1
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
2
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Zhang D, Zhang D, Zhang Y, Li G, Sun D, Zhou B, Li J. Insights into the Epigenetic Basis of Plant Salt Tolerance. Int J Mol Sci 2024; 25:11698. [PMID: 39519250 PMCID: PMC11547110 DOI: 10.3390/ijms252111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing salinity of agricultural lands highlights the urgent need to improve salt tolerance in crops, a critical factor for ensuring food security. Epigenetic mechanisms are pivotal in plant adaptation to salt stress. This review elucidates the complex roles of DNA methylation, histone modifications, histone variants, and non-coding RNAs in the fine-tuning of gene expression in response to salt stress. It emphasizes how heritable changes, which do not alter the DNA sequence but significantly impact plant phenotype, contribute to this adaptation. DNA methylation is notably prevalent under high-salinity conditions and is associated with changes in gene expression that enhance plant resilience to salt. Modifications in histones, including both methylation and acetylation, are directly linked to the regulation of salt-tolerance genes. The presence of histone variants, such as H2A.Z, is altered under salt stress, promoting plant adaptation to high-salinity environments. Additionally, non-coding RNAs, such as miRNAs and lncRNAs, contribute to the intricate gene regulatory network under salt stress. This review also underscores the importance of understanding these epigenetic changes in developing plant stress memory and enhancing stress tolerance.
Collapse
Affiliation(s)
- Dongyu Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Duoqian Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaobin Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanlin Li
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dehao Sun
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Yang X, Hu Q, Zhao Y, Chen Y, Li C, He J, Wang ZY. Identification of GmPT proteins and investigation of their expressions in response to abiotic stress in soybean. PLANTA 2024; 259:76. [PMID: 38418674 DOI: 10.1007/s00425-024-04348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION Investigation the expression patterns of GmPT genes in response to various abiotic stresses and overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress. Soybean is considered to be one of the significant oil crops globally, as it offers a diverse range of essential nutrients that contribute to human health. Salt stress seriously affects the yield of soybean through negative impacts on the growth, nodulation, reproduction, and other agronomy traits. The phosphate transporters 1(PHT1) subfamily, which is a part of the PHTs family in plants, is primarily found in the cell membrane and responsible for the uptake and transport of phosphorus. However, the role of GmPT (GmPT1-GmPT14) genes in response to salt stress has not been comprehensively studied. Here, we conducted a systematic analysis to ascertain the distribution and genomic duplications of GmPT genes, as well as their expression patterns in response to various abiotic stresses. Promoter analysis of GmPT genes revealed that six stress-related cis-elements were enriched in these genes. The overexpression of GmPT11 in soybean hairy roots and Arabidopsis exhibited hypersensitivity to salt stress, while no significant change was observed under low phosphate treatment, suggesting a crucial role in the response to salt stress. These findings provide novel insights into enhancing plant tolerance to salt stress.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Agriculture, Guizhou University, Guizhou, 550025, China
| | - Qing Hu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yunfeng Zhao
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China.
| | - Jin He
- College of Agriculture, Guizhou University, Guizhou, 550025, China.
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 524300, China
| |
Collapse
|
5
|
Quan W, Chan Z, Wei P, Mao Y, Bartels D, Liu X. PHD finger proteins function in plant development and abiotic stress responses: an overview. FRONTIERS IN PLANT SCIENCE 2023; 14:1297607. [PMID: 38046601 PMCID: PMC10693458 DOI: 10.3389/fpls.2023.1297607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The plant homeodomain (PHD) finger with a conserved Cys4-His-Cys3 motif is a common zinc-binding domain, which is widely present in all eukaryotic genomes. The PHD finger is the "reader" domain of methylation marks in histone H3 and plays a role in the regulation of gene expression patterns. Numerous proteins containing the PHD finger have been found in plants. In this review, we summarize the functional studies on PHD finger proteins in plant growth and development and responses to abiotic stresses in recent years. Some PHD finger proteins, such as VIN3, VILs, and Ehd3, are involved in the regulation of flowering time, while some PHD finger proteins participate in the pollen development, for example, MS, TIP3, and MMD1. Furthermore, other PHD finger proteins regulate the plant tolerance to abiotic stresses, including Alfin1, ALs, and AtSIZ1. Research suggests that PHD finger proteins, as an essential transcription regulator family, play critical roles in various plant biological processes, which is helpful in understanding the molecular mechanisms of novel PHD finger proteins to perform specific function.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Piwei Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| | - Yahui Mao
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
| |
Collapse
|
6
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
7
|
Zhu Y, Ren Y, Liu J, Liang W, Zhang Y, Shen F, Ling J, Zhang C. New Genes Identified as Modulating Salt Tolerance in Maize Seedlings Using the Combination of Transcriptome Analysis and BSA. PLANTS (BASEL, SWITZERLAND) 2023; 12:1331. [PMID: 36987019 PMCID: PMC10053919 DOI: 10.3390/plants12061331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
(1) Background: Salt stress is an abiotic factor that limits maize yield and quality. A highly salt-tolerance inbred AS5 and a salt-sensitive inbred NX420 collected from Ningxia Province, China, were used to identify new genes for modulating salt resistance in maize. (2) Methods: To understand the different molecular bases of salt tolerance in AS5 and NX420, we performed BSA-seq using an F2 population for two extreme bulks derived from the cross between AS5 and NX420. Transcriptomic analysis was also conducted for AS5 and NX420 at the seedling stage after treatment with 150 mM of NaCl for 14 days. (3) Results: AS5 had a higher biomass and lower Na+ content than NX420 in the seedling stage after treatment with 150 mM NaCl for 14 days. One hundred and six candidate regions for salt tolerance were mapped on all of the chromosomes through BSA-seq using F2 in an extreme population. Based on the polymorphisms identified between both parents, we detected 77 genes. A large number of differentially expressed genes (DEGs) at the seedling stage under salt stress between these two inbred lines were detected using transcriptome sequencing. GO analysis indicated that 925 and 686 genes were significantly enriched in the integral component of the membrane of AS5 and NX420, respectively. Among these results, two and four DEGs were identified as overlapping in these two inbred lines using BSA-seq and transcriptomic analysis, respectively. Two genes (Zm00001d053925 and Zm00001d037181) were detected in both AS5 and NX420; the transcription level of Zm00001d053925 was induced to be significantly higher in AS5 than in NX420 (41.99 times versus 6.06 times after 150 mM of NaCl treatment for 48 h), while the expression of Zm00001d037181 showed no significant difference upon salt treatment in both lines. The functional annotation of the new candidate genes showed that it was an unknown function protein. (4) Conclusions: Zm00001d053925 is a new functional gene responding to salt stress in the seedling stage, which provides an important genetic resource for salt-tolerant maize breeding.
