B. Xylan-directed cell wall assembly in grasses. PLANT PHYSIOLOGY 2024; 194:2197-2207. [PMID: 38095432 DOI: 10.1093/plphys/kiad665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 04/02/2024]
Abstract
Xylan is the most abundant hemicellulosic polysaccharide in the cell walls of grasses and is pivotal for the assembly of distinct cell wall structures that govern various cellular functions. Xylan also plays a crucial role in regulating biomass recalcitrance, ultimately affecting the utilization potential of lignocellulosic materials. Over the past decades, our understanding of the xylan biosynthetic machinery and cell wall organization has substantially improved due to the innovative application of multiple state-of-the-art techniques. Notably, novel xylan-based nanostructures have been revealed in the cell walls of xylem vessels, promoting a more extensive exploration of the role of xylan in the formation of cell wall structures. This Update summarizes recent achievements in understanding xylan biosynthesis, modification, modeling, and compartmentalization in grasses, providing a brief overview of cell wall assembly regarding xylan. We also discuss the potential for tailoring xylan to facilitate the breeding of elite energy and feed crops.
Collapse
Affiliation(s)
- Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Zhang J, Yue Y, Hu M, Yi F, Chen J, Lai J, Xin B. Dynamic transcriptome landscape of maize pericarp development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1574-1591. [PMID: 37970738 DOI: 10.1111/tpj.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
As a maternal tissue, the pericarp supports and protects for other components of seed, such as embryo and endosperm. Despite the importance of maize pericarp in seed, the genome-wide transcriptome pattern throughout maize pericarp development has not been well characterized. Here, we developed RNA-seq transcriptome atlas of B73 maize pericarp development based on 21 samples from 5 days before fertilization (DBP5) to 32 days after fertilization (DAP32). A total of 25 346 genes were detected in programming pericarp development, including 1887 transcription factors (TFs). Together with pericarp morphological changes, the global clustering of gene expression revealed four developmental stages: undeveloped, thickening, expansion and strengthening. Coexpression analysis provided further insights on key regulators in functional transition of four developmental stages. Combined with non-seed, embryo, endosperm, and nucellus transcriptome data, we identified 598 pericarp-specific genes, including 75 TFs, which could elucidate key mechanisms and regulatory networks of pericarp development. Cell wall related genes were identified that reflected their crucial role in the maize pericarp structure building. In addition, key maternal proteases or TFs related with programmed cell death (PCD) were proposed, suggesting PCD in the maize pericarp was mediated by vacuolar processing enzymes (VPE), and jasmonic acid (JA) and ethylene-related pathways. The dynamic transcriptome atlas provides a valuable resource for unraveling the genetic control of maize pericarp development.
Collapse
Affiliation(s)
- Jihong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Beibei Xin
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
12
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
13
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
14
|
Ma Y, Ratcliffe J, Bacic A, Johnson KL. Promoter and domain structures regulate FLA12 function during Arabidopsis secondary wall development. FRONTIERS IN PLANT SCIENCE 2023; 14:1275983. [PMID: 38034570 PMCID: PMC10687482 DOI: 10.3389/fpls.2023.1275983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Introduction Fasciclin-like arabinogalactan-proteins (FLAs) are a family of multi-domain glycoproteins present at the cell surface and walls of plants. Arabidopsis thaliana FLA12 and homologs in cotton, Populus, and flax have been shown to play important functions regulating secondary cell wall (SCW) development. FLA12 has been shown to have distinct roles from the closely related FLA11 that also functions during SCW development. The promoter and domain features of FLA12 that regulate functional specificity have not been well characterized. Methods In this study, promoter swap experiments of FLA11 and FLA12 were investigated. Mutation of proposed functional regions within FLA12 were used to investigate the role of post-translational modifications on sub-cellular location and trafficking. Domain swap experiments between FLA11 and FLA12 were performed to identify regions of functional specificity. Results Promote swap experiments showed that FLA12 is differentially expressed in both stem and rosette leaves compared to FLA11. Post-translational modifications, in particular addition of the glycosylphosphatidylinositol-anchor (GPI-anchor), were shown to be important for FLA12 location at the plasma membrane (PM)/cell wall interface. Domain swap experiments between FLA11 and FLA12 showed that the C-terminal arabinogalactan (AG) glycan motif acts as a key regulatory region differentiating FLA12 functions from FLA11. Discussion Understanding of FLA12 promoter and functional domains has provided new insights into the regulation of SCW development and functional specificity of FLAs for plant growth and development.
Collapse
Affiliation(s)
- Yingxuan Ma
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
15
|
Prins A, Kosik O. Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3216. [PMID: 37765380 PMCID: PMC10534680 DOI: 10.3390/plants12183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Wheat is one of the three staple crops feeding the world. The demand for wheat is ever increasing as a relatively good source of protein, energy, nutrients, and dietary fiber (DF) when consumed as wholemeal. Arabinoxylan and β-glucan are the major hemicelluloses in the cell walls and dietary fiber in wheat grains. The amount and structure of DF varies between grain tissues. Reducing post-prandial glycemic response as well as intestinal transit time and contribution to increased fecal bulk are only a few benefits of DF consumption. Dietary fiber is fermented in the colon and stimulates growth of beneficial bacteria producing SCFA, considered responsible for a wide range of health benefits, including reducing the risk of heart disease and colon cancer. The recommended daily intake of 25-30 g is met by only few individuals. Cereals cover nearly 40% of fiber in the Western diet. Therefore, wheat is a good target for improving dietary fiber content, as it would increase the fiber intake and simultaneously impact the health of many people. This review reflects the current status of the research on genetics of the two major dietary fiber components, as well as breeding approaches used to improve their quantity and quality in wheat grain.
