1
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
2
|
Ying S, Webster B, Gomez-Cano L, Shivaiah KK, Wang Q, Newton L, Grotewold E, Thompson A, Lundquist PK. Multiscale physiological responses to nitrogen supplementation of maize hybrids. PLANT PHYSIOLOGY 2024; 195:879-899. [PMID: 37925649 PMCID: PMC11060684 DOI: 10.1093/plphys/kiad583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of nitrogen (N) fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multiscale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.
Collapse
Affiliation(s)
- Sheng Ying
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Brandon Webster
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Linsey Newton
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Erich Grotewold
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Addie Thompson
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Ruiz HA, Sganzerla WG, Larnaudie V, Veersma RJ, van Erven G, Ríos-González LJ, Rodríguez-Jasso RM, Rosero-Chasoy G, Ferrari MD, Kabel MA, Forster-Carneiro T, Lareo C. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept. BIORESOURCE TECHNOLOGY 2023; 369:128469. [PMID: 36509309 DOI: 10.1016/j.biortech.2022.128469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | | | - Valeria Larnaudie
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| | - Romy J Veersma
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Leopoldo J Ríos-González
- Department of Biotechnology, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Mario Daniel Ferrari
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| |
Collapse
|
5
|
De Meester B, Vanholme R, Mota T, Boerjan W. Lignin engineering in forest trees: From gene discovery to field trials. PLANT COMMUNICATIONS 2022; 3:100465. [PMID: 36307984 PMCID: PMC9700206 DOI: 10.1016/j.xplc.2022.100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Wood is an abundant and renewable feedstock for the production of pulp, fuels, and biobased materials. However, wood is recalcitrant toward deconstruction into cellulose and simple sugars, mainly because of the presence of lignin, an aromatic polymer that shields cell-wall polysaccharides. Hence, numerous research efforts have focused on engineering lignin amount and composition to improve wood processability. Here, we focus on results that have been obtained by engineering the lignin biosynthesis and branching pathways in forest trees to reduce cell-wall recalcitrance, including the introduction of exotic lignin monomers. In addition, we draw general conclusions from over 20 years of field trial research with trees engineered to produce less or altered lignin. We discuss possible causes and solutions for the yield penalty that is often associated with lignin engineering in trees. Finally, we discuss how conventional and new breeding strategies can be combined to develop elite clones with desired lignin properties. We conclude this review with priorities for the development of commercially relevant lignin-engineered trees.
Collapse
Affiliation(s)
- Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thatiane Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
6
|
Lam PY, Wang L, Lui ACW, Liu H, Takeda-Kimura Y, Chen MX, Zhu FY, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Deficiency in flavonoid biosynthesis genes CHS, CHI, and CHIL alters rice flavonoid and lignin profiles. PLANT PHYSIOLOGY 2022; 188:1993-2011. [PMID: 34963002 PMCID: PMC8969032 DOI: 10.1093/plphys/kiab606] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/24/2023]
Abstract
Lignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown. We herein report a comparative analysis of rice (Oryza sativa) mutants deficient in the early flavonoid biosynthetic genes encoding CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), and CHI-LIKE (CHIL), with an emphasis on the analyses of disrupted tricin-lignin formation and the concurrent changes in lignin profiles and cell wall digestibility. All examined CHS-, CHI-, and CHIL-deficient rice mutants were largely depleted of extractable flavones, including tricin, and nearly devoid of tricin-lignin in the cell walls, supporting the crucial roles of CHS and CHI as committed enzymes and CHIL as a noncatalytic enhancer in the conserved biosynthetic pathway leading to flavone and tricin-lignin formation. In-depth cell wall structural analyses further indicated that lignin content and composition, including the monolignol-derived units, were differentially altered in the mutants. However, regardless of the extent of the lignin alterations, cell wall saccharification efficiencies of all tested rice mutants were similar to that of the wild-type controls. Together with earlier studies on other tricin-depleted grass mutant and transgenic plants, our results reflect the complexity in the metabolic consequences of tricin pathway perturbations and the relationships between lignin profiles and cell wall properties.