Collapse
Affiliation(s)
- Yongxing Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Agricultural Biotechnology Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Ying Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Ji’an Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Wenguang Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Fengyuan Shen
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Jiang Ling
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
8
|
Wei W, Lu L, Bian XH, Li QT, Han JQ, Tao JJ, Yin CC, Lai YC, Li W, Bi YD, Man WQ, Chen SY, Zhang JS, Zhang WK. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866859 DOI: 10.1111/jipb.13474] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
9
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Yan C, Yang N, Li R, Wang X, Xu Y, Zhang C, Wang X, Wang Y. Alfin-like transcription factor VqAL4 regulates a stilbene synthase to enhance powdery mildew resistance in grapevine. MOLECULAR PLANT PATHOLOGY 2023; 24:123-141. [PMID: 36404575 PMCID: PMC9831286 DOI: 10.1111/mpp.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Resveratrol is a phytoalexin that is synthesized by stilbene synthase (STS). Resveratrol in the human diet is known to have beneficial effects on health. We previously identified six novel STS (VqNSTS) transcripts from the transcriptome data of Vitis quinquangularis accession Danfeng-2. However, the functions of and defensive mechanisms triggered by these VqNSTS transcripts remain unknown. In the present study, we demonstrate that the expression of five of these six novel members, VqNSTS2-VqNSTS6, can be induced by the powdery mildew-causing fungus Uncinula necator. Additionally, overexpression of VqNSTS4 in the V. vinifera susceptible cultivar Thompson Seedless promoted accumulation of stilbenes and enhanced resistance to U. necator by activating salicylic acid (SA) signalling. Furthermore, our results indicate that the Alfin-like (AL) transcription factor VqAL4 can directly bind to the G-rich element (CACCTC) in the VqNSTS4 promoter and activate gene expression. Moreover, overexpression of VqAL4 in Thompson Seedless enhanced resistance to U. necator by promoting stilbene accumulation and activating SA signalling. Conversely, RNA interference-mediated silencing of VqNSTS4 and VqAL4 resulted in increased susceptibility to U. necator. Collectively, our results reveal that VqNSTS4, regulated by VqAL4, enhances grapevine resistance to powdery mildew by activating SA signalling. Our findings may be useful to improve disease resistance in perennial fruit trees.
Collapse
Affiliation(s)
- Chaohui Yan
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Na Yang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Ruimin Li
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Xinqi Wang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Yan Xu
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Chaohong Zhang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Xiping Wang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| | - Yuejin Wang
- College of HorticultureNorthwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYanglingChina
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A & F UniversityYanglingChina
| |
Collapse
|
11
|
Cadavid IC, Balbinott N, Margis R. Beyond transcription factors: more regulatory layers affecting soybean gene expression under abiotic stress. Genet Mol Biol 2023; 46:e20220166. [PMID: 36706026 PMCID: PMC9881580 DOI: 10.1590/1678-4685-gmb-2022-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023] Open
Abstract
Abiotic stresses such as nutritional imbalance, salt, light intensity, and high and low temperatures negatively affect plant growth and development. Through the course of evolution, plants developed multiple mechanisms to cope with environmental variations, such as physiological, morphological, and molecular adaptations. Epigenetic regulation, transcription factor activity, and post-transcriptional regulation operated by RNA molecules are mechanisms associated with gene expression regulation under stress. Epigenetic regulation, including histone and DNA covalent modifications, triggers chromatin remodeling and changes the accessibility of transcription machinery leading to alterations in gene activity and plant homeostasis responses. Soybean is a legume widely produced and whose productivity is deeply affected by abiotic stresses. Many studies explored how soybean faces stress to identify key elements and improve productivity through breeding and genetic engineering. This review summarizes recent progress in soybean gene expression regulation through epigenetic modifications and circRNAs pathways, and points out the knowledge gaps that are important to study by the scientific community. It focuses on epigenetic factors participating in soybean abiotic stress responses, and chromatin modifications in response to stressful environments and draws attention to the regulatory potential of circular RNA in post-transcriptional processing.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, Brazil
| | - Natalia Balbinott
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Biofisica, Porto Alegre, Brazil
| |
Collapse
|
12
|
Qiu X, Kong L, Chen H, Lin Y, Tu S, Wang L, Chen Z, Zeng M, Xiao J, Yuan P, Qiu M, Wang Y, Ye W, Duan K, Dong S, Wang Y. The Phytophthora sojae nuclear effector PsAvh110 targets a host transcriptional complex to modulate plant immunity. THE PLANT CELL 2023; 35:574-597. [PMID: 36222564 PMCID: PMC9806631 DOI: 10.1093/plcell/koac300] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/18/2022] [Indexed: 05/27/2023]
Abstract
Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.
