1
|
Rolletschek H, Borisjuk L, Gómez-Álvarez EM, Pucciariello C. Advances in seed hypoxia research. PLANT PHYSIOLOGY 2024; 197:kiae556. [PMID: 39471319 DOI: 10.1093/plphys/kiae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase, and germination. Each stage has its own physiological requirements, genetic program, and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signaling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research and present our perspective on key challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Eva María Gómez-Álvarez
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56010 Pisa, Italy
- nanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
2
|
Alejo-Jacuinde G, Chávez Montes RA, Gutierrez Reyes CD, Yong-Villalobos L, Simpson J, Herrera-Estrella L. Gene family rearrangements and transcriptional priming drive the evolution of vegetative desiccation tolerance in Selaginella. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39666518 DOI: 10.1111/tpj.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Extreme dryness is lethal for nearly all plants, excluding the so-called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome-level assemblies and improved genome annotations of two Selaginella species with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister-group comparative genomics integrating multi-omics data. Our findings indicate that Selaginella evolved VDT through the expansion of some stress protection-related gene families and the contraction of senescence-related genes. Comparative analyses revealed that desiccation-tolerant Selaginella species employ a combination of constitutive and inducible protection mechanisms to survive desiccation. We show that transcriptional priming of stress tolerance-related genes and accumulation of flavonoids in unstressed plants are hallmarks of VDT in Selaginella. During water loss, the resurrection Selaginella induces phospholipids and glutathione metabolism, responses that are missing in the desiccation-sensitive species. Additionally, gene regulatory network analyses indicate the suppression of growth processes as a major component of VDT. This study presents novel perspectives on how gene dosage impacts crucial protective mechanisms and the regulation of central processes to survive extreme dehydration.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Ricardo A Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | | | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - June Simpson
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Gto. 36824, Irapuato, Mexico
| |
Collapse
|
3
|
Dong Y, Krishnamoorthi S, Tan GZH, Poh ZY, Urano D. Co-option of plant gene regulatory network in nutrient responses during terrestrialization. NATURE PLANTS 2024; 10:1955-1968. [PMID: 39592744 DOI: 10.1038/s41477-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte Marchantia polymorpha and the streptophyte alga Klebsormidium nitens. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, M. polymorpha GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor CSD. In M. polymorpha, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.
Collapse
Affiliation(s)
- Yating Dong
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | | | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Kearly A. Ancestral desiccation tolerance tools repurposed throughout plant evolution. Trends Genet 2024; 40:465-466. [PMID: 38664114 DOI: 10.1016/j.tig.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
The ability to tolerate and recover from desiccation is an adaptation that permitted primitive plants to colonize land, and it persists in select species today. Zhang et al. dissected desiccation tolerance in moss species, and traced a key regulator through evolution to identify a conserved mechanism of water sensing in angiosperms.
Collapse
Affiliation(s)
- Alyssa Kearly
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Vieira EA, Gaspar M, Caldeira CF, Munné-Bosch S, Braga MR. Desiccation tolerance in the resurrection plant Barbacenia graminifolia involves changes in redox metabolism and carotenoid oxidation. FRONTIERS IN PLANT SCIENCE 2024; 15:1344820. [PMID: 38425802 PMCID: PMC10902171 DOI: 10.3389/fpls.2024.1344820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Desiccation tolerance in vegetative tissues enables resurrection plants to remain quiescent under severe drought and rapidly recover full metabolism once water becomes available. Barbacenia graminifolia is a resurrection plant that occurs at high altitudes, typically growing on rock slits, exposed to high irradiance and limited water availability. We analyzed the levels of reactive oxygen species (ROS) and antioxidants, carotenoids and its cleavage products, and stress-related phytohormones in fully hydrated, dehydrated, and rehydrated leaves of B. graminifolia. This species exhibited a precise adjustment of its antioxidant metabolism to desiccation. Our results indicate that this adjustment is associated with enhanced carotenoid and apocarotenoids, α-tocopherol and compounds of ascorbate-glutathione cycle. While α-carotene and lutein increased in dried-leaves suggesting effective protection of the light-harvesting complexes, the decrease in β-carotene was accompanied of 10.2-fold increase in the content of β-cyclocitral, an apocarotenoid implicated in the regulation of abiotic stresses, compared to hydrated plants. The principal component analysis showed that dehydrated plants at 30 days formed a separate cluster from both hydrated and dehydrated plants for up to 15 days. This regulation might be part of the protective metabolic strategies employed by this resurrection plant to survive water scarcity in its inhospitable habitat.