Collapse
Affiliation(s)
| | | | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
7
|
Rencoret J, Rosado MJ, Kim H, Timokhin VI, Gutiérrez A, Bausch F, Rosenau T, Potthast A, Ralph J, del Río JC. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. PLANT PHYSIOLOGY 2022; 188:208-219. [PMID: 34662399 PMCID: PMC8774827 DOI: 10.1093/plphys/kiab469] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 05/26/2023]
Abstract
Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the β-ether linkages, indicating that at least a fraction of each was integrated into the lignin as β-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3' and C-5' positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4'-O-β bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon-carbon linkages, including 3'- or 5'-β linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Mario J Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Vitaliy I Timokhin
- Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Florian Bausch
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| |
Collapse
|
8
|
Mutational Analysis of a Wheat O-methyltransferase Involved in Flavonoid Metabolism. PLANTS 2022; 11:plants11020164. [PMID: 35050052 PMCID: PMC8780298 DOI: 10.3390/plants11020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022]
Abstract
Methylated flavones, and tricin in particular, have been implicated in protecting wheat plants against a variety of biotic and abiotic stresses. Methylated flavones are produced via O-methylation of the hydroxyl groups in flavones, which is catalyzed by O-methyltransferases (OMTs). To examine the role of wheat OMT2 in methylated flavone biosynthesis and facilitate interrogation of tricin functions in wheat-environment interactions, loss-of-function mutants of OMT2 homoeologs, omt-A2 and omt-B2, were identified from a tetraploid wheat Targeting Induced Local Lesions in Genomes (TILLING) mutant population and crossed to generate the omt-A2omt-B2 double mutant. Although tricin and most other soluble phenolics did not differ in leaves and glumes of TILLING control and the omt-A2, omt-B2, and omt-A2 omt-B2 mutants, chlorogenic acid was increased in glumes of omt-A2 omt-B2 relative to TILLING control, suggesting that it might serve as a substrate for OMT2. The omt2 mutant lines showed similar growth phenotypes as well as comparable lignin deposition in cell walls of stems compared to TILLING control. These results collectively suggest that OMT2 and its close homolog OMT1 may possess overlapping activities in tricin production, with OMT1 compensating for the missing OMT2 activities in the omt2 mutant lines.
Collapse
|
9
|
Tetreault HM, Gries T, Liu S, Toy J, Xin Z, Vermerris W, Ralph J, Funnell-Harris DL, Sattler SE. The Sorghum ( Sorghum bicolor) Brown Midrib 30 Gene Encodes a Chalcone Isomerase Required for Cell Wall Lignification. FRONTIERS IN PLANT SCIENCE 2021; 12:732307. [PMID: 34925394 PMCID: PMC8674566 DOI: 10.3389/fpls.2021.732307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
In sorghum (Sorghum bicolor) and other C4 grasses, brown midrib (bmr) mutants have long been associated with plants impaired in their ability to synthesize lignin. The brown midrib 30 (Bmr30) gene, identified using a bulk segregant analysis and next-generation sequencing, was determined to encode a chalcone isomerase (CHI). Two independent mutations within this gene confirmed that loss of its function was responsible for the brown leaf midrib phenotype and reduced lignin concentration. Loss of the Bmr30 gene function, as shown by histochemical staining of leaf midrib and stalk sections, resulted in altered cell wall composition. In the bmr30 mutants, CHI activity was drastically reduced, and the accumulation of total flavonoids and total anthocyanins was impaired, which is consistent with its function in flavonoid biosynthesis. The level of the flavone lignin monomer tricin was reduced 20-fold in the stem relative to wild type, and to undetectable levels in the leaf tissue of the mutants. The bmr30 mutant, therefore, harbors a mutation in a phenylpropanoid biosynthetic gene that is key to the interconnection between flavonoids and monolignols, both of which are utilized for lignin synthesis in the grasses.