Collapse
Affiliation(s)
- Xufang Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqun Tu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Xiao M, Wang J, Xu F. Methylation hallmarks on the histone tail as a linker of osmotic stress and gene transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:967607. [PMID: 36035677 PMCID: PMC9399788 DOI: 10.3389/fpls.2022.967607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/12/2023]
Abstract
Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription via modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Collapse
|
14
|
He R, Zhang P, Yan Y, Yu C, Jiang L, Zhu Y, Wang D. Expanding the range of CRISPR/Cas9-directed genome editing in soybean. ABIOTECH 2022; 3:89-98. [PMID: 36312444 PMCID: PMC9590560 DOI: 10.1007/s42994-021-00051-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 06/03/2023]
Abstract
The CRISPR/Cas9 system has been widely applied for plant genome editing. The commonly used SpCas9 has been shown to rely on the protospacer adjacent motif (PAM) sequences in the canonical form NGG and non-canonical NAG. Although these PAM sequences are extensively distributed across plant genomes, a broader scope of PAM sequence is required to expand the range of genome editing. Here we report the adoption of three variant enzymes, xCas9, SpCas9-NG and XNG-Cas9, to produce targeted mutation in soybean. Sequencing results determined that xCas9 with the NGG and KGA (contains TGA and GGA) PAMs successfully induces genome editing in soybean genome. SpCas9-NG could recognize NGD (contains NGG, NGA and NGT), RGC (contains AGC and GGC), GAA and GAT PAM sites. In addition, XNG-Cas9 was observed to cleave soybean genomic regions with NGG, GAA and AGY (contains AGC and AGT) PAM. Moreover, off-target analyses on soybean editing events induced by SpCas9 and xCas9 indicated that two high-fidelity Cas9 variants including eSpCas9 (enhanced specificity SpCas9) and exCas9 (enhanced specificity xCas9) could improve the specificity of the GGA PAM sequence without reducing on-target editing efficiency. These findings significantly expand the scope of Cas9-mediated genome editing in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00051-4.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Pengxiang Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Yuchuan Yan
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Chen Yu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Liyun Jiang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031 Jiangxi China
| |
Collapse
|
15
|
Liu M, Jiang J, Han Y, Shi M, Li X, Wang Y, Dong Z, Yang C. Functional Characterization of the Lysine-Specific Histone Demethylases Family in Soybean. PLANTS 2022; 11:plants11111398. [PMID: 35684171 PMCID: PMC9182794 DOI: 10.3390/plants11111398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Histone modifications, such as methylation and demethylation, have crucial roles in regulating chromatin structure and gene expression. Lysine-specific histone demethylases (LSDs) belong to the amine oxidase family, which is an important family of histone lysine demethylases (KDMs), and functions in maintaining homeostasis of histone methylation. Here, we identified six LSD-like (LDL) genes from the important leguminous soybean. Phylogenetic analyses divided the six GmLDLs into four clusters with two highly conserved SWRIM and amine oxidase domains. Indeed, demethylase activity assay using recombinant GmLDL proteins in vitro demonstrated that GmLDLs have demethylase activity toward mono- and dimethylated Lys4 but not trimethylated histone 3, similar to their orthologs previously reported in animals. Using real-time PCR experiments in combination with public transcriptome data, we found that these six GmLDL genes exhibit comparable expressions in multiple tissues or in response to different abiotic stresses. Moreover, our genetic variation investigation of GmLDL genes among 761 resequenced soybean accessions indicates that GmLDLs are well conserved during soybean domestication and improvement. Taken together, these findings demonstrate that GmFLD, GmLDL1a, and GmLDL1b are bona fide H3K4 demethylases towards H4K4me1/2 and GmLDLs exist in various members with likely conserved and divergent roles in soybeans.
Collapse
Affiliation(s)
- Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Yapeng Han
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200240, China; (Y.H.); (Y.W.)
| | - Mengying Shi
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Xianli Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200240, China; (Y.H.); (Y.W.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhicheng Dong
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (Z.D.); (C.Y.)
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.L.); (J.J.); (M.S.); (X.L.)
- Correspondence: (Z.D.); (C.Y.)
| |
Collapse
|
16
|
Singroha G, Kumar S, Gupta OP, Singh GP, Sharma P. Uncovering the Epigenetic Marks Involved in Mediating Salt Stress Tolerance in Plants. Front Genet 2022; 13:811732. [PMID: 35495170 PMCID: PMC9053670 DOI: 10.3389/fgene.2022.811732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
Abstract
The toxic effects of salinity on agricultural productivity necessitate development of salt stress tolerance in food crops in order to meet the escalating demands. Plants use sophisticated epigenetic systems to fine-tune their responses to environmental cues. Epigenetics is the study of heritable, covalent modifications of DNA and histone proteins that regulate gene expression without altering the underlying nucleotide sequence and consequently modify the phenotype. Epigenetic processes such as covalent changes in DNA, histone modification, histone variants, and certain non-coding RNAs (ncRNA) influence chromatin architecture to regulate its accessibility to the transcriptional machinery. Under salt stress conditions, there is a high frequency of hypermethylation at promoter located CpG sites. Salt stress results in the accumulation of active histones marks like H3K9K14Ac and H3K4me3 and the downfall of repressive histone marks such as H3K9me2 and H3K27me3 on salt-tolerance genes. Similarly, the H2A.Z variant of H2A histone is reported to be down regulated under salt stress conditions. A thorough understanding of the plasticity provided by epigenetic regulation enables a modern approach to genetic modification of salt-resistant cultivars. In this review, we summarize recent developments in understanding the epigenetic mechanisms, particularly those that may play a governing role in the designing of climate smart crops in response to salt stress.