Collapse
Affiliation(s)
| | - Marilia Gaspar
- Biodiversity Conservation Center, Institute of Environmental Research, São Paulo, Brazil
| | | | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marcia Regina Braga
- Biodiversity Conservation Center, Institute of Environmental Research, São Paulo, Brazil
| |
Collapse
|
6
|
Dace HJ, Adetunji AE, Moore JP, Farrant JM, Hilhorst HW. A review of the role of metabolites in vegetative desiccation tolerance of angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102410. [PMID: 37413962 DOI: 10.1016/j.pbi.2023.102410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The survival of extreme water deficit stress by tolerant organisms requires a coordinated series of responses, including those at cellular, transcriptional, translational and metabolic levels. Small molecules play a pivotal role in creating the proper chemical environment for the preservation of cellular integrity and homeostasis during dehydration. This review surveys recent insights in the importance of primary and specialised metabolites in the response to drying of angiosperms with vegetative desiccation tolerance, i.e. the ability to survive near total loss of water. Important metabolites include sugars such as sucrose, trehalose and raffinose family of oligosaccharides, amino acids and organic acids, as well as antioxidants, representing a common core mechanism of desiccation tolerance. Additional metabolites are discussed in the context of species specificity and adaptation.
Collapse
Affiliation(s)
- Halford Jw Dace
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands
| | - Ademola E Adetunji
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| | - Henk Wm Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands; Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| |
Collapse
|
7
|
Ivanova A, O′Leary B, Signorelli S, Falconet D, Moyankova D, Whelan J, Djilianov D, Murcha MW. Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis. THE NEW PHYTOLOGIST 2022; 236:943-957. [PMID: 35872573 PMCID: PMC9804507 DOI: 10.1111/nph.18396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Haberlea rhodopensis is a resurrection plant that can tolerate extreme and prolonged periods of desiccation with a rapid restoration of physiological function upon rehydration. Specialized mechanisms are required to minimize cellular damage during desiccation and to maintain integrity for rapid recovery following rehydration. In this study we used respiratory activity measurements, electron microscopy, transcript, protein and blue native-PAGE analysis to investigate mitochondrial activity and biogenesis in fresh, desiccated and rehydrated detached H. rhodopensis leaves. We demonstrate that unlike photosynthesis, mitochondrial respiration was almost immediately activated to levels of fresh tissue upon rehydration. The abundance of transcripts and proteins involved in mitochondrial respiration and biogenesis were at comparable levels in fresh, desiccated and rehydrated tissues. Blue native-PAGE analysis revealed fully assembled and equally abundant OXPHOS complexes in mitochondria isolated from fresh, desiccated and rehydrated detached leaves. We observed a high abundance of alternative respiratory components which correlates with the observed high uncoupled respiration capacity in desiccated tissue. Our study reveals that during desiccation of vascular H. rhodopensis tissue, mitochondrial composition is conserved and maintained at a functional state allowing for an almost immediate activation to full capacity upon rehydration. Mitochondria-specific mechanisms were activated during desiccation which probably play a role in maintaining tolerance.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Brendan O′Leary
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food Canada107 Science PlaceSaskatoonSKK1A 0C5Canada
| | - Santiago Signorelli
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
- Department of Plant Biology, School of AgricultureUniversidad de la RepúblicaE. Garzón 780, Sayago12900MontevideoUruguay