Collapse
Affiliation(s)
- Hannah M. Tetreault
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Tammy Gries
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Sarah Liu
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Toy
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Agricultural Research Service, United States Department of Agriculture, Lubbock, TX, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - John Ralph
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - Deanna L. Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
10
|
Rencoret J, Gutiérrez A, Marques G, del Río JC, Tobimatsu Y, Lam PY, Pérez-Boada M, Ruiz-Dueñas FJ, Barrasa JM, Martínez AT. New Insights on Structures Forming the Lignin-Like Fractions of Ancestral Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:740923. [PMID: 34691117 PMCID: PMC8528957 DOI: 10.3389/fpls.2021.740923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/13/2021] [Indexed: 05/31/2023]
Abstract
In the present work, lignin-like fractions were isolated from several ancestral plants -including moss (Hypnum cupressiforme and Polytrichum commune), lycophyte (Selaginella kraussiana), horsetail (Equisetum palustre), fern (Nephrolepis cordifolia and Pteridium aquilinum), cycad (Cycas revoluta), and gnetophyte (Ephedra fragilis) species- and structurally characterized by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Py-GC/MS yielded marker compounds characteristic of lignin units, except in the H. cupressiforme, P. commune and E. palustre "lignins," where they were practically absent. Additional structural information on the other five samples was obtained from 2D-NMR experiments displaying intense correlations signals of guaiacyl (G) units in the fern and cycad lignins, along with smaller amounts of p-hydroxyphenyl (H) units. Interestingly, the lignins from the lycophyte S. kraussiana and the gnetophyte E. fragilis were not only composed of G- and H-lignin units but they also incorporated significant amounts of the syringyl (S) units characteristic of angiosperms, which appeared much later in plant evolution, most probably due to convergent evolution. The latter finding is also supported by the abundance of syringol derivatives after the Py-GC/MS analyses of these two samples. Regarding lignin structure, β-O-4' alkyl-aryl ethers were the most abundant substructures, followed by condensed β-5' phenylcoumarans and β-β' resinols (and dibenzodioxocins in the fern and cycad lignins). The highest percentages of alkyl-aryl ether structures correlated with the higher S/G ratio in the S. Kraussiana and E. fragilis lignin-like fractions. More interestingly, apart from the typical monolignol-derived lignin units (H, G and S), other structures, assigned to flavonoid compounds never reported before in natural lignins (such as amentoflavone, apigenin, hypnogenol B, kaempferol, and naringenin), could also be identified in the HSQC spectra of all the lignin-like fractions analyzed. With this purpose, in vitro synthesized coniferyl-naringenin and coniferyl-apigenin dehydrogenation polymers were used as standards. These flavonoids were abundant in H. cupressiforme appearing as the only constituents of the moss lignin-like fraction (including 84% of dimeric hypnogenol B) and their abundance decreased in those of S. Kraussiana (with amentoflavone and naringenin representing 14% of the total aromatic units), and the two ancient gymnosperms (0.4-1.2%) and ferns (0-0.7%).
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Marta Pérez-Boada
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | | | - José M. Barrasa
- Departamento de Biología Vegetal, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| |
Collapse
|
11
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
12
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
13
|
Oates NC, Abood A, Schirmacher AM, Alessi AM, Bird SM, Bennett JP, Leadbeater DR, Li Y, Dowle AA, Liu S, Tymokhin VI, Ralph J, McQueen-Mason SJ, Bruce NC. A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from Parascedosporium putredinis NO1. Proc Natl Acad Sci U S A 2021; 118:e2008888118. [PMID: 33903229 PMCID: PMC8106297 DOI: 10.1073/pnas.2008888118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major β-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.
Collapse
Affiliation(s)
- Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Amira Abood
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alexandra M Schirmacher
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Anna M Alessi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Susannah M Bird
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Joseph P Bennett
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sarah Liu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53726
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726
| | - Vitaliy I Tymokhin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53726
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI 53726
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom;
| |
Collapse
|
14
|
Elder T, Rencoret J, del Río JC, Kim H, Ralph J. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study. FRONTIERS IN PLANT SCIENCE 2021; 12:642848. [PMID: 33737945 PMCID: PMC7960926 DOI: 10.3389/fpls.2021.642848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The monolignols, p-coumaryl, coniferyl, and sinapyl alcohol, arise from the general phenylpropanoid biosynthetic pathway. Increasingly, however, authentic lignin monomers derived from outside this process are being identified and found to be fully incorporated into the lignin polymer. Among them, hydroxystilbene glucosides, which are produced through a hybrid process that combines the phenylpropanoid and acetate/malonate pathways, have been experimentally detected in the bark lignin of Norway spruce (Picea abies). Several interunit linkages have been identified and proposed to occur through homo-coupling of the hydroxystilbene glucosides and their cross-coupling with coniferyl alcohol. In the current work, the thermodynamics of these coupling modes and subsequent rearomatization reactions have been evaluated by the application of density functional theory (DFT) calculations. The objective of this paper is to determine favorable coupling and cross-coupling modes to help explain the experimental observations and attempt to predict other favorable pathways that might be further elucidated via in vitro polymerization aided by synthetic models and detailed structural studies.