Collapse
|
17
|
Hu J, Zhuang Y, Li X, Li X, Sun C, Ding Z, Xu R, Zhang D. Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots. BMC PLANT BIOLOGY 2022; 22:157. [PMID: 35361109 PMCID: PMC8969339 DOI: 10.1186/s12870-022-03541-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/14/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Soil salinity is a primary factor limiting soybean (Glycine max) productivity. Breeding soybean for tolerance to high salt conditions is therefore critical for increasing yield. To explore the molecular mechanism of soybean responses to salt stress, we performed a comparative transcriptome time-series analysis of root samples collected from two soybean cultivars with contrasting salt sensitivity. RESULTS The salt-tolerant cultivar 'Qi Huang No.34' (QH34) showed more differential expression of genes than the salt-sensitive cultivar 'Dong Nong No.50' (DN50). We identified 17,477 genes responsive to salt stress, of which 6644 exhibited distinct expression differences between the two soybean cultivars. We constructed the corresponding co-expression network and performed Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results suggested that phytohormone signaling, oxidoreduction, phenylpropanoid biosynthesis, the mitogen-activated protein kinase pathway and ribosome metabolism may play crucial roles in response to salt stress. CONCLUSIONS Our comparative analysis offers a comprehensive understanding of the genes involved in responding to salt stress and maintaining cell homeostasis in soybean. The regulatory gene networks constructed here also provide valuable molecular resources for future functional studies and breeding of soybean with improved tolerance to salinity.
Collapse
Affiliation(s)
- Junmei Hu
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yongbin Zhuang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xianchong Li
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiaoming Li
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yan’tai, 264005 Shandong China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qing’dao, 266237 Shandong China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, 250131 Shandong China
| | - Dajian Zhang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
18
|
Rodriguez-Granados NY, Ramirez-Prado JS, Brik-Chaouche R, An J, Manza-Mianza D, Sircar S, Troadec C, Hanique M, Soulard C, Costa R, Dogimont C, Latrasse D, Raynaud C, Boualem A, Benhamed M, Bendahmane A. CmLHP1 proteins play a key role in plant development and sex determination in melon (Cucumis melo). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1213-1228. [PMID: 34897855 DOI: 10.1111/tpj.15627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression. Cmlhp1ab double mutants displayed an overall loss and redistribution of H3K27me3, leading to a deregulation of genes involved in hormone responses, plant architecture, and flower development. Consequently, double mutants display pleiotropic phenotypes and, interestingly, a general increase of the male:female ratio. We associated this phenomenon with a general deregulation of some hormonal response genes and a local activation of male-promoting SDGs and MADS-box transcription factors. Altogether, these results reveal a novel function for CmLHP1 proteins in maintenance of monoecy and provide novel insights into the polycomb-mediated epigenomic regulation of sex lability in plants.
Collapse
Affiliation(s)
- Natalia Yaneth Rodriguez-Granados
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Juan Sebastian Ramirez-Prado
- Centre of Microbial and Plant Genetics, KU Leuven, 3001, Leuven, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Rim Brik-Chaouche
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Jing An
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Deborah Manza-Mianza
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Sanchari Sircar
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Christelle Troadec
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Melissa Hanique
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Camille Soulard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Rafael Costa
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Catherine Dogimont
- INRA, UR 1052, Unité de Génétique et d'Amélioration des Fruits et Légumes, BP 94, F-84143, Montfavet, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, 630, 91405, Orsay, France
| |
Collapse
|
19
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Wu L, Chang Y, Wang L, Wang S, Wu J. The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:485-500. [PMID: 34698878 DOI: 10.1007/s00122-021-03978-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 12 loci significantly associated with drought stress based on survival rate after drought stress at seedling stage. We further confirmed the drought-related function of an aquaporin gene (PvXIP1;2) located at Locus_10. A variety of adverse conditions, including drought stress, severely affect common bean production. Molecular breeding for drought resistance has been proposed as an effective and practical way to improve the drought resistance of common bean. A genome-wide association analysis was conducted to identify drought-related loci based on survival rates at the seedling stage using a natural population consisting of 400 common bean accessions and 3,832,340 SNPs. The coefficient of variation ranged from 40.90 to 56.22% for survival rates in three independent experiments. A total of 12 associated loci containing 89 significant SNPs were identified for survival rates at the seedling stage. Four loci overlapped in the region of the QTLs reported to be associated with drought resistance. According to the expression profiles, gene annotations and references of the functions of homologous genes in Arabidopsis, 39 genes were considered potential candidate genes selected from 199 genes annotated within all associated loci. A stable locus (Locus_10) was identified on chromosome 11, which contained LEA, aquaporin, and proline-rich protein genes. We further confirmed the drought-related function of an aquaporin (PvXIP1;2) located at Locus_10 by expression pattern analysis, phenotypic analysis of PvXIP1;2-overexpressing Arabidopsis and Agrobacterium rhizogenes-mediated hairy root transformation systems, indicating that the association results can facilitate the efficient identification of genes related to drought resistance. These loci and their candidate genes provide a foundation for crop improvement via breeding for drought resistance in common bean.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Yung WS, Li MW, Sze CC, Wang Q, Lam HM. Histone modifications and chromatin remodelling in plants in response to salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1495-1513. [PMID: 34028035 DOI: 10.1111/ppl.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qianwen Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
22
|
Lu L, Wei W, Tao J, Lu X, Bian X, Hu Y, Cheng T, Yin C, Zhang W, Chen S, Zhang J. Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2362-2379. [PMID: 34265872 PMCID: PMC8541785 DOI: 10.1111/pbi.13668] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 05/07/2023]
Abstract
Soybean is an important crop worldwide, but its production is severely affected by salt stress. Understanding the regulatory mechanism of salt response is crucial for improving the salt tolerance of soybean. Here, we reveal a role for nuclear factor Y subunit GmNFYA in salt tolerance of soybean likely through the regulation of histone acetylation. GmNFYA is induced by salt stress. Overexpression of GmNFYA significantly enhances salt tolerance in stable transgenic soybean plants by inducing salt-responsive genes. Analysis in soybean plants with transgenic hairy roots also supports the conclusion. GmNFYA interacts with GmFVE, which functions with putative histone deacetylase GmHDA13 in a complex for transcriptional repression possibly by reducing H3K9 acetylation at target loci. Under salt stress, GmNFYA likely accumulates and competes with GmHDA13 for interaction with GmFVE, leading to the derepression and maintenance of histone acetylation for activation of salt-responsive genes and finally conferring salt tolerance in soybean plants. In addition, a haplotype I GmNFYA promoter is identified with the highest self-activated promoter activity and may be selected during future breeding for salt-tolerant cultivars. Our study uncovers the epigenetic regulatory mechanism of GmNFYA in salt-stress response, and all the factors/elements identified may be potential targets for genetic manipulation of salt tolerance in soybean and other crops.