| | - Denis Falconet
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIGUniversité Grenoble Alpes38054GrenobleFrance
| | - Daniela Moyankova
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy BiologyLa Trobe UniversityBundoora3086VICAustralia
| | - Dimitar Djilianov
- AgroBioInstituteAgricultural Academy8 Dragan Tzankov Blvd.1164SofiaBulgaria
| | - Monika W. Murcha
- School of Molecular SciencesThe University of Western Australia35 Stirling Highway, CrawleyPerthWA6009Australia
| |
Collapse
|
8
|
Proteomics Evidence of a Systemic Response to Desiccation in the Resurrection Plant Haberlea rhodopensis. Int J Mol Sci 2022; 23:ijms23158520. [PMID: 35955654 PMCID: PMC9369045 DOI: 10.3390/ijms23158520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Global warming and drought stress are expected to have a negative impact on agricultural productivity. Desiccation-tolerant species, which are able to tolerate the almost complete desiccation of their vegetative tissues, are appropriate models to study extreme drought tolerance and identify novel approaches to improve the resistance of crops to drought stress. In the present study, to better understand what makes resurrection plants extremely tolerant to drought, we performed transmission electron microscopy and integrative large-scale proteomics, including organellar and phosphorylation proteomics, and combined these investigations with previously published transcriptomic and metabolomics data from the resurrection plant Haberlea rhodopensis. The results revealed new evidence about organelle and cell preservation, posttranscriptional and posttranslational regulation, photosynthesis, primary metabolism, autophagy, and cell death in response to desiccation in H. rhodopensis. Different protective intrinsically disordered proteins, such as late embryogenesis abundant (LEA) proteins, thaumatin-like proteins (TLPs), and heat shock proteins (HSPs), were detected. We also found a constitutively abundant dehydrin in H. rhodopensis whose phosphorylation levels increased under stress in the chloroplast fraction. This integrative multi-omics analysis revealed a systemic response to desiccation in H. rhodopensis and certain targets for further genomic and evolutionary studies on DT mechanisms and genetic engineering towards the improvement of drought tolerance in crops.
Collapse
|
9
|
Exploring the High Variability of Vegetative Desiccation Tolerance in Pteridophytes. PLANTS 2022; 11:plants11091222. [PMID: 35567223 PMCID: PMC9103120 DOI: 10.3390/plants11091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
In the context of plant evolution, pteridophytes, which is comprised of lycophytes and ferns, occupy an intermediate position between bryophytes and seed plants, sharing characteristics with both groups. Pteridophytes is a highly diverse group of plant species that occupy a wide range of habitats including ecosystems with extreme climatic conditions. There is a significant number of pteridophytes that can tolerate desiccation by temporarily arresting their metabolism in the dry state and reactivating it upon rehydration. Desiccation-tolerant pteridophytes exhibit a strategy that appears to be intermediate between the constitutive and inducible desiccation tolerance (DT) mechanisms observed in bryophytes and angiosperms, respectively. In this review, we first describe the incidence and anatomical diversity of desiccation-tolerant pteridophytes and discuss recent advances on the origin of DT in vascular plants. Then, we summarize the highly diverse adaptations and mechanisms exhibited by this group and describe how some of these plants could exhibit tolerance to multiple types of abiotic stress. Research on the evolution and regulation of DT in different lineages is crucial to understand how plants have adapted to extreme environments. Thus, in the current scenario of climate change, the knowledge of the whole landscape of DT strategies is of vital importance as a potential basis to improve plant abiotic stress tolerance.