Collapse
Affiliation(s)
- Anneke Prins
- Department of Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK;
| | - Ondrej Kosik
- Department of Plant Sciences for the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
16
|
Derba-Maceluch M, Sivan P, Donev EN, Gandla ML, Yassin Z, Vaasan R, Heinonen E, Andersson S, Amini F, Scheepers G, Johansson U, Vilaplana FJ, Albrectsen BR, Hertzberg M, Jönsson LJ, Mellerowicz EJ. Impact of xylan on field productivity and wood saccharification properties in aspen. FRONTIERS IN PLANT SCIENCE 2023; 14:1218302. [PMID: 37528966 PMCID: PMC10389764 DOI: 10.3389/fpls.2023.1218302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
Xylan that comprises roughly 25% of hardwood biomass is undesirable in biorefinery applications involving saccharification and fermentation. Efforts to reduce xylan levels have therefore been made in many species, usually resulting in improved saccharification. However, such modified plants have not yet been tested under field conditions. Here we evaluate the field performance of transgenic hybrid aspen lines with reduced xylan levels and assess their usefulness as short-rotation feedstocks for biorefineries. Three types of transgenic lines were tested in four-year field tests with RNAi constructs targeting either Populus GT43 clades B and C (GT43BC) corresponding to Arabidopsis clades IRX9 and IRX14, respectively, involved in xylan backbone biosynthesis, GATL1.1 corresponding to AtGALT1 involved in xylan reducing end sequence biosynthesis, or ASPR1 encoding an atypical aspartate protease. Their productivity, wood quality traits, and saccharification efficiency were analyzed. The only lines differing significantly from the wild type with respect to growth and biotic stress resistance were the ASPR1 lines, whose stems were roughly 10% shorter and narrower and leaves showed increased arthropod damage. GT43BC lines exhibited no growth advantage in the field despite their superior growth in greenhouse experiments. Wood from the ASPR1 and GT43BC lines had slightly reduced density due to thinner cell walls and, in the case of ASPR1, larger cell diameters. The xylan was less extractable by alkali but more hydrolysable by acid, had increased glucuronosylation, and its content was reduced in all three types of transgenic lines. The hemicellulose size distribution in the GALT1.1 and ASPR1 lines was skewed towards higher molecular mass compared to the wild type. These results provide experimental evidence that GATL1.1 functions in xylan biosynthesis and suggest that ASPR1 may regulate this process. In saccharification without pretreatment, lines of all three constructs provided 8-11% higher average glucose yields than wild-type plants. In saccharification with acid pretreatment, the GT43BC construct provided a 10% yield increase on average. The best transgenic lines of each construct are thus predicted to modestly outperform the wild type in terms of glucose yields per hectare. The field evaluation of transgenic xylan-reduced aspen represents an important step towards more productive feedstocks for biorefineries.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pramod Sivan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Evgeniy N. Donev
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Zakiya Yassin
- Enhet Produktionssystem och Material, RISE Research Institutes of Sweden, Växjö, Sweden
| | - Rakhesh Vaasan
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Emilia Heinonen
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sanna Andersson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Fariba Amini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
- Biology Department, Faculty of Science, Arak University, Arak, Iran
| | - Gerhard Scheepers
- Enhet Produktionssystem och Material, RISE Research Institutes of Sweden, Växjö, Sweden
| | - Ulf Johansson
- Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden
| | - Francisco J. Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | - Ewa J. Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
17
|
Dang Z, Wang Y, Wang M, Cao L, Ruan N, Huang Y, Li F, Xu Q, Chen W. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132020. [PMID: 37429191 DOI: 10.1016/j.jhazmat.2023.132020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.
Collapse
Affiliation(s)
- Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
18
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
19
|
Tang Y, Lu L, Sheng Z, Zhao D, Tao J. An R2R3-MYB network modulates stem strength by regulating lignin biosynthesis and secondary cell wall thickening in herbaceous peony. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1237-1258. [PMID: 36633057 DOI: 10.1111/tpj.16107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhipeng Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Curry TM, Peña MJ, Urbanowicz BR. An update on xylan structure, biosynthesis, and potential commercial applications. Cell Surf 2023; 9:100101. [PMID: 36748082 PMCID: PMC9898438 DOI: 10.1016/j.tcsw.2023.100101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
•Xylan is an abundant carbohydrate component of plant cell walls that is vital for proper cell wall structure and vascular tissue development.•Xylan structure is known to vary between different tissues and species.•The role of xylan in the plant cell wall is to interact with cellulose, lignin, and hemicelluloses.•Xylan synthesis is directed by several types of Golgi-localized enzymes.•Xylan is being explored as an eco-friendly resource for diverse commercial applications.
Collapse
Key Words
- AGX, arabinoglucuronoxylan
- Araf, L-α-arabinofuranose, TBL, Trichome Birefringence Like
- GAX, glucuronoarabinoxylan
- GX, glucuronoxylan
- GXMT/GXM, glucuronoxylan methyltransferase
- GlcpA, glucuronic acid
- Glycosyltransferase
- Hemicellulose
- IRX10, Irregular Xylem 10
- IRX14, Irregular Xylem 14
- IRX9, Irregular Xylem 9
- MeGlcpA, 4-O-methylglucuronic acid
- NMR, Nuclear magnetic resonance
- Plant cell wall
- UDP-sugar, uridine diphosphate-linked sugar
- XOATs, xylan O-acetyltransferases
- XSC, xylan synthase complex
- Xylan
- Xylan biosynthesis
- glucuronoarabinoxylan (GAX)
- glucuronoxylan (GX)
- or arabinoglucuronoxylan (AGX)
Collapse
Affiliation(s)
- Thomas M. Curry
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Corresponding author at: Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Chandrakanth NN, Zhang C, Freeman J, de Souza WR, Bartley LE, Mitchell RA. Modification of plant cell walls with hydroxycinnamic acids by BAHD acyltransferases. FRONTIERS IN PLANT SCIENCE 2023; 13:1088879. [PMID: 36733587 PMCID: PMC9887202 DOI: 10.3389/fpls.2022.1088879] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the last decade it has become clear that enzymes in the "BAHD" family of acyl-CoA transferases play important roles in the addition of phenolic acids to form ester-linked moieties on cell wall polymers. We focus here on the addition of two such phenolics-the hydroxycinnamates, ferulate and p-coumarate-to two cell wall polymers, glucuronoarabinoxylan and to lignin. The resulting ester-linked feruloyl and p-coumaroyl moities are key features of the cell walls of grasses and other commelinid monocots. The capacity of ferulate to participate in radical oxidative coupling means that its addition to glucuronoarabinoxylan or to lignin has profound implications for the properties of the cell wall - allowing respectively oxidative crosslinking to glucuronoarabinoxylan chains or introducing ester bonds into lignin polymers. A subclade of ~10 BAHD genes in grasses is now known to (1) contain genes strongly implicated in addition of p-coumarate or ferulate to glucuronoarabinoxylan (2) encode enzymes that add p-coumarate or ferulate to lignin precursors. Here, we review the evidence for functions of these genes and the biotechnological applications of manipulating them, discuss our understanding of mechanisms involved, and highlight outstanding questions for future research.