Collapse
Affiliation(s)
- Long Lu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of Crop SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei Wei
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Jian‐Jun Tao
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Xiang Lu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Xiao‐Hua Bian
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Yang Hu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Tong Cheng
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Cui‐Cui Yin
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Wan‐Ke Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Shou‐Yi Chen
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Jin‐Song Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Lu L, Wei W, Li QT, Bian XH, Lu X, Hu Y, Cheng T, Wang ZY, Jin M, Tao JJ, Yin CC, He SJ, Man WQ, Li W, Lai YC, Zhang WK, Chen SY, Zhang JS. A transcriptional regulatory module controls lipid accumulation in soybean. THE NEW PHYTOLOGIST 2021; 231:661-678. [PMID: 33864683 DOI: 10.1111/nph.17401] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max) is one of the most important oilseed crops. However, the regulatory mechanism that governs the process of oil accumulation in soybean remains poorly understood. In this study, GmZF392, a tandem CCCH zinc finger (TZF) protein which was identified in our previous RNA-seq analysis of seed-preferred transcription factors, was found to function as a positive regulator of lipid production. GmZF392 promotes seed oil accumulation in both transgenic Arabidopsis and stable transgenic soybean plants by binding to a bipartite cis-element, containing TG- and TA-rich sequences, in promoter regions, activating the expression of genes in the lipid biosynthesis pathway. GmZF392 physically interacts with GmZF351, our previously identified transcriptional regulator of lipid biosynthesis, to synergistically promote downstream gene expression. Both GmZF392 and GmZF351 are further upregulated by GmNFYA, another transcription factor involved in lipid biosynthesis, directly (in the former case) and indirectly (in the latter case). Promoter sequence diversity analysis showed that the GmZF392 promoter may have been selected at the origin of the Glycine genus and further mildly selected during domestication from wild soybeans to cultivated soybeans. Our study reveals a regulatory module containing three transcription factors in the lipid biosynthesis pathway, and manipulation of the module may improve oil production in soybean and other oilseed crops.
Collapse
Affiliation(s)
- Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou-Ya Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Zhang C, Cheng Q, Wang H, Gao H, Fang X, Chen X, Zhao M, Wei W, Song B, Liu S, Wu J, Zhang S, Xu P. GmBTB/POZ promotes the ubiquitination and degradation of LHP1 to regulate the response of soybean to Phytophthora sojae. Commun Biol 2021; 4:372. [PMID: 33742112 PMCID: PMC7979691 DOI: 10.1038/s42003-021-01907-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
Phytophthora sojae is a pathogen that causes stem and root rot in soybean (Glycine max [L.] Merr.). We previously demonstrated that GmBTB/POZ, a BTB/POZ domain-containing nuclear protein, enhances resistance to P. sojae in soybean, via a process that depends on salicylic acid (SA). Here, we demonstrate that GmBTB/POZ associates directly with soybean LIKE HETEROCHROMATIN PROTEIN1 (GmLHP1) in vitro and in vivo and promotes its ubiquitination and degradation. Both overexpression and RNA interference analysis of transgenic lines demonstrate that GmLHP1 negatively regulates the response of soybean to P. sojae by reducing SA levels and repressing GmPR1 expression. The WRKY transcription factor gene, GmWRKY40, a SA-induced gene in the SA signaling pathway, is targeted by GmLHP1, which represses its expression via at least two mechanisms (directly binding to its promoter and impairing SA accumulation). Furthermore, the nuclear localization of GmLHP1 is required for the GmLHP1-mediated negative regulation of immunity, SA levels and the suppression of GmWRKY40 expression. Finally, GmBTB/POZ releases GmLHP1-regulated GmWRKY40 suppression and increases resistance to P. sojae in GmLHP1-OE hairy roots. These findings uncover a regulatory mechanism by which GmBTB/POZ-GmLHP1 modulates resistance to P. sojae in soybean, likely by regulating the expression of downstream target gene GmWRKY40.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qun Cheng
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Huiyu Wang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Hong Gao
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Xin Fang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Xi Chen
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Wanling Wei
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China.
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China.
| |
Collapse
|
25
|
Li A, Hu B, Chu C. Epigenetic regulation of nitrogen and phosphorus responses in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153363. [PMID: 33508741 DOI: 10.1016/j.jplph.2021.153363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two of the most important nutrients for plant growth and crop yields. In the last decade, plenty of studies have revealed the genetic factors and their regulatory networks which are involved in N and/or P uptake and utilization in different model plant species, especially in Arabidopsis and rice. However, increasing evidences have shown that epigenetic regulation also plays a vital role in modulating plant responses to nutrient availability. In this review, we make a brief summary of epigenetic regulation including histone modifications, DNA methylation, and other chromatin structure alterations in tuning N and P responses. We also give an outlook for future research directions to comprehensively dissect the involvement of epigenetic regulation in modulating nutrient response in plants.