Collapse
Affiliation(s)
- Thomas Elder
- USDA-Forest Service, Southern Research Station, Auburn, AL, United States
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
15
|
Rosado MJ, Rencoret J, Marques G, Gutiérrez A, del Río JC. Structural Characteristics of the Guaiacyl-Rich Lignins From Rice ( Oryza sativa L.) Husks and Straw. FRONTIERS IN PLANT SCIENCE 2021; 12:640475. [PMID: 33679856 PMCID: PMC7932998 DOI: 10.3389/fpls.2021.640475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 05/28/2023]
Abstract
Rice (Oryza sativa L.) is a major cereal crop used for human nutrition worldwide. Harvesting and processing of rice generates huge amounts of lignocellulosic by-products such as rice husks and straw, which present important lignin contents that can be used to produce chemicals and materials. In this work, the structural characteristics of the lignins from rice husks and straw have been studied in detail. For this, whole cell walls of rice husks and straw and their isolated lignin preparations were thoroughly analyzed by an array of analytical techniques, including pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). The analyses revealed that both lignins, particularly the lignin from rice husks, were highly enriched in guaiacyl (G) units, and depleted in p-hydroxyphenyl (H) and syringyl (S) units, with H:G:S compositions of 7:81:12 (for rice husks) and 5:71:24 (for rice straw). These compositions were reflected in the relative abundances of the different interunit linkages. Hence, the lignin from rice husks were depleted in β-O-4' alkyl-aryl ether units (representing 65% of all inter-unit linkages), but presented important amounts of β-5' (phenylcoumarans, 23%) and other condensed units. On the other hand, the lignin from rice straw presented higher levels of β-O-4' alkyl-aryl ethers (78%) but lower levels of phenylcoumarans (β-5', 12%) and other condensed linkages, consistent with a lignin with a slightly higher S/G ratio. In addition, both lignins were partially acylated at the γ-OH of the side-chain (ca. 10-12% acylation degree) with p-coumarates, which overwhelmingly occurred over S-units. Finally, important amounts of the flavone tricin were also found incorporated into these lignins, being particularly abundant in the lignin of rice straw.
Collapse
Affiliation(s)
| | | | | | | | - José C. del Río
- Department of Plant Biotechnology, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| |
Collapse
|
16
|
Abstract
This article is a Commentary on Lui et al. (2020), 228: 269–284.
Collapse
Affiliation(s)
- John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of WisconsinMadisonWI53726USA
| |
Collapse
|
17
|
van Erven G, Wang J, Sun P, de Waard P, van der Putten J, Frissen GE, Gosselink RJA, Zinovyev G, Potthast A, van Berkel WJH, Kabel MA. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:20032-20042. [PMID: 31867146 PMCID: PMC6921689 DOI: 10.1021/acssuschemeng.9b05780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Indexed: 05/11/2023]
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies plant biomass extensively and selectively and, therefore, has great biotechnological potential. We previously demonstrated that after 7 weeks of fungal growth on wheat straw 70% w/w of lignin was removed and established the underlying degradation mechanisms via selectively extracted diagnostic substructures. In this work, we fractionated the residual (more intact) lignin and comprehensively characterized the obtained isolates to determine the susceptibility of wheat straw lignin's structural motifs to fungal degradation. Using 13C IS pyrolysis gas chromatography-mass spectrometry (py-GC-MS), heteronuclear single quantum coherence (HSQC) and 31P NMR spectroscopy, and size-exclusion chromatography (SEC) analyses, it was shown that β-O-4' ethers and the more condensed phenylcoumarans and resinols were equally susceptible to fungal breakdown. Interestingly, for β-O-4' ether substructures, marked cleavage preferences could be observed: β-O-4'-syringyl substructures were degraded more frequently than their β-O-4'-guaiacyl and β-O-4'-tricin analogues. Furthermore, diastereochemistry (threo > erythro) and γ-acylation (γ-OH > γ-acyl) influenced cleavage susceptibility. These results indicate that electron density of the 4'-O-coupled ring and local steric hindrance are important determinants of oxidative β-O-4' ether degradation. Our findings provide novel insight into the delignification mechanisms of C. subvermispora and contribute to improving the valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Gijs van Erven
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jianli Wang
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Pieter de Waard
- MAGNEFY
(MAGNEtic Resonance Research FacilitY), Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Jacinta van der Putten
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Guus E. Frissen
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Richard J. A. Gosselink
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Grigory Zinovyev
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
18
|
Ferreira SS, Simões MS, Carvalho GG, de Lima LGA, Svartman RMDA, Cesarino I. The lignin toolbox of the model grass Setaria viridis. PLANT MOLECULAR BIOLOGY 2019; 101:235-255. [PMID: 31254267 DOI: 10.1007/s11103-019-00897-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/25/2019] [Indexed: 05/21/2023]
Abstract
The core set of biosynthetic genes potentially involved in developmental lignification was identified in the model C4 grass Setaria viridis. Lignin has been recognized as a major recalcitrant factor negatively affecting the processing of plant biomass into bioproducts. However, the efficient manipulation of lignin deposition in order to generate optimized crops for the biorefinery requires a fundamental knowledge of several aspects of lignin metabolism, including regulation, biosynthesis and polymerization. The current availability of an annotated genome for the model grass Setaria viridis allows the genome-wide characterization of genes involved in the metabolic pathway leading to the production of monolignols, the main building blocks of lignin. Here we performed a comprehensive study of monolignol biosynthetic genes as an initial step into the characterization of lignin metabolism in S. viridis. A total of 56 genes encoding bona fide enzymes catalyzing the consecutive ten steps of the monolignol biosynthetic pathway were identified in the S. viridis genome. A combination of comparative phylogenetic studies, high-throughput expression analysis and quantitative RT-PCR analysis was further employed to identify the family members potentially involved in developmental lignification. Accordingly, 14 genes clustered with genes from closely related species with a known function in lignification and showed an expression pattern that correlates with lignin deposition. These genes were considered the "core lignin toolbox" responsible for the constitutive, developmental lignification in S. viridis. These results provide the basis for further understanding lignin deposition in C4 grasses and will ultimately allow the validation of biotechnological strategies to produce crops with enhanced processing properties.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | - Gabriel Garon Carvalho
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | - Leydson Gabriel Alves de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | | | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil.