Collapse
|
10
|
Matilla AJ. The Orthodox Dry Seeds Are Alive: A Clear Example of Desiccation Tolerance. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010020. [PMID: 35009023 PMCID: PMC8747232 DOI: 10.3390/plants11010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
To survive in the dry state, orthodox seeds acquire desiccation tolerance. As maturation progresses, the seeds gradually acquire longevity, which is the total timespan during which the dry seeds remain viable. The desiccation-tolerance mechanism(s) allow seeds to remain dry without losing their ability to germinate. This adaptive trait has played a key role in the evolution of land plants. Understanding the mechanisms for seed survival after desiccation is one of the central goals still unsolved. That is, the cellular protection during dry state and cell repair during rewatering involves a not entirely known molecular network(s). Although desiccation tolerance is retained in seeds of higher plants, resurrection plants belonging to different plant lineages keep the ability to survive desiccation in vegetative tissue. Abscisic acid (ABA) is involved in desiccation tolerance through tight control of the synthesis of unstructured late embryogenesis abundant (LEA) proteins, heat shock thermostable proteins (sHSPs), and non-reducing oligosaccharides. During seed maturation, the progressive loss of water induces the formation of a so-called cellular "glass state". This glassy matrix consists of soluble sugars, which immobilize macromolecules offering protection to membranes and proteins. In this way, the secondary structure of proteins in dry viable seeds is very stable and remains preserved. ABA insensitive-3 (ABI3), highly conserved from bryophytes to Angiosperms, is essential for seed maturation and is the only transcription factor (TF) required for the acquisition of desiccation tolerance and its re-induction in germinated seeds. It is noteworthy that chlorophyll breakdown during the last step of seed maturation is controlled by ABI3. This update contains some current results directly related to the physiological, genetic, and molecular mechanisms involved in survival to desiccation in orthodox seeds. In other words, the mechanisms that facilitate that an orthodox dry seed is a living entity.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
12
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
13
|
Smolikova G, Strygina K, Krylova E, Leonova T, Frolov A, Khlestkina E, Medvedev S. Transition from Seeds to Seedlings: Hormonal and Epigenetic Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1884. [PMID: 34579418 PMCID: PMC8467299 DOI: 10.3390/plants10091884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023]
Abstract
Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network-the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes-POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Strygina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Ekaterina Krylova
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (T.L.); (A.F.)
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Khlestkina
- Postgenomic Studies Laboratory, Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190121 St. Petersburg, Russia; (K.S.); (E.K.); (E.K.)
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
14
|
Engels JMM, Ebert AW. A Critical Review of the Current Global Ex Situ Conservation System for Plant Agrobiodiversity. I. History of the Development of the Global System in the Context of the Political/Legal Framework and Its Major Conservation Components. PLANTS (BASEL, SWITZERLAND) 2021; 10:1557. [PMID: 34451602 PMCID: PMC8401695 DOI: 10.3390/plants10081557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The history of ex situ conservation is relatively short, not more than a century old. During the middle of last century, triggered by the realization that genetic erosion was threatening the existing landraces and wild relatives of the major food crops, global efforts to collect and conserve the genetic diversity of these threatened resources were initiated, predominantly orchestrated by FAO. National and international genebanks were established to store and maintain germplasm materials, conservation methodologies were created, standards developed, and coordinating efforts were put in place to ensure effective and efficient approaches and collaboration. In the spontaneously developing global conservation system, plant breeders played an important role, aiming at the availability of genetic diversity in their breeding work. Furthermore, long-term conservation and the safety of the collected materials were the other two overriding criteria that led to the emerging international network of ex situ base collections. The political framework for the conservation of plant genetic resources finds its roots in the International Undertaking of the FAO and became 'turbulent rapid' with the conclusion of the Convention on Biological Diversity. This paper reviews the history of the global ex situ conservation system with a focus on the international network of base collections. It assesses the major ex situ conservation approaches and methods with their strengths and weaknesses with respect to the global conservation system and highlights the importance of combining in situ and ex situ conservation.
Collapse
Affiliation(s)
| | - Andreas W. Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan;
| |
Collapse
|
15
|
Xu X, Legay S, Sergeant K, Zorzan S, Leclercq CC, Charton S, Giarola V, Liu X, Challabathula D, Renaut J, Hausman JF, Bartels D, Guerriero G. Molecular insights into plant desiccation tolerance: transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:377-398. [PMID: 33901322 PMCID: PMC8453721 DOI: 10.1111/tpj.15294] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 05/31/2023]
Abstract
The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long-term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post-transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP-independent bypasses, alternative respiratory pathway and 4-aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high-resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.