Collapse
Affiliation(s)
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jackie Freeman
- Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| | | | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Rowan A.C. Mitchell
- Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
22
|
Anders N, Wilson LFL, Sorieul M, Nikolovski N, Dupree P. β-1,4-Xylan backbone synthesis in higher plants: How complex can it be? FRONTIERS IN PLANT SCIENCE 2023; 13:1076298. [PMID: 36714768 PMCID: PMC9874913 DOI: 10.3389/fpls.2022.1076298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Xylan is a hemicellulose present in the cell walls of all land plants. Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47 (IRX10/IRX10L) families are involved in the biosynthesis of its β-1,4-linked xylose backbone, which can be further modified by acetylation and sugar side chains. However, it remains unclear how the different enzymes work together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has been described in the monocots wheat and asparagus, and co-expression of asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically active complex for secondary cell wall xylan biosynthesis. Here, we argue that an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest the existence of distinct XSCs for primary and secondary cell wall xylan synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of the primary and secondary cell wall. In contrast to the CSC, in which each CESA protein has catalytic activity, the XSC seems to contain proteins with non-catalytic function with each component bearing potentially unique but crucial roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L might not be stable in its composition during transit from the endoplasmic reticulum to the Golgi apparatus. Instead, potential dynamic changes of the XSC might be a means of regulating xylan biosynthesis to facilitate coordinated deposition of tailored polysaccharides in the plant cell wall.
Collapse
|
23
|
Ye ZH, Zhong R. Outstanding questions on xylan biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111476. [PMID: 36174800 DOI: 10.1016/j.plantsci.2022.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Xylan is the second most abundant polysaccharide in plant biomass. It is a crucial component of cell wall structure as well as a significant factor contributing to biomass recalcitrance. Xylan consists of a linear chain of β-1,4-linked xylosyl residues that are often substituted with glycosyl side chains, such as glucuronosyl/methylglucuronosyl and arabinofuranosyl residues, and acetylated at O-2 and/or O-3. Xylan from gymnosperms and dicots contains a unique reducing end tetrasaccharide sequence that is not detected in xylan from grasses, bryophytes and seedless vascular plants. Grass xylan is heavily decorated at O-3 with arabinofuranosyl residues that are frequently esterified with hydroxycinnamates. Genetic and biochemical studies have uncovered a number of genes involved in xylan backbone elongation and acetylation, xylan glycosyl substitutions and their modifications, and the synthesis of the unique xylan reducing end tetrasaccharide sequence, but some outstanding issues on the biosynthesis of xylan still remain unanswered. Here, we provide a brief overview of xylan structure and focus on discussion of the current understanding and open questions on xylan biosynthesis. Further elucidation of the biochemical mechanisms underlying xylan biosynthesis will not only shed new insights into cell wall biology but also provide molecular tools for genetic modification of biomass composition tailored for diverse end uses.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Ruan N, Dang Z, Wang M, Cao L, Wang Y, Liu S, Tang Y, Huang Y, Zhang Q, Xu Q, Chen W, Li F. FRAGILE CULM 18 encodes a UDP-glucuronic acid decarboxylase required for xylan biosynthesis and plant growth in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2320-2335. [PMID: 35104839 DOI: 10.1093/jxb/erac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Although UDP-glucuronic acid decarboxylases (UXSs) have been well studied with regard to catalysing the conversion of UDP-glucuronic acid into UDP-xylose, their biological roles in grasses remain largely unknown. The rice (Oryza sativa) genome contains six UXSs, but none of them has been genetically characterized. Here, we reported on the characterization of a novel rice fragile culm mutant, fc18, which exhibited brittleness with altered cell wall and pleiotropic defects in growth. Map-based cloning and transgenic analyses revealed that the FC18 gene encodes a cytosol-localized OsUXS3 and is widely expressed with higher expression in xylan-rich tissues. Monosaccharide analysis showed that the xylose level was decreased in fc18, and cell wall fraction determinations confirmed that the xylan content in fc18 was lower, suggesting that UDP-xylose from FC18 participates in xylan biosynthesis. Moreover, the fc18 mutant displayed defective cellulose properties, which led to an enhancement in biomass saccharification. Furthermore, expression of genes involved in sugar metabolism and phytohormone signal transduction was largely altered in fc18. Consistent with this, the fc18 mutant exhibited significantly reduced free auxin (indole-3-acetic acid) content and lower expression levels of PIN family genes compared with wild type. Our work reveals the physiological roles of FC18/UXS3 in xylan biosynthesis, cellulose deposition, and plant growth in rice.