| |
Collapse
|
19
|
Rencoret J, Neiva D, Marques G, Gutiérrez A, Kim H, Gominho J, Pereira H, Ralph J, Del Río JC. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. PLANT PHYSIOLOGY 2019; 180:1310-1321. [PMID: 31023874 PMCID: PMC6752895 DOI: 10.1104/pp.19.00344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 05/19/2023]
Abstract
Recent investigations have revealed that, in addition to monolignols, some phenolic compounds derived from the flavonoid and hydroxystilbene biosynthetic pathways can also function as true lignin monomers in some plants. In this study, we found that the hydroxystilbene glucosides isorhapontin (isorhapontigenin-O-glucoside) and, at lower levels, astringin (piceatannol-O-glucoside) and piceid (resveratrol-O-glucoside) are incorporated into the lignin polymer in Norway spruce (Picea abies) bark. The corresponding aglycones isorhapontigenin, piceatannol, and resveratrol, along with glucose, were released by derivatization followed by reductive cleavage, a chemical degradative method that cleaves β-ether bonds in lignin, indicating that the hydroxystilbene glucosides are (partially) incorporated into the lignin structure through β-ether bonds. Two-dimensional NMR analysis confirmed the occurrence of hydroxystilbene glucosides in this lignin, and provided additional information regarding their modes of incorporation into the polymer. The hydroxystilbene glucosides, particularly isorhapontin and astringin, can therefore be considered genuine lignin monomers that participate in coupling and cross-coupling reactions during lignification in Norway spruce bark.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Duarte Neiva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jorge Gominho
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Helena Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| |
Collapse
|
20
|
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:943. [PMID: 31428108 PMCID: PMC6688129 DOI: 10.3389/fpls.2019.00943] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
During their evolution, plants have acquired the ability to produce a huge variety of compounds. Unlike the specialized metabolites that accumulate in limited numbers of species, flavonoids are widely distributed in the plant kingdom. Therefore, a detailed analysis of flavonoid metabolism in genomics and metabolomics is an ideal way to investigate how plants have developed their unique metabolic pathways during the process of evolution. More comprehensive and precise metabolite profiling integrated with genomic information are helpful to emerge unexpected gene functions and/or pathways. The distribution of flavonoids and their biosynthetic genes in the plant kingdom suggests that flavonoid biosynthetic pathways evolved through a series of steps. The enzymes that form the flavonoid scaffold structures probably first appeared by recruitment of enzymes from primary metabolic pathways, and later, enzymes that belong to superfamilies such as 2-oxoglutarate-dependent dioxygenase, cytochrome P450, and short-chain dehydrogenase/reductase modified and varied the structures. It is widely accepted that the first two enzymes in flavonoid biosynthesis, chalcone synthase, and chalcone isomerase, were derived from common ancestors with enzymes in lipid metabolism. Later enzymes acquired their function by gene duplication and the subsequent acquisition of new functions. In this review, we describe the recent progress in metabolomics technologies for flavonoids and the evolution of flavonoid skeleton biosynthetic enzymes to understand the complicate evolutionary traits of flavonoid metabolism in plant kingdom.