Collapse
Affiliation(s)
- Xuan Xu
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Sylvain Legay
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Céline C Leclercq
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Sophie Charton
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Jean-Francois Hausman
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Gea Guerriero
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg
| |
Collapse
|
16
|
Wang WQ, Wang Y, Song XJ, Zhang Q, Cheng HY, Liu J, Song SQ. Proteomic Analysis of Desiccation Tolerance and Its Re-Establishment in Different Embryo Axis Tissues of Germinated Pea Seeds. J Proteome Res 2021; 20:2352-2363. [PMID: 33739120 DOI: 10.1021/acs.jproteome.0c00860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The model of loss and re-establishment of desiccation tolerance (DT) in germinated seeds has been well developed to explore the mechanisms associated with DT, but little attention has been paid to the tissue variation in this model. Herein, we investigated DT in different embryo axis tissues of germinated pea seeds and its re-establishment by poly(ethylene glycol) (PEG) treatment and then employed an iTRAQ-based proteomic method to explore the underlying mechanisms. DT varied among the four embryo axis parts of germinated seeds: epicotyl > hypocotyl-E (hypocotyl part attached to the epicotyl) > hypocotyl-R (hypocotyl part attached to the radicle) > radicle. Meanwhile, PEG treatment of germinated seeds resulted in a differential extent of DT re-establishment in these tissues. Proteins involved in detoxification and stress response were enriched in desiccation-tolerant hypocotyls-E and epicotyls of germinated seeds, respectively. Upon rehydration, proteome change during dehydration was recovered in the hypocotyls-E but not in the radicles. PEG treatment of germinated seeds led to numerous changes in proteins, in abundance in desiccation-sensitive radicles and hypocotyls-R, of which many accumulated in the hypocotyls-E and epicotyls before the treatment. We hypothesized that accumulation of groups 1 and 5 LEA proteins and proteins related to detoxification, ABA, ethylene, and calcium signaling contributed mainly to the variation of DT in different tissues and its re-establishment.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Yue Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong-Yan Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Song-Quan Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Nadal M, Perera-Castro AV, Gulías J, Farrant JM, Flexas J. Resurrection plants optimize photosynthesis despite very thick cell walls by means of chloroplast distribution. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2600-2610. [PMID: 33483750 DOI: 10.1093/jxb/erab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Resurrection plants are vascular species able to sustain extreme desiccation in their vegetative tissues. Despite its potential interest, the role of leaf anatomy in CO2 diffusion and photosynthesis under non-stressed conditions has not been explored in these species. Net CO2 assimilation (An) and its underlying diffusive, biochemical, and anatomical determinants were assessed in 10 resurrection species from diverse locations, including ferns, and homoiochlorophyllous and poikilochlorophyllous angiosperms. Data obtained were compared with previously published results in desiccation-sensitive ferns and angiosperms. An in resurrection plants was mostly driven by mesophyll conductance to CO2 (gm) and limited by CO2 diffusion. Resurrection species had a greater cell wall thickness (Tcw) than desiccation-sensitive plants, a feature associated with limited CO2 diffusion in the mesophyll, but also greater chloroplast exposure to intercellular spaces (Sc), which usually leads to higher gm. This combination enabled a higher An per Tcw compared with desiccation-sensitive species. Resurrection species possess unusual anatomical features that could confer stress tolerance (thick cell walls) without compromising the photosynthetic capacity (high chloroplast exposure). This mechanism is particularly successful in resurrection ferns, which display higher photosynthesis than their desiccation-sensitive counterparts.
Collapse
Affiliation(s)
- Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
18
|
Okemo P, Long H, Cheng Y, Mundree S, Williams B. Stachyose triggers apoptotic like cell death in drought sensitive but not resilient plants. Sci Rep 2021; 11:7099. [PMID: 33782503 PMCID: PMC8007635 DOI: 10.1038/s41598-021-86559-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (PCD) is one of the most intensively researched fields in modern mammalian biology with roles in cancer, aging, diabetes and numerous neurodegenerative diseases. It is becoming increasingly clear that PCD also plays significant roles in plant defence and responses to the environment. Given their unique ability to tolerate desiccation (cells remain viable even after they've lost 95% of their water), resurrection plants make ideal models to study the regulation of plant PCD pathways. Previously, we showed that the Australian resurrection plant, Tripogon loliiformis, suppresses plant PCD, via trehalose-mediated activation of autophagy pathways, during drying. In the present study, we created a full-length T. loliiformis cDNA library, performed a large-scale Agrobacterium screen for improved salinity tolerance and identified Stachyose synthase (TlStach) as a potential candidate for improving stress tolerance. Tripogon loliiformis shoots accumulate stachyose synthase transcripts and stachyose during drying. Attempts to generate transgenic plants expressing TlStach failed and were consistent with previous reports in mammals that demonstrated stachyose-mediated induction of apoptosis. Using a combination of transcriptomics, metabolomics and cell death assays (TUNNEL and DNA laddering), we investigated whether stachyose induces apoptotic-like cell death in T. loliiformis. We show that stachyose triggers the formation of the hallmarks of plant apoptotic-like cell death in the desiccation sensitive Nicotiana benthamiana but not the resilient T. loliiformis. These findings suggest that T. loliiformis suppresses stachyose-mediated apoptotic-like cell death and provides insights on the role of sugar metabolism and plant PCD pathways. A better understanding of how resilient plants regulate sugar metabolism and PCD pathways may facilitate future targeting of plant metabolic pathways for increased stress tolerance.