Collapse
Affiliation(s)
- Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Sitong Liu
- Jinzhou Academy of Science and Technology, Jinzhou, China
| | - Yijun Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Qun Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
25
|
Wang H, Yang H, Wen Z, Gao C, Gao Y, Tian Y, Xu Z, Liu X, Persson S, Zhang B, Zhou Y. Xylan-based nanocompartments orchestrate plant vessel wall patterning. NATURE PLANTS 2022; 8:295-306. [PMID: 35318447 DOI: 10.1038/s41477-022-01113-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Nanoclustering of biomacromolecules allows cells to efficiently orchestrate biological processes. The plant cell wall is a highly organized polysaccharide network but is heterogeneous in chemistry and structure. However, polysaccharide-based nanocompartments remain ill-defined. Here, we identify a xylan-rich nanodomain at pit borders of xylem vessels. We show that these nanocompartments maintain distinct wall patterns by anchoring cellulosic nanofibrils at the pit borders, critically supporting vessel robustness, water transport and leaf transpiration. The nanocompartments are produced by the activity of IRREGULAR XYLEM (IRX)10 and its homologues, which we show are de novo xylan synthases. Our study hence outlines a mechanism of how xylans are synthesized, how they assemble into nanocompartments and how the nanocompartments sustain cell wall pit patterning to support efficient water transport throughout the plant body.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Wen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Staffan Persson
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Zhang N, Zabotina OA. Critical Determinants in ER-Golgi Trafficking of Enzymes Involved in Glycosylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030428. [PMID: 35161411 PMCID: PMC8840164 DOI: 10.3390/plants11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.
Collapse
|
27
|
Li Z, Wang X, Yang K, Zhu C, Yuan T, Wang J, Li Y, Gao Z. Identification and expression analysis of the glycosyltransferase GT43 family members in bamboo reveal their potential function in xylan biosynthesis during rapid growth. BMC Genomics 2021; 22:867. [PMID: 34856932 PMCID: PMC8638195 DOI: 10.1186/s12864-021-08192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Xylan is one of the most abundant hemicelluloses and can crosslink cellulose and lignin to increase the stability of cell walls. A number of genes encoding glycosyltransferases play vital roles in xylan biosynthesis in plants, such as those of the GT43 family. However, little is known about glycosyltransferases in bamboo, especially woody bamboo which is a good substitute for timber. Results A total of 17 GT43 genes (PeGT43–1 ~ PeGT43–17) were identified in the genome of moso bamboo (Phyllostachys edulis), which belong to three subfamilies with specific motifs. The phylogenetic and collinearity analyses showed that PeGT43s may have undergone gene duplication, as a result of collinearity found in 12 pairs of PeGT43s, and between 17 PeGT43s and 10 OsGT43s. A set of cis-acting elements such as hormones, abiotic stress response and MYB binding elements were found in the promoter of PeGT43s. PeGT43s were expressed differently in 26 tissues, among which the highest expression level was found in the shoots, especially in the rapid elongation zone and nodes. The genes coexpressed with PeGT43s were annotated as associated with polysaccharide metabolism and cell wall biosynthesis. qRT–PCR results showed that the coexpressed genes had similar expression patterns with a significant increase in 4.0 m shoots and a peak in 6.0 m shoots during fast growth. In addition, the xylan content and structural polysaccharide staining intensity in bamboo shoots showed a strong positive correlation with the expression of PeGT43s. Yeast one-hybrid assays demonstrated that PeMYB35 could recognize the 5′ UTR/promoter of PeGT43–5 by binding to the SMRE cis-elements. Conclusions PeGT43s were found to be adapted to the requirement of xylan biosynthesis during rapid cell elongation and cell wall accumulation, as evidenced by the expression profile of PeGT43s and the rate of xylan accumulation in bamboo shoots. Yeast one-hybrid analysis suggested that PeMYB35 might be involved in xylan biosynthesis by regulating the expression of PeGT43–5 by binding to its 5′ UTR/promoter. Our study provides a comprehensive understanding of PeGT43s in moso bamboo and lays a foundation for further functional analysis of PeGT43s for xylan biosynthesis during rapid growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08192-y.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xinyue Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Jiongliang Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ying Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
28
|
Wilkinson MD, Kosik O, Halsey K, Walpole H, Evans J, Wood AJ, Ward JL, Mitchell RAC, Lovegrove A, Shewry PR. RNAi suppression of xylan synthase genes in wheat starchy endosperm. PLoS One 2021; 16:e0256350. [PMID: 34411179 PMCID: PMC8376096 DOI: 10.1371/journal.pone.0256350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 12/05/2022] Open
Abstract
The xylan backbone of arabinoxylan (AX), the major cell wall polysaccharide in the wheat starchy endosperm, is synthesised by xylan synthase which is a complex of three subunits encoded by the GT43_1, GT43_2 and GT47_2 genes. RNAi knock-down of either GT43_1 or all three genes (triple lines) resulted in decreased AX measured by digestion with endoxylanase (to 33 and 34.9% of the controls) and by monosaccharide analysis (to 45.9% and 47.4% of the controls) with greater effects on the amount of water-extractable AX (to 20.6 and 19.9% of the controls). Both sets of RNAi lines also had greater decreases in the amounts of substituted oligosaccharides released by digestion of AX with endoxylanase than in fragments derived only from the xylan backbone. Although the GT43_1 and triple lines had similar effects on AX they did differ in their contents of soluble sugars (increased in triple only) and on grain size (decreased in triple only). Both sets of transgenic lines had decreased grain hardness, indicating effects on cell wall mechanics. These results, and previously published studies of RNAi suppression of GT43_2 and GT47_2 and of a triple mutant of GT43_2, are consistent with the model of xylan synthase comprising three subunits one of which (GT47_2) is responsible for catalysis with the other two subunits being required for correct functioning but indicate that separate xylan synthase complexes may be responsible for the synthesis of populations of AX which differ in their structure and solubility.