Collapse
|
21
|
Elucidating Tricin-Lignin Structures: Assigning Correlations in HSQC Spectra of Monocot Lignins. Polymers (Basel) 2018; 10:polym10080916. [PMID: 30960841 PMCID: PMC6403598 DOI: 10.3390/polym10080916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one] is a flavone that has been found to be incorporated in grass lignin polymers via 4'⁻O⁻β coupling. Herein, we investigated the tricin-lignin structure using nuclear magnetic resonance (NMR) methods by comparing the 1H⁻13C heteronuclear correlation (HSQC) NMR spectra of the isolated lignin with a series of dimeric and trimeric tricin-4'⁻O⁻β-ether model compounds. Results showed that the tricin moiety significantly affects the chemical shift of the Cβ/Hβ of 4'⁻O⁻β unit, producing peaks at around δC/δH 82.5⁻83.5/4.15⁻4.45, that differ from the Cβ/Hβ correlations from normal 4⁻O⁻β units formed solely by monolignols, and that have to date been unassigned.
Collapse
|
22
|
Knuesting J, Brinkmann MC, Silva B, Schorsch M, Bendix J, Beck E, Scheibe R. Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes. PLoS One 2018; 13:e0202255. [PMID: 30102718 PMCID: PMC6089443 DOI: 10.1371/journal.pone.0202255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/31/2018] [Indexed: 01/10/2023] Open
Abstract
In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.
Collapse
Affiliation(s)
- Johannes Knuesting
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
| | - Marie Clara Brinkmann
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
| | - Brenner Silva
- Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University of Marburg, Marburg, Germany
| | - Michael Schorsch
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
| | - Jörg Bendix
- Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University of Marburg, Marburg, Germany
| | - Erwin Beck
- Department of Plant Physiology, Faculty of Biology, Chemistry, and Geosciences, BAYCEER, University of Bayreuth, Bayreuth, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology and Chemistry, Osnabrueck University, Osnabrueck, Germany
- * E-mail:
| |
Collapse
|
23
|
Del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J. Structural Characterization of Lignin from Maize ( Zea mays L.) Fibers: Evidence for Diferuloylputrescine Incorporated into the Lignin Polymer in Maize Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4402-4413. [PMID: 29665690 DOI: 10.1021/acs.jafc.8b00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structure of the phenolic polymer in maize grain fibers, with 5.5% Klason lignin content, has been studied. For this, the milled wood lignin (MWL) and dioxane lignin (DL) preparations were isolated and analyzed. The data indicated that the lignin in maize fibers was syringyl rich, mostly involved in β-aryl ether, resinol, and phenylcoumaran substructures. 2D NMR and derivatization followed by reductive cleavage (DFRC) also revealed the occurrence of associated ferulates together with trace amounts of p-coumarates acylating the γ-OH of lignin side chains, predominantly on S-lignin units. More interesting was the occurrence of diferuloylputrescine, a ferulic acid amide, which was identified by 2D NMR and comparison with a synthesized standard, that was apparently incorporated into this lignin. A phenylcoumaran structure involving a diferuloylputrescine coupled through 8-5' linkages to another diferuloylputrescine (or to a ferulate or a guaiacyl lignin unit) was found, providing compelling evidence for its participation in radical coupling reactions. The occurrence of diferuloylputrescine in cell walls of maize kernels and other cereal grains appears to have been missed in previous works, perhaps due to the alkaline hydrolysis commonly used for composition studies.
Collapse
Affiliation(s)
- José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes, 10 , 41012 Seville , Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes, 10 , 41012 Seville , Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes, 10 , 41012 Seville , Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center , Wisconsin Energy Institute, University of Wisconsin-Madison , Madison , Wisconsin 53726 , United States
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center , Wisconsin Energy Institute, University of Wisconsin-Madison , Madison , Wisconsin 53726 , United States
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
24
|
Gall DL, Kontur WS, Lan W, Kim H, Li Y, Ralph J, Donohue TJ, Noguera DR. In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units. Appl Environ Microbiol 2018; 84:e02076-17. [PMID: 29180366 PMCID: PMC5772236 DOI: 10.1128/aem.02076-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022] Open
Abstract
New environmentally sound technologies are needed to derive valuable compounds from renewable resources. Lignin, an abundant polymer in terrestrial plants comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units, is a potential natural source of aromatic compounds. In addition, the plant secondary metabolite tricin is a recently discovered and moderately abundant flavonoid in grasses. The most prevalent interunit linkage between guaiacyl, syringyl, and tricin units is the β-ether linkage. Previous studies have shown that bacterial β-etherase pathway enzymes catalyze glutathione-dependent cleavage of β-ether bonds in dimeric β-ether lignin model compounds. To date, however, it remains unclear whether the known β-etherase enzymes are active on lignin polymers. Here we report on enzymes that catalyze β-ether cleavage from bona fide lignin, under conditions that recycle the cosubstrates NAD+ and glutathione. Guaiacyl, syringyl, and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results demonstrate an in vitro enzymatic system that can recycle cosubstrates while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin.IMPORTANCE Many bacteria are predicted to contain enzymes that could convert renewable carbon sources into substitutes for compounds that are derived from petroleum. The β-etherase pathway present in sphingomonad bacteria could cleave the abundant β-O-4-aryl ether bonds in plant lignin, releasing a biobased source of aromatic compounds for the chemical industry. However, the activity of these enzymes on the complex aromatic oligomers found in plant lignin is unknown. Here we demonstrate biodegradation of lignin polymers using a minimal set of β-etherase pathway enzymes, the ability to recycle needed cofactors (glutathione and NAD+) in vitro, and the release of guaiacyl, syringyl, and tricin as depolymerized products from lignin. These observations provide critical evidence for the use and future optimization of these bacterial β-etherase pathway enzymes for industrial-level biotechnological applications designed to derive high-value monomeric aromatic compounds from lignin.