Collapse
Affiliation(s)
- Pauline Okemo
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Hao Long
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yen Cheng
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sagadevan Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Silva AT, Gao B, Fisher KM, Mishler BD, Ekwealor JTB, Stark LR, Li X, Zhang D, Bowker MA, Brinda JC, Coe KK, Oliver MJ. To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1339-1356. [PMID: 33277766 DOI: 10.1111/tpj.15116] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/30/2020] [Indexed: 05/24/2023]
Abstract
With global climate change, water scarcity threatens whole agro/ecosystems. The desert moss Syntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequenced S. caninervis genome consists of 13 chromosomes containing 16 545 protein-coding genes and 2666 unplaced scaffolds. Syntenic relationships within the S. caninervis and Physcomitrella patens genomes indicate the S. caninervis genome has undergone a single whole genome duplication event (compared to two for P. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history of S. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number of Copia and Gypsy elements. Orthogroup analyses revealed an expansion of ELIP genes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Anderson T Silva
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, 830011, China
| | - Kirsten M Fisher
- Department of Biological Sciences, California State University, Los Angeles, California, 90032, USA
| | - Brent D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, California, 94720-2465, USA
| | - Jenna T B Ekwealor
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, California, 94720-2465, USA
| | - Lloyd R Stark
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, 89154-4004, USA
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, 830011, China
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - John C Brinda
- Missouri Botanical Garden, St. Louis, Missouri, 63110-0299, USA
| | - Kirsten K Coe
- Department of Biology, Middlebury College, Middlebury, Vermont, 40506-0225, USA
| | - Melvin J Oliver
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- USDA-ARS-MWA, Plant Genetics Research Unit, Columbia, Missouri, 65211, USA
| |
Collapse
|
20
|
Farrant JM, Hilhorst HWM. What is dry? Exploring metabolism and molecular mobility at extremely low water contents. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1507-1510. [PMID: 33649767 PMCID: PMC7921294 DOI: 10.1093/jxb/eraa579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article comments on: Candotto Carniel FC, Fernandez-Marín B, Arc E, Craighero T, Laza MJ, Incerti G, Tretiach M, Kranner I. 2021. How dry is dry? Molecular mobility in relation to thallus water content in a lichen. Journal of Experimental Botany 72, 1576–1588
Collapse
Affiliation(s)
- Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020; 22:E101. [PMID: 33374189 PMCID: PMC7795748 DOI: 10.3390/ijms22010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Natalia Vashurina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
22
|
Li X, Fang C, Zhao JP, Zhou XY, Ni Z, Niu DK. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genomics 2020; 21:452. [PMID: 32611311 PMCID: PMC7329468 DOI: 10.1186/s12864-020-06865-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background Although horizontal gene transfer (HGT) is a widely accepted force in the evolution of prokaryotic genomes, its role in the evolution of eukaryotic genomes remains hotly debated. Some bdelloid rotifers that are resistant to extreme desiccation and radiation undergo a very high level of HGT, whereas in another desiccation-resistant invertebrate, the tardigrade, the pattern does not exist. Overall, the DNA double-strand breaks (DSBs) induced by prolonged desiccation have been postulated to open a gateway to the nuclear genome for exogenous DNA integration and thus to facilitate the HGT process, thereby enhancing the rate of endosymbiotic DNA transfer (EDT). Results We first surveyed the abundance of nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs) in five eukaryotes that are highly resistant to desiccation: the bdelloid rotifers Adineta vaga and Adineta ricciae, the tardigrade Ramazzottius varieornatus, and the resurrection plants Dorcoceras hygrometricum and Selaginella tamariscina. Excessive NUMTs or NUPTs were not detected. Furthermore, we compared 24 groups of desiccation-tolerant organisms with their relatively less desiccation-tolerant relatives but did not find a significant difference in NUMT/NUPT contents. Conclusions Desiccation may induce DSBs, but it is unlikely to dramatically increase the frequency of exogenous sequence integration in most eukaryotes. The capture of exogenous DNA sequences is possible only when DSBs are repaired through a subtype of non-homologous end joining, named alternative end joining (alt-EJ). Due to the deleterious effects of the resulting insertion mutations, alt-EJ is less frequently initiated than other mechanisms.