Collapse
Affiliation(s)
- Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Lwalaba JLW, Zvobgo G, Gai Y, Issaka JH, Mwamba TM, Louis LT, Fu L, Nazir MM, Ansey Kirika B, Kazadi Tshibangu A, Adil MF, Sehar S, Mukobo RP, Zhang G. Transcriptome analysis reveals the tolerant mechanisms to cobalt and copper in barley. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111761. [PMID: 33333341 DOI: 10.1016/j.ecoenv.2020.111761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Cobalt (Co) and copper (Cu) co-exist commonly in the contaminated soils and at excessive levels, they are toxic to plants. However, their joint effect and possible interaction have not been fully addressed. In this work, a hydroponic experiment was performed to investigate the combined effects of Co and Cu on two barley genotypes at transcriptional level by RNA-seq analysis. The results identified 358 genes inclusively expressed in both genotypes under single and combined treatments of Co and Cu, with most of them being related to metal transport, stress response and transcription factor. The combined treatment induced more differently expressed genes (DEGs) than the single treatment, with Yan66, a metal tolerant genotype having more DEGs than Ea52, a sensitive genotype. The pathways associated with anthocyanin biosynthesis, MAPK signaling, glutathione biosynthesis, phenylalanine metabolism, photosynthesis, arginin biosynthesis, fatty acid elongation, and plant hormone signal transduction biosynthesis were induced and inhibited in Yan66 and Ea52, respectively. Furthermore, flavonoid biosynthesis was much more largely enhanced and accordingly more free flavonoid components (naringin, narirutin and neohesperidin) were accumulated in Yan66 than in Ea52. It may be suggested that high tolerance to both Co and Cu in Yan66 is attributed to its high gene regulatory ability.
Collapse
Affiliation(s)
- Jonas Lwalaba Wa Lwalaba
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Gerald Zvobgo
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yunpeng Gai
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Joan Heren Issaka
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Theodore Mulembo Mwamba
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Laurence Tennyson Louis
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Liangbo Fu
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Mudassir Nazir
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Bibich Ansey Kirika
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Audry Kazadi Tshibangu
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Muhammad Faheem Adil
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Robert Prince Mukobo
- Department of Crops sciences, Faculty of Agronomy, Université de Lubumbashi, PO Box 1825, Lubumbashi, Democratic Republic of the Congo
| | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
27
|
Kumar S, Mohapatra T. Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:596236. [PMID: 34093600 PMCID: PMC8175986 DOI: 10.3389/fpls.2021.596236] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | |
Collapse
|
28
|
Sun Z, Wang X, Qiao K, Fan S, Ma Q. Genome-wide analysis of JMJ-C histone demethylase family involved in salt-tolerance in Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:420-433. [PMID: 33257231 DOI: 10.1016/j.plaphy.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The jumonji C (JMJ-C) domain-containing protein is a histone demethylase and is involved in plant stress. However, the function of the JMJ-C gene family in cotton is still not confirmed. Herein, 25, 26, 52, and 53 members belonging to the JMJ-C gene family were identified in Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense, respectively. Based on phylogenetic relationships and conserved domains, the JMJ-C genes were categorized into five subfamilies, KDM3, KDM4, KDM5, JMJC, and JMJD6. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. The collinear investigation showed that whole-genome duplication event is the mainly power to drive JMJ-C gene family expansion. Transcriptome and qRT-PCR analysis revealed that eight GhJMJs were induced by salt and PEG treatment. Further assays confirmed that GhJMJ34/40 greatly improved salt and osmotic tolerance in Saccharomyces cerevisiae. These results help clarify JMJ-C protein functions in preparation for further study.
Collapse
Affiliation(s)
- Zhimao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaoyan Wang
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, China.
| | - Kaikai Qiao
- State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Shuli Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Qifeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| |
Collapse
|
29
|
Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D. Epigenetics: possible applications in climate-smart crop breeding. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5223-5236. [PMID: 32279074 PMCID: PMC7475248 DOI: 10.1093/jxb/eraa188] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 05/23/2023]
Abstract
To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals, and the Environment, University of Padova, Agripolis, Viale dell’Università, Padova, Italy
| | - Eleni Tani
- Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Lykovrysi, Greece
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
30
|
Chen C, Kim D, Yun HR, Lee YM, Yogendra B, Bo Z, Kim HE, Min JH, Lee YS, Rim YG, Kim HU, Sung S, Heo JB. Nuclear import of LIKE HETEROCHROMATIN PROTEIN1 is redundantly mediated by importins α-1, α-2 and α-3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1205-1214. [PMID: 32365248 PMCID: PMC7810169 DOI: 10.1111/tpj.14796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 05/19/2023]
Abstract
LIKE HETEROCHROMATIN PROTEIN1 (LHP1) encodes the only plant homologue of the metazoan HETEROCHROMATIN PROTEIN1 (HP1) protein family. The LHP1 protein is necessary for proper epigenetic regulation of a range of developmental processes in plants. LHP1 is a transcriptional repressor of flowering-related genes, such as FLOWERING LOCUS T (FT), FLOWERING LOCUS C (FLC), AGAMOUS (AG) and APETALA 3 (AP3). We found that LHP1 interacts with importin α-1 (IMPα-1), importin α-2 (IMPα-2) and importin α-3 (IMPα-3) both in vitro and in vivo. A genetic approach revealed that triple mutation of impα-1, impα-2 and impα-3 resulted in Arabidopsis plants with a rapid flowering phenotype similar to that of plants with mutations in lhp1 due to the upregulation of FT expression. Nuclear targeting of LHP1 was severely impaired in the impα triple mutant, resulting in the de-repression of LHP1 target genes AG, AP3 and SHATTERPROOF 1 as well as FT. Therefore, the importin proteins IMPα-1, -2 and -3 are necessary for the nuclear import of LHP1.