Collapse
Affiliation(s)
- Daniel L Gall
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Wayne S Kontur
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Wu Lan
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hoon Kim
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Yanding Li
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel R Noguera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Rencoret J, Kim H, Evaristo AB, Gutiérrez A, Ralph J, Del Río JC. Variability in Lignin Composition and Structure in Cell Walls of Different Parts of Macaúba (Acrocomia aculeata) Palm Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:138-153. [PMID: 29241332 DOI: 10.1021/acs.jafc.7b04638] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The lignins from different anatomical parts of macaúba (Acrocomia aculeata) palm fruit, namely stalks, epicarp, and endocarp, were studied. The lignin from stalks was enriched in S-lignin units (S/G 1.2) and β-ether linkages (84% of the total) and was partially acylated at the γ-OH of the lignin side-chains (26% lignin acylation), predominantly with p-hydroxybenzoates and acetates. The epicarp lignin was highly enriched in G-lignin units (S/G 0.2) and consequently depleted in β-ethers (65%) and enriched in condensed structures such as phenylcoumarans (24%) and dibenzodioxocins (3%). The endocarp lignin was strikingly different from the rest and presented large amounts of piceatannol units incorporated into the polymer. This resulted in a lignin polymer depleted in β-ethers but enriched in condensed structures and linked piceatannol moieties. The incorporation of piceatannol into the lignin polymer seems to have a role in seed protection.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Av. Reina Mercedes, 10, 41012 Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison , Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Anderson B Evaristo
- Department of Agronomy, Universidade Estadual do Tocantins , Palmas, TO, Brazil
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Av. Reina Mercedes, 10, 41012 Seville, Spain
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison , Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Av. Reina Mercedes, 10, 41012 Seville, Spain
| |
Collapse
|
26
|
Kim H, Padmakshan D, Li Y, Rencoret J, Hatfield RD, Ralph J. Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy. Biomacromolecules 2017; 18:4184-4195. [DOI: 10.1021/acs.biomac.7b01223] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hoon Kim
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Dharshana Padmakshan
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Yanding Li
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biological System Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Jorge Rencoret
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, 41012 Seville, Spain
| | - Ronald D. Hatfield
- USDA-ARS Dairy Forage Research Center, 1925 Linden Drive West, Madison, Wisconsin 53706, United States
| | - John Ralph
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biological System Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
27
|
Carlos Del Río J, Rencoret J, Gutiérrez A, Kim H, Ralph J. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. PLANT PHYSIOLOGY 2017; 174:2072-2082. [PMID: 28588115 PMCID: PMC5543948 DOI: 10.1104/pp.17.00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 05/03/2023]
Abstract
Lignin, the plant cell wall polymer that binds fibers together but makes processing difficult, is traditionally formed from three monomers, the so-called monolignols (p-coumaryl, coniferyl, and sinapyl alcohols). Recently, we discovered, in grass lignins, a phenolic monomer that falls outside the canonical lignin biosynthetic pathway, the flavone tricin. As we show here, palm fruit (macaúba [Acrocomia aculeata], carnauba [Copernicia prunifera], and coconut [Cocos nucifera]) endocarps contain lignin polymers derived in part from a previously unconsidered class of lignin monomers, the hydroxystilbenes, including the valuable compounds piceatannol and resveratrol. Piceatannol could be released from these lignins upon derivatization followed by reductive cleavage, a degradative method that cleaves β-ether bonds, indicating that at least a fraction is incorporated through labile ether bonds. Nuclear magnetic resonance spectroscopy of products from the copolymerization of piceatannol and monolignols confirms the structures in the natural polymer and demonstrates that piceatannol acts as an authentic monomer participating in coupling and cross-coupling reactions during lignification. Therefore, palm fruit endocarps contain a new class of stilbenolignin polymers, further expanding the definition of lignin and implying that compounds such as piceatannol and resveratrol are potentially available in what is now essentially a waste product.