Collapse
Affiliation(s)
- Mark D. Wilkinson
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Ondrej Kosik
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Kirstie Halsey
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Hannah Walpole
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Jessica Evans
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Abigail J. Wood
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Jane L. Ward
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Alison Lovegrove
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| | - Peter R. Shewry
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
29
|
Narciso JO, Zeng W, Ford K, Lampugnani ER, Humphries J, Austarheim I, van de Meene A, Bacic A, Doblin MS. Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:678564. [PMID: 34113372 PMCID: PMC8186459 DOI: 10.3389/fpls.2021.678564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 05/31/2023]
Abstract
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a galt8 mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested. GALT8 was shown to be a β-(1,3)-galactosyltransferase (GalT) that catalyzes the synthesis of a β-(1,3)-galactan, similar to the in vitro activity of KNS4/UPEX1 (At1g33430), a homologous GT31 member previously shown to have this activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the products were of 2-6 degree of polymerisation (DP). Previous reporter studies showed that GALT8 is expressed in the central and synergid cells, from whence the micropylar endosperm originates after the fertilization of the central cell of the ovule. Homozygous mutants have multiple seedling phenotypes including significantly shorter hypocotyls and smaller leaf area compared to wild type (WT) that are attributable to defects in female gametophyte and/or endosperm development. KNS4/UPEX1 was shown to partially complement the galt8 mutant phenotypes in genetic complementation assays suggesting a similar but not identical role compared to GALT8 in β-(1,3)-galactan biosynthesis. Taken together, these data add further evidence of the important roles GT31 β-(1,3)-GalTs play in elaborating type II AGs that decorate AGPs and pectins, thereby imparting functional consequences on plant growth and development.
Collapse
Affiliation(s)
- Joan Oñate Narciso
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Zeng
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Kris Ford
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Edwin R. Lampugnani
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - John Humphries
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Ingvild Austarheim
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Allison van de Meene
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Monika S. Doblin
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
30
|
Subcellular coordination of plant cell wall synthesis. Dev Cell 2021; 56:933-948. [PMID: 33761322 DOI: 10.1016/j.devcel.2021.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Organelles of the plant cell cooperate to synthesize and secrete a strong yet flexible polysaccharide-based extracellular matrix: the cell wall. Cell wall composition varies among plant species, across cell types within a plant, within different regions of a single cell wall, and in response to intrinsic or extrinsic signals. This diversity in cell wall makeup is underpinned by common cellular mechanisms for cell wall production. Cellulose synthase complexes function at the plasma membrane and deposit their product into the cell wall. Matrix polysaccharides are synthesized by a multitude of glycosyltransferases in hundreds of mobile Golgi stacks, and an extensive set of vesicle trafficking proteins govern secretion to the cell wall. In this review, we discuss the different subcellular locations at which cell wall synthesis occurs, review the molecular mechanisms that control cell wall biosynthesis, and examine how these are regulated in response to different perturbations to maintain cell wall homeostasis.
Collapse
|
31
|
A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family. Int J Mol Sci 2021; 22:ijms22031360. [PMID: 33572987 PMCID: PMC7866395 DOI: 10.3390/ijms22031360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), β-1,6-galactotetraose (β-1,6-Gal4) and β-1,3-galactopentose (β-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the β-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.
Collapse
|
32
|
Crowe JD, Hao P, Pattathil S, Pan H, Ding SY, Hodge DB, Jensen JK. Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls. FRONTIERS IN PLANT SCIENCE 2021; 12:737690. [PMID: 34630488 PMCID: PMC8495263 DOI: 10.3389/fpls.2021.737690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 05/07/2023]
Abstract
Plant biomass represents an abundant and increasingly important natural resource and it mainly consists of a number of cell types that have undergone extensive secondary cell wall (SCW) formation. These cell types are abundant in the stems of Arabidopsis, a well-studied model system for hardwood, the wood of eudicot plants. The main constituents of hardwood include cellulose, lignin, and xylan, the latter in the form of glucuronoxylan (GX). The binding of GX to cellulose in the eudicot SCW represents one of the best-understood molecular interactions within plant cell walls. The evenly spaced acetylation and 4-O-methyl glucuronic acid (MeGlcA) substitutions of the xylan polymer backbone facilitates binding in a linear two-fold screw conformation to the hydrophilic side of cellulose and signifies a high level of molecular specificity. However, the wider implications of GX-cellulose interactions for cellulose network formation and SCW architecture have remained less explored. In this study, we seek to expand our knowledge on this by characterizing the cellulose microfibril organization in three well-characterized GX mutants. The selected mutants display a range of GX deficiency from mild to severe, with findings indicating even the weakest mutant having significant perturbations of the cellulose network, as visualized by both scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show by image analysis that microfibril width is increased by as much as three times in the severe mutants compared to the wild type and that the degree of directional dispersion of the fibrils is approximately doubled in all the three mutants. Further, we find that these changes correlate with both altered nanomechanical properties of the SCW, as observed by AFM, and with increases in enzymatic hydrolysis. Results from this study indicate the critical role that normal GX composition has on cellulose bundle formation and cellulose organization as a whole within the SCWs.
Collapse
Affiliation(s)
- Jacob D. Crowe
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, United States
| | - Pengchao Hao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Henry Pan
- Department of Chemical Engineering, University of Texas, Austin, TX, United States
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - David B. Hodge
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT, United States
| | - Jacob Krüger Jensen
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jacob Krüger Jensen
| |
Collapse
|
33
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
34
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules 2020; 25:E5619. [PMID: 33260399 PMCID: PMC7729885 DOI: 10.3390/molecules25235619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
36
|
Zhang W, Zhang S, Lu X, Li C, Liu X, Dong G, Xia T. Tissue-specific Transcriptome analysis reveals lignocellulose synthesis regulation in elephant grass (Pennisetum purpureum Schum). BMC PLANT BIOLOGY 2020; 20:528. [PMID: 33213376 PMCID: PMC7678330 DOI: 10.1186/s12870-020-02735-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/10/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered. RESULTS In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a 'blue' module highly associated with cellulose synthesis and a 'turquoise' module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes. CONCLUSIONS This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.