Collapse
Affiliation(s)
- Chong Chen
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Daewon Kim
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Hee Rang Yun
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Yun Mi Lee
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Bordiya Yogendra
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Zhao Bo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Hae Eun Kim
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Jun Hong Min
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea
| | - Yeong Gil Rim
- Systems & Synthetic Agrobiotech Center, Gyeongsang National University, Jinju 660-701 Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006 Korea
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
- International Scholar, Kyung-Hee University, Suwon, Korea
- Corresponding author: Tel: +82 51 200 7520; Fax: +82 51 200 7505. ;
| | - Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan 604-714, Korea
- Corresponding author: Tel: +82 51 200 7520; Fax: +82 51 200 7505. ;
| |
Collapse
|
31
|
Han B, Xu W, Ahmed N, Yu A, Wang Z, Liu A. Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean. PLANT & CELL PHYSIOLOGY 2020; 61:1120-1133. [PMID: 32186723 DOI: 10.1093/pcp/pcaa037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/15/2020] [Indexed: 05/09/2023]
Abstract
Soil salinity is a major source of abiotic plant stress, adversely affecting plant growth, development and productivity. Although the physiological and molecular mechanisms that underlie plant responses to salt stress are becoming increasingly understood, epigenetic modifications, such as histone methylations and their potential regulation of the transcription of masked genes at the genome level in response to salt stress, remain largely unclear. Castor bean, an important nonedible oil crop, has evolved the capacity to grow under salt stress. Here, based on high-throughput RNA-seq and ChIP-seq data, we systematically investigated changes in genomic transcription and histone methylation using typical histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 tri-methylated lysine 27 (H3K27me3) markers in castor bean leaves subjected to salt stress. The results showed that gain or loss of histone methylation was closely associated with activated or repressed gene expression, though variations in both transcriptome and histone methylation modifications were relatively narrow in response to salt stress. Diverse salt responsive genes and switched histone methylation sites were identified in this study. In particular, we found for the first time that the transcription of the key salt-response regulator RADIALIS-LIKE SANT (RSM1), a MYB-related transcription factor involved in ABA(abscisic acid)-mediated salt stress signaling, was potentially regulated by bivalent H3K4me3-H3K27me3 modifications. Combining phenotypic variations with transcriptional and epigenetic changes, we provide a comprehensive profile for understanding histone modification, genomic transcription and their associations in response to salt stress in plants.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Naeem Ahmed
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Anmin Yu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zaiqing Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
32
|
Zhou Y, Liu W, Li X, Sun D, Xu K, Feng C, Kue Foka IC, Ketehouli T, Gao H, Wang N, Dong Y, Wang F, Li H. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC PLANT BIOLOGY 2020; 20:190. [PMID: 32370790 PMCID: PMC7201782 DOI: 10.1186/s12870-020-02370-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/29/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought conditions adversely affect soybean growth, resulting in severe yield losses worldwide. Increasing experimental evidence indicates miRNAs are important post-transcriptional regulators of gene expression. However, the drought-responsive molecular mechanism underlying miRNA-mRNA interactions remains largely uncharacterized in soybean. Meanwhile, the miRNA-regulated drought response pathways based on multi-omics approaches remain elusive. RESULTS We combined sRNA, transcriptome and degradome sequencing to elucidate the complex regulatory mechanism mediating soybean drought resistance. One-thousand transcripts from 384 target genes of 365 miRNAs, which were enriched in the peroxisome, were validated by degradome-seq. An integrated analysis showed 42 miRNA-target pairs exhibited inversely related expression profiles. Among these pairs, a strong induction of gma-miR398c as a major gene negatively regulates multiple peroxisome-related genes (GmCSD1a/b, GmCSD2a/b/c and GmCCS). Meanwhile, we detected that alternative splicing of GmCSD1a/b might affect soybean drought tolerance by bypassing gma-miR398c regulation. Overexpressing gma-miR398c in Arabidopsis thaliana L. resulted in decreased percentage germination, increased leaf water loss, and reduced survival under water deficiency, which displayed sensitivity to drought during seed germination and seedling growth. Furthermore, overexpressing gma-miR398c in soybean decreased GmCSD1a/b, GmCSD2a/b/c and GmCCS expression, which weakened the ability to scavenge O2.-, resulting in increased relative electrolyte leakage and stomatal opening compared with knockout miR398c and wild-type soybean under drought conditions. CONCLUSION The study indicates that gma-miR398c negatively regulates soybean drought tolerance, and provides novel insights useful for breeding programs to improve drought resistance by CRISPR technology.
Collapse
Affiliation(s)
- Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Weican Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Daqian Sun
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Keheng Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Chen Feng
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Idrice Carther Kue Foka
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hongtao Gao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yuanyuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
33
|
Bian XH, Li W, Niu CF, Wei W, Hu Y, Han JQ, Lu X, Tao JJ, Jin M, Qin H, Zhou B, Zhang WK, Ma B, Wang GD, Yu DY, Lai YC, Chen SY, Zhang JS. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. THE NEW PHYTOLOGIST 2020; 225:268-283. [PMID: 31400247 DOI: 10.1111/nph.16104] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/01/2019] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max) production is severely affected in unfavorable environments. Identification of the regulatory factors conferring stress tolerance would facilitate soybean breeding. In this study, through coexpression network analysis of salt-tolerant wild soybeans, together with molecular and genetic approaches, we revealed a previously unidentified function of a class B heat shock factor, HSFB2b, in soybean salt stress response. We showed that HSFB2b improves salt tolerance through the promotion of flavonoid accumulation by activating one subset of flavonoid biosynthesis-related genes and by inhibiting the repressor gene GmNAC2 to release another subset of genes in the flavonoid biosynthesis pathway. Moreover, four promoter haplotypes of HSFB2b were identified from wild and cultivated soybeans. Promoter haplotype II from salt-tolerant wild soybean Y20, with high promoter activity under salt stress, is probably selected for during domestication. Another promoter haplotype, III, from salt-tolerant wild soybean Y55, had the highest promoter activity under salt stress, had a low distribution frequency and may be subjected to the next wave of selection. Together, our results revealed the mechanism of HSFB2b in soybean salt stress tolerance. Its promoter variations were identified, and the haplotype with high activity may be adopted for breeding better soybean cultivars that are adapted to stress conditions.