Collapse
Affiliation(s)
- Xixi Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Cheng Fang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Peng Zhao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Yu Zhou
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhihua Ni
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
24
|
Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD. Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:435-460. [PMID: 32040342 DOI: 10.1146/annurev-arplant-071219-105542] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.
Collapse
Affiliation(s)
- Melvin J Oliver
- Plant Genetics Research Unit, US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
- Current affiliation: Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA;
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa;
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, 6706 PB Wageningen, The Netherlands;
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - J Derek Bewley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
25
|
Lyall R, Schlebusch SA, Proctor J, Prag M, Hussey SG, Ingle RA, Illing N. Vegetative desiccation tolerance in the resurrection plant Xerophyta humilis has not evolved through reactivation of the seed canonical LAFL regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1349-1367. [PMID: 31680354 PMCID: PMC7187197 DOI: 10.1111/tpj.14596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/25/2023]
Abstract
It has been hypothesised that vegetative desiccation tolerance in resurrection plants evolved via reactivation of the canonical LAFL (i.e. LEC1, ABI3, FUS3 and LEC2) transcription factor (TF) network that activates the expression of genes during the maturation of orthodox seeds leading to desiccation tolerance of the plant embryo in most angiosperms. There is little direct evidence to support this, however, and the transcriptional changes that occur during seed maturation in resurrection plants have not previously been studied. Here we performed de novo transcriptome assembly for Xerophyta humilis, and analysed gene expression during seed maturation and vegetative desiccation. Our results indicate that differential expression of a set of 4205 genes is common to maturing seeds and desiccating leaves. This shared set of genes is enriched for gene ontology terms related to abiotic stress, including water stress and abscisic acid signalling, and includes many genes that are seed-specific in Arabidopsis thaliana and targets of ABI3. However, while we observed upregulation of orthologues of the canonical LAFL TFs and ABI5 during seed maturation, similar to what is seen in A. thaliana, this did not occur during desiccation of leaf tissue. Thus, reactivation of components of the seed desiccation program in X. humilis vegetative tissues likely involves alternative transcriptional regulators.
Collapse
Affiliation(s)
- Rafe Lyall
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Stephen A. Schlebusch
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Jessica Proctor
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Mayur Prag
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| | - Robert A. Ingle
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| | - Nicola Illing
- Department of Molecular and Cell BiologyUniversity of Cape TownRondebosch7701South Africa
| |
Collapse
|
26
|
Genome-level responses to the environment: plant desiccation tolerance. Emerg Top Life Sci 2019; 3:153-163. [DOI: 10.1042/etls20180139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Plants being sessile organisms are well equipped genomically to respond to environmental stressors peculiar to their habitat. Evolution of plants onto land was enabled by the ability to tolerate extreme water loss (desiccation), a feature that has been retained within genomes but not universally expressed in most land plants today. In the majority of higher plants, desiccation tolerance (DT) is expressed only in reproductive tissues (seeds and pollen), but some 135 angiosperms display vegetative DT. Here, we review genome-level responses associated with DT, pointing out common and yet sometimes discrepant features, the latter relating to evolutionary adaptations to particular niches. Understanding DT can lead to the ultimate production of crops with greater tolerance of drought than is currently realized.