Collapse
Affiliation(s)
- José Carlos Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, 41012 Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
28
|
Takeda Y, Koshiba T, Tobimatsu Y, Suzuki S, Murakami S, Yamamura M, Rahman MM, Takano T, Hattori T, Sakamoto M, Umezawa T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. PLANTA 2017; 246:337-349. [PMID: 28421330 DOI: 10.1007/s00425-017-2692-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- EARTHNOTE Co. Ltd., Nago, Okinawa, 905-1152, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Md Mahabubur Rahman
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Global Sustainability Studies, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
29
|
SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS One 2017; 12:e0178160. [PMID: 28594846 PMCID: PMC5464547 DOI: 10.1371/journal.pone.0178160] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022] Open
Abstract
Lignin in plant biomass represents a target for engineering strategies towards the development of a sustainable bioeconomy. In addition to the conventional lignin monomers, namely p-coumaryl, coniferyl and sinapyl alcohols, tricin has been shown to be part of the native lignin polymer in certain monocot species. Because tricin is considered to initiate the polymerization of lignin chains, elucidating its biosynthesis and mechanism of export to the cell wall constitute novel challenges for the engineering of bioenergy crops. Late steps of tricin biosynthesis require two methylation reactions involving the pathway intermediate selgin. It has recently been demonstrated in rice and maize that caffeate O-methyltransferase (COMT) involved in the synthesis syringyl (S) lignin units derived from sinapyl alcohol also participates in the synthesis of tricin in planta. In this work, we validate in sorghum (Sorghum bicolor L.) that the O-methyltransferase responsible for the production of S lignin units (SbCOMT / Bmr12) is also involved in the synthesis of lignin-linked tricin. In particular, we show that biomass from the sorghum bmr12 mutant contains lower level of tricin incorporated into lignin, and that SbCOMT can methylate the tricin precursors luteolin and selgin. Our genetic and biochemical data point toward a general mechanism whereby COMT is involved in the synthesis of both tricin and S lignin units.
Collapse
|
30
|
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. PLANT PHYSIOLOGY 2017; 174:972-985. [PMID: 28385728 PMCID: PMC5462022 DOI: 10.1104/pp.16.01973] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/30/2017] [Indexed: 05/02/2023]
Abstract
Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3',5'-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuri Takeda
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shiro Suzuki
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaomi Yamamura
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
31
|
Eloy NB, Voorend W, Lan W, Saleme MDLS, Cesarino I, Vanholme R, Smith RA, Goeminne G, Pallidis A, Morreel K, Nicomedes J, Ralph J, Boerjan W. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. PLANT PHYSIOLOGY 2017; 173:998-1016. [PMID: 27940492 PMCID: PMC5291018 DOI: 10.1104/pp.16.01108] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/06/2016] [Indexed: 05/18/2023]
Abstract
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.
Collapse
Affiliation(s)
- Nubia B Eloy
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Wannes Voorend
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Wu Lan
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Marina de Lyra Soriano Saleme
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Igor Cesarino
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Ruben Vanholme
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Rebecca A Smith
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Geert Goeminne
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Andreas Pallidis
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Kris Morreel
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - José Nicomedes
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - John Ralph
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.)
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| | - Wout Boerjan
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (N.B.E., W.V., M.d.L.S.S., I.C., R.V., G.G., A.P., K.M., J.N., W.B.);
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, Sao Paulo SP 05508-090, Brazil (I.C.);
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (W.L., R.A.S., J.R.); and
- Department of Biological System Engineering (W.L., J.R.) and Department of Biochemistry (R.A.S., J.R.), University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
32
|
Poovaiah CR, Bewg WP, Lan W, Ralph J, Coleman HD. Sugarcane transgenics expressing MYB transcription factors show improved glucose release. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:143. [PMID: 27429646 PMCID: PMC4946106 DOI: 10.1186/s13068-016-0559-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. RESULTS MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plant height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. CONCLUSIONS This study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.
Collapse
Affiliation(s)
| | - William P. Bewg
- />Center for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Wu Lan
- />US Department of Energy, Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726 USA
- />Department of Biological System Engineering, University of Wisconsin, Madison, WI USA
| | - John Ralph
- />US Department of Energy, Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726 USA
- />Department of Biochemistry, University of Wisconsin, Madison, WI 53726 USA
| | | |
Collapse
|