Collapse
Affiliation(s)
- Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- National Center for Soybean Improvement, National Key Lab of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Can-Fang Niu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Zhou
- Institute of Crop Science, Anhui Provincial Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, 100024, China
| | - Guo-Dong Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Lab of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY, Zhang JS. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca 2+ signaling pathways in transgenic soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:384-398. [PMID: 31271689 DOI: 10.1111/tpj.14449] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors play important roles in response to various abiotic stresses. Previous study have proved that soybean GmWRKY54 can improve stress tolerance in transgenic Arabidopsis. Here, we generated soybean transgenic plants and further investigated roles and biological mechanisms of GmWRKY54 in response to drought stress. We demonstrated that expression of GmWRKY54, driven by either a constitutive promoter (pCm) or a drought-induced promoter (RD29a), confers drought tolerance. GmWRKY54 is a transcriptional activator and affects a large number of stress-related genes as revealed by RNA sequencing. Gene ontology (GO) enrichment and co-expression network analysis, together with measurement of physiological parameters, supported the idea that GmWRKY54 enhances stomatal closure to reduce water loss, and therefore confers drought tolerance in soybean. GmWRKY54 directly binds to the promoter regions of genes including PYL8, SRK2A, CIPK11 and CPK3 and activates them. Therefore GmWRKY54 achieves its function through abscisic acid (ABA) and Ca2+ signaling pathways. It is valuable that GmWRKY54 activates an ABA receptor and an SnRK2 kinase in the upstream position, unlike other WRKY proteins that regulate downstream genes in the ABA pathway. Our study revealed the role of GmWRKY54 in drought tolerance and further manipulation of this gene should improve growth and production in soybean and other legumes/crops under unfavorable conditions.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Wei Liang
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hui Xiao
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Comprehensive Analysis of the Cadmium Tolerance of Abscisic Acid-, Stress- and Ripening-Induced Proteins (ASRs) in Maize. Int J Mol Sci 2019; 20:ijms20010133. [PMID: 30609672 PMCID: PMC6337223 DOI: 10.3390/ijms20010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023] Open
Abstract
In plants, abscisic acid-, stress-, and ripening-induced (ASR) proteins have been shown to impart tolerance to multiple abiotic stresses such as drought and salinity. However, their roles in metal stress tolerance are poorly understood. To screen plant Cd-tolerance genes, the yeast-based gene hunting method which aimed to screen Cd-tolerance colonies from maize leaf cDNA library hosted in yeast was carried out. Here, maize ZmASR1 was identified to be putative Cd-tolerant through this survival screening strategy. In silico analysis of the functional domain organization, phylogenetic classification and tissue-specific expression patterns revealed that maize ASR1 to ASR5 are typical ASRs with considerable expression in leaves. Further, four of them were cloned for testifying Cd tolerance using yeast complementation assay. The results indicated that they all confer Cd tolerance in Cd-sensitive yeast. Then they were transiently expressed in tobacco leaves for subcellular localization analysis and for Cd-challenged lesion assay, continuously. The results demonstrated that all 4 maize ASRs tested are localized to the cell nucleus and cytoplasm in tobacco leaves. Moreover, they were confirmed to be Cd-tolerance genes in planta through lesion analysis in Cd-infiltrated leaves transiently expressing them. Taken together, our results demonstrate that maize ASRs play important roles in Cd tolerance, and they could be used as promising candidate genes for further functional studies toward improving the Cd tolerance in plants.
Collapse
|
36
|
Tao JJ, Wei W, Pan WJ, Lu L, Li QT, Ma JB, Zhang WK, Ma B, Chen SY, Zhang JS. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Sci Rep 2018; 8:2707. [PMID: 29426828 PMCID: PMC5807399 DOI: 10.1038/s41598-018-21148-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Feng J, Lu J. LHP1 Could Act as an Activator and a Repressor of Transcription in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2041. [PMID: 29234344 PMCID: PMC5712405 DOI: 10.3389/fpls.2017.02041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
Polycomb group (PcG) proteins within the polycomb repressive complex 1 (PRC1) and PRC2 are significant epigenetic regulatory factors involved in important cellular and developmental processes in eukaryotes. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), also known as TERMINAL FLOWER 2, has been proposed as a plant specific subunit of PRC1 that could bind the trimethylated lysine 27 of histone H3 (H3K27me3), which is established by PRC2 and is required for a functional plant PcG system. LHP1 not only interacts with PRC1 to catalyze monoubiquitination at lysine 119 of histone H2A but also functions with PRC2 to establish H3K27me3. This review is about the interaction of LHP1 with PRC1 and PRC2, in which LHP1 may act as a bridge between the two. Meantime, this review highlights that LHP1 could act as an activator and a repressor of transcription.
Collapse
Affiliation(s)
- Jing Feng
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
- *Correspondence: Jiang Lu, Jing Feng,
| | - Jiang Lu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiang Lu, Jing Feng,
| |
Collapse
|