Collapse
Affiliation(s)
- Wenqing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Shengkui Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xianqin Lu
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Can Li
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Xingwang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Geyu Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Jinan, China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
37
|
Pellny TK, Patil A, Wood AJ, Freeman J, Halsey K, Plummer A, Kosik O, Temple H, Collins JD, Dupree P, Berry S, Shewry PR, Lovegrove A, Phillips AL, Mitchell RA. Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases cross-linking. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2316-2327. [PMID: 32356579 PMCID: PMC7589350 DOI: 10.1111/pbi.13393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/24/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Wheat contains abundant xylan in cell walls of all tissues, but in endosperm, there is an unusual form of xylan substituted only by arabinose (arabinoxylan; AX) that has long chains and low levels of feruloylation, a fraction of which is extractable in water (WE-AX). WE-AX acts as soluble dietary fibre but also gives rise to viscous extracts from grain, a detrimental trait for some non-food uses of wheat. Here, we show that a glycosyl transferase family 43 wheat gene abundantly expressed in endosperm complements the Arabidopsis irx9 mutant and so name the three homoeologous genes TaIRX9b. We generated wheat lines with a constitutive knockout of TaIRX9b by stacking loss-of-function alleles for these homeologues from a mutagenized hexaploid wheat population resulting in decreases in grain extract viscosity of 50%-80%. The amount and chain length of WE-AX molecules from grain of these triple-stack lines was decreased accounting for the changes in extract viscosity. Imaging of immature wheat grain sections of triple-stacks showed abolition of immunolabelling in endosperm with LM11 antibody that recognizes epitopes in AX, but also showed apparently normal cell size and shape in all cell types, including endosperm. We identified differentially expressed genes from endosperm of triple-stacks suggesting that compensatory changes occur to maintain this endosperm cell wall integrity. Consistent with this, we observed increased ferulate dimerization and increased cross-linking of WE-AX molecules in triple-stacks. These novel wheat lines lacking functional TaIRX9b therefore provide insight into control of wheat endosperm cell walls.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Plummer
- Plant SciencesRothamsted ResearchHarpendenUK
| | | | - Henry Temple
- Biochemistry DepartmentUniversity of CambridgeCambridgeUK
| | | | - Paul Dupree
- Biochemistry DepartmentUniversity of CambridgeCambridgeUK
| | | | | | | | | | | |
Collapse
|
38
|
Petrik DL, Tryfona T, Dupree P, Anderson CT. BdGT43B2 functions in xylan biosynthesis and is essential for seedling survival in Brachypodium distachyon. PLANT DIRECT 2020; 4:e00216. [PMID: 32342027 PMCID: PMC7181411 DOI: 10.1002/pld3.216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
Xylan is the predominant hemicellulose in the primary cell walls of grasses, but its synthesis and interactions with other wall polysaccharides are complex and incompletely understood. To probe xylan biosynthesis, we generated CRISPR/Cas9 knockout and amiRNA knockdown lines of BdGT43B2, an ortholog of the wheat TaGT43-4 xylan synthase scaffolding protein in the IRX14 clade, in Brachypodium distachyon. Knockout of BdGT43B2 caused stunting and premature death in Brachypodium seedlings. Immunofluorescence labeling of xylans was greatly reduced in homozygous knockout BdGT43B2 mutants, whereas cellulose labeling was unchanged or slightly increased. Biochemical analysis showed reductions in digestible xylan in knockout mutant walls, and cell size was smaller in knockout leaves. BdGT43B2 knockdown plants appeared morphologically normal as adults, but showed slight reductions in seedling growth and small decreases in xylose content in isolated cell walls. Immunofluorescence labeling of xylan and cellulose staining was both reduced in BdGT43B2 knockdown plants. Together, these data indicate that BdGT43B2 functions in the synthesis of a form of xylan that is required for seedling growth and survival in Brachypodium distachyon.
Collapse
Affiliation(s)
- Deborah L. Petrik
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
- Molecular BiologyNortheastern State UniversityTahlequahOklahoma
| | | | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
39
|
Wang KL, Wang B, Hu R, Zhao X, Li H, Zhou G, Song L, Wu AM. Characterization of hemicelluloses in Phyllostachys edulis (moso bamboo) culm during xylogenesis. Carbohydr Polym 2019; 221:127-136. [DOI: 10.1016/j.carbpol.2019.05.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/10/2023]
|
40
|
Meents MJ, Motani S, Mansfield SD, Samuels AL. Organization of Xylan Production in the Golgi During Secondary Cell Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 181:527-546. [PMID: 31431513 PMCID: PMC6776863 DOI: 10.1104/pp.19.00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 05/16/2023]
Abstract
Secondary cell wall (SCW) production during xylem development requires massive up-regulation of hemicellulose (e.g. glucuronoxylan) biosynthesis in the Golgi. Although mutant studies have revealed much of the xylan biosynthetic machinery, the precise arrangement of these proteins and their products in the Golgi apparatus is largely unknown. We used a fluorescently tagged xylan backbone biosynthetic protein (IRREGULAR XYLEM9; IRX9) as a marker of xylan production in the Golgi of developing protoxylem tracheary elements in Arabidopsis (Arabidopsis thaliana). Both live-cell confocal and transmission electron microscopy (TEM) revealed SCW deposition is accompanied by a significant proliferation of Golgi stacks. Furthermore, although Golgi stacks were randomly distributed, the organization of the cytoplasm ensured their close proximity to developing SCWs. Quantitative immuno-TEM revealed IRX9 is present in a specific subdomain of the Golgi stack and was most abundant in the ring of the inner margins of medial cisternae where fenestrations are abundant. Conversely, the xylan product accumulated in swollen trans cisternal margins and the Trans-Golgi network (TGN). The irx9 mutant lacked this expansion for both the cisternal margins and the TGN, whereas Golgi stack proliferation was unaffected. Golgi in irx9 also displayed dramatic changes in their structure, with increases in cisternal fenestration and tubulation. Our data support a new model where xylan biosynthesis and packaging into secretory vesicles are localized in distinct structural and functional domains of the Golgi. Rather than polysaccharide biosynthesis occurring in the center of the cisternae, IRX9 and the xylan product are arranged in successive concentric rings in Golgi cisternae.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Sanya Motani