Collapse
|
27
|
Mechela A, Schwenkert S, Soll J. A brief history of thylakoid biogenesis. Open Biol 2019; 9:180237. [PMID: 30958119 PMCID: PMC6367138 DOI: 10.1098/rsob.180237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The thylakoid membrane network inside chloroplasts harbours the protein complexes that are necessary for the light-dependent reactions of photosynthesis. Cellular processes for building and altering this membrane network are therefore essential for life on Earth. Nevertheless, detailed molecular processes concerning the origin and synthesis of the thylakoids remain elusive. Thylakoid biogenesis is strongly coupled to the processes of chloroplast differentiation. Chloroplasts develop from special progenitors called proplastids. As many of the needed building blocks such as lipids and pigments derive from the inner envelope, the question arises how these components are recruited to their target membrane. This review travels back in time to the beginnings of thylakoid membrane research to summarize findings, facts and fictions on thylakoid biogenesis and structure up to the present state, including new insights and future developments in this field.
Collapse
Affiliation(s)
- Annabel Mechela
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
28
|
Zamora-Briseño JA, Reyes-Hernández SJ, Zapata LCR. Does water stress promote the proteome-wide adjustment of intrinsically disordered proteins in plants? Cell Stress Chaperones 2018; 23:807-812. [PMID: 29860709 PMCID: PMC6111090 DOI: 10.1007/s12192-018-0918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Plant response to water stress involves the activation of mechanisms expected to help them cope with water scarcity. Among these mechanisms, proteome-wide adjustment is well known. This includes actions to save energy, protect cellular and molecular components, and maintain vital functions of the cell. Intrinsically disordered proteins, which are proteins without a rigid three-dimensional structure, are seen as emerging multifunctional cellular components of proteomes. They are highly abundant in eukaryotic proteomes, and numerous functions for these proteins have been proposed. Here, we discuss several reasons why the collection of intrinsically disordered proteins in a proteome (disordome) could be subjected to an active regulation during conditions of water scarcity in plants. We also discuss the potential misinterpretations of disordome content estimations made so far due to bias-prone data and the need for reliable analysis based on experimental data in order to acknowledge the plasticity nature of the disordome.
Collapse
|
29
|
Challabathula D, Zhang Q, Bartels D. Protection of photosynthesis in desiccation-tolerant resurrection plants. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:84-92. [PMID: 29778495 DOI: 10.1016/j.jplph.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 05/14/2023]
Abstract
Inhibition of photosynthesis is a central, primary response that is observed in both desiccation-tolerant and desiccation-sensitive plants affected by drought stress. Decreased photosynthesis during drought stress can either be due to the limitation of carbon dioxide entry through the stomata and the mesophyll cells, due to increased oxidative stress or due to decreased activity of photosynthetic enzymes. Although the photosynthetic rates decrease in both desiccation-tolerant and sensitive plants during drought, the remarkable difference lies in the complete recovery of photosynthesis after rehydration in desiccation-tolerant plants. Desiccation of sensitive plants leads to irreparable damages of the photosynthetic membranes, in contrast the photosynthetic apparatus is deactivated during desiccation in desiccation-tolerant plants. Desiccation-tolerant plants employ different strategies to protect and/or maintain the structural integrity of the photosynthetic apparatus to reactivate photosynthesis upon water availability. Two major mechanisms are distinguished. Homoiochlorophyllous desiccation-tolerant plants preserve chlorophyll and thylakoid membranes and require active protection mechanisms, while poikilochlorophyllous plants degrade chlorophyll in a regulated manner but then require de novo synthesis during rehydration. Desiccation-tolerant plants, particularly homoiochlorophyllous plants, employ conserved and novel antioxidant enzymes/metabolites to minimize the oxidative damage and to protect the photosynthetic machinery. De novo synthesized, stress-induced proteins in combination with antioxidants are localized in chloroplasts and are important components of the protective network. Genome sequence informations provide some clues on selection of genes involved in protecting photosynthetic structures; e.g. ELIP genes (early light inducible proteins) are enriched in the genomes and more abundantly expressed in homoiochlorophyllous desiccation-tolerant plants. This review focuses on the mechanisms that operate in the desiccation-tolerant plants to protect the photosynthetic apparatus during desiccation.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|