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| |
Collapse
|
41
|
Faik A, Held M. Review: Plant cell wall biochemical omics: The high-throughput biochemistry for polysaccharide biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:49-56. [PMID: 31300141 DOI: 10.1016/j.plantsci.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Progress in the functional biochemical analysis of plant glycosyltransferases (GTs) has been slow because plant GTs are generally membrane proteins, operate as part of larger, multimeric complexes, and utilize a vast complexity of substrate acceptors. Therefore, the field would benefit from development of adequate high throughput expression as well as product detection and characterization techniques. Here we review current approaches to tackle such obstacles and suggest a new path forward: nucleic acid programmable protein arrays (NAPPA) with liquid sample desorption ionization (LS-DESI-MS) mass spectrometry. NAPPA utilizes in vitro transcription and translation to produce epitope-tagged fusion proteins from cloned GT cDNAs. LS-DESI is a soft ionization technique that allows rapid and sensitive MS-based product characterization in situ. Coupling both approaches provides the opportunity to examine individual GT functions as well as protein-protein interactions. Furthermore, advances in automated oligosaccharide synthesis and lipid nanodisc technology should allow testing of plant GT activity in presence of numerous substrate acceptors and lipid environments in a high throughput fashion. Thus, NAPPA-DESI-MS has great potential to make headway in biochemical characterization of the large number of plant GTs.
Collapse
Affiliation(s)
- Ahmed Faik
- Environmental and Plant Biology Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA.
| | - Michael Held
- Chemistry and Biochemistry Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA
| |
Collapse
|
42
|
Wierzbicki MP, Christie N, Pinard D, Mansfield SD, Mizrachi E, Myburg AA. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues. THE NEW PHYTOLOGIST 2019; 223:1952-1972. [PMID: 31144333 DOI: 10.1111/nph.15972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Acetyl- and methylglucuronic acid decorations of xylan, the dominant hemicellulose in secondary cell walls (SCWs) of woody dicots, affect its interaction with cellulose and lignin to determine SCW structure and extractability. Genes and pathways involved in these modifications may be targets for genetic engineering; however, little is known about the regulation of xylan modifications in woody plants. To address this, we assessed genetic and gene expression variation associated with xylan modification in developing xylem of Eucalyptus grandis × Eucalyptus urophylla interspecific hybrids. Expression quantitative trait locus (eQTL) mapping identified potential regulatory polymorphisms affecting gene expression modules associated with xylan modification. We identified 14 putative xylan modification genes that are members of five expression modules sharing seven trans-eQTL hotspots. The xylan modification genes are prevalent in two expression modules. The first comprises nucleotide sugar interconversion pathways supplying the essential precursors for cellulose and xylan biosynthesis. The second contains genes responsible for phenylalanine biosynthesis and S-adenosylmethionine biosynthesis required for glucuronic acid and monolignol methylation. Co-expression and co-regulation analyses also identified four metabolic sources of acetyl coenxyme A that appear to be transcriptionally coordinated with xylan modification. Our systems genetics analysis may provide new avenues for metabolic engineering to alter wood SCW biology for enhanced biomass processability.
Collapse
Affiliation(s)
- Martin P Wierzbicki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
43
|
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:589-609. [PMID: 31111606 PMCID: PMC6852159 DOI: 10.1111/tpj.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
Collapse
Affiliation(s)
- Vikash Kumar
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Nicolas Delhomme
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | | | - Peter Immerzeel
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
- Chemical EngineeringKarlstad UniversityKarlstad65188Sweden
| | - Nathaniel R. Street
- Umeå Plant Science CenterPlant Physiology DepartmentUmeå UniversityUmeåSweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Ewa J. Mellerowicz
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| |
Collapse
|
44
|
Han W, Fan X, Teng L, Kaczurowski MJS, Zhang X, Xu D, Yin Y, Ye N. Identification, classification, and evolution of putative xylosyltransferases from algae. PROTOPLASMA 2019; 256:1119-1132. [PMID: 30941581 DOI: 10.1007/s00709-019-01358-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/15/2019] [Indexed: 05/28/2023]
Abstract
Xylosyltransferases (XylTs) play key roles in the biosynthesis of many different polysaccharides. These enzymes transfer D-xylose from UDP-xylose to substrate acceptors. In this study, we identified 30 XylTs from primary endosymbionts (green algae, red algae, and glaucophytes) and secondary or higher endosymbionts (brown algae, diatoms, Eustigmatophyceae, Pelagophyceae, and Cryptophyta). We performed comparative phylogenetic studies on key XylT subfamilies, and investigated the functional divergence of genes using RNA-Seq. Of the 30 XylTs, one β-1,4-XylT IRX14-related, one β-1,4 XylT IRX10L-related, and one xyloglucan 6-XylT 1-related gene were identified in the Charophyta, showing strong similarities to their land plant descendants. This implied the ancient occurrence of xylan and xyloglucan biosynthetic machineries in Charophyta. The other 27 XylTs were identified as UDP-D-xylose: L-fucose-α-1,3-D-XylT (FucXylT) type that specifically transferred D-xylose to fucose. We propose that FucXylTs originated from the last eukaryotic common ancestor, rather than being plant specific, because they are also distributed in Choanoflagellatea and Echinodermata. Considering the evidence from many aspects, we hypothesize that the FucXylTs likely participated in fucoidan biosynthesis in brown algae. We provide the first insights into the evolutionary history and functional divergence of FucXylT in algal biology.
Collapse
Affiliation(s)
- Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes,, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Linhong Teng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- College of Life Science, Dezhou University, Dezhou, 253023, China
| | | | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes,, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
45
|
Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. THE NEW PHYTOLOGIST 2019; 221:1703-1723. [PMID: 30312479 DOI: 10.1111/nph.15537] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/28/2018] [Indexed: 05/19/2023]
Abstract
Contents Summary 1703 I. Introduction 1703 II. Cellulose biosynthesis 1705 III. Xylan biosynthesis 1709 IV. Glucomannan biosynthesis 1713 V. Lignin biosynthesis 1714 VI. Concluding remarks 1717 Acknowledgements 1717 References 1717 SUMMARY: Secondary walls are synthesized in specialized cells, such as tracheary elements and fibers, and their remarkable strength and rigidity provide strong mechanical support to the cells and the plant body. The main components of secondary walls are cellulose, xylan, glucomannan and lignin. Biochemical, molecular and genetic studies have led to the discovery of most of the genes involved in the biosynthesis of secondary wall components. Cellulose is synthesized by cellulose synthase complexes in the plasma membrane and the recent success of in vitro synthesis of cellulose microfibrils by a single recombinant cellulose synthase isoform reconstituted into proteoliposomes opens new doors to further investigate the structure and functions of cellulose synthase complexes. Most genes involved in the glycosyl backbone synthesis, glycosyl substitutions and acetylation of xylan and glucomannan have been genetically characterized and the biochemical properties of some of their encoded enzymes have been investigated. The genes and their encoded enzymes participating in monolignol biosynthesis and modification have been extensively studied both genetically and biochemically. A full understanding of how secondary wall components are synthesized will ultimately enable us to produce plants with custom-designed secondary wall composition tailored to diverse applications.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
46
|
Huang J, Guo Y, Sun Q, Zeng W, Li J, Li X, Xu W. Genome-Wide Identification of R2R3-MYB Transcription Factors Regulating Secondary Cell Wall Thickening in Cotton Fiber Development. PLANT & CELL PHYSIOLOGY 2019; 60:687-701. [PMID: 30576529 DOI: 10.1093/pcp/pcy238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/14/2018] [Indexed: 05/02/2023]
Abstract
MYB proteins represent one of the largest transcription factor (TF) families in plants, some of which act as key transcriptional regulators of secondary cell wall (SCW) biosynthesis. Cotton (Gossypium hirsutum) fiber is thought to be an ideal single-cell model to study cell elongation and SCW biosynthesis. However, little knowledge regarding the TFs controlling fiber SCW biosynthesis, particularly for R2R3-MYBs is known. By far, no comprehensive genome-wide analysis of the secondary wall-associated R2R3-MYBs has been reported in cultivated tetraploid upland cotton. In this study, we identified 419 R2R3-MYB genes by systematically examining the cotton genome. A combination of phylogenetic, RNA-seq and co-expression analyses indicated that 36 R2R3-MYBs were either preferentially or highly expressed in 20 day post anthesis (dpa) fibers and are putative SCW regulators. Among these MYB genes, 22 MYBs are homologs of known SCW MYB proteins and the other 14 MYBs are novel proteins without prior reported SCW biosynthesis-related functions. Finally, we highlighted on the roles of two MYBs named GhMYB46_D13 and GhMYB46_D9, both of which displayed the highest expression in 20 dpa fibers. Expression of GhMYB46_D13 or GhMYB46_D9 individually in Arabidopsis resulted in ectopic SCW deposition in transgenic plants. Furthermore, both GhMYB46_D13 and GhMYB46_D9 were able to activate the cotton fiber SCW cellulose synthase gene promoters. Thus, we have identified 36 R2R3-MYBs as potential SCW regulators in cotton fibers that represent strong candidates for further functional studies during fiber development and SCW thickening.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qianwen Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuebao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Penning BW, McCann MC, Carpita NC. Evolution of the Cell Wall Gene Families of Grasses. FRONTIERS IN PLANT SCIENCE 2019; 10:1205. [PMID: 31681352 PMCID: PMC6805987 DOI: 10.3389/fpls.2019.01205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Grasses and related commelinid monocot species synthesize cell walls distinct in composition from other angiosperm species. With few exceptions, the genomes of all angiosperms contain the genes that encode the enzymes for synthesis of all cell-wall polysaccharide, phenylpropanoid, and protein constituents known in vascular plants. RNA-seq analysis of transcripts expressed during development of the upper and lower internodes of maize (Zea mays) stem captured the expression of cell-wall-related genes associated with primary or secondary wall formation. High levels of transcript abundances were not confined to genes associated with the distinct walls of grasses but also of those associated with xyloglucan and pectin synthesis. Combined with proteomics data to confirm that expressed genes are translated, we propose that the distinctive cell-wall composition of grasses results from sorting downstream from their sites of synthesis in the Golgi apparatus and hydrolysis of the uncharacteristic polysaccharides and not from differential expression of synthases of grass-specific polysaccharides.
Collapse
Affiliation(s)
- Bryan W. Penning
- Corn, Soybean and Wheat Quality Research, USDA-ARS, Wooster, OH, United States
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, West Lafayette, IN, United States
| | - Nicholas C. Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, West Lafayette, IN, United States
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Nicholas C. Carpita,
| |
Collapse
|
49
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|
50
|
Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, Moremen KW, Mohnen D. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J Biol Chem 2018; 293:19047-19063. [PMID: 30327429 DOI: 10.1074/jbc.ra118.004463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Indexed: 11/06/2022] Open
Abstract
Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.
Collapse
Affiliation(s)
- Robert A Amos
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | | | | | - Melani A Atmodjo
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | | | - Kelley W Moremen
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- From the Complex Carbohydrate Research Center and .,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|