1
|
Duan W, Wang S, Zhang H, Xie B, Zhang L. Plant growth and nitrate absorption and assimilation of two sweet potato cultivars with different N tolerances in response to nitrate supply. Sci Rep 2024; 14:21286. [PMID: 39266741 PMCID: PMC11393465 DOI: 10.1038/s41598-024-72422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
In sweet potato, rational nitrogen (N) assimilation and distribution are conducive to inhibiting vine overgrowth. Nitrate (NO3-) is the main N form absorbed by roots, and cultivar is an important factor affecting N utilization. Herein, a hydroponic experiment was conducted that included four NO3- concentrations of 0 (N0), 4 (N1), 8 (N2) and 16 (N3) mmol L-1 with two cultivars of Jishu26 (J26, N-sensitive) and Xushu32 (X32, N-tolerant). For J26, with increasing NO3- concentrations, the root length and root surface area significantly decreased. However, no significant differences were observed in these parameters for X32. Higher NO3- concentrations upregulated the expression levels of the genes that encode nitrate reductase (NR2), nitrite reductase (NiR2) and nitrate transporter (NRT1.1) in roots for both cultivars. The trends in the activities of NR and NiR were subject to regulation of NR2 and NiR2 transcription, respectively. For both cultivars, N2 increased the N accumulated in leaves, growth points and roots. For J26, N3 further increased the N accumulation in these organs. Under higher NO3- nutrition, compared with X32, J26 exhibited higher expression levels of the NiR2, NR2 and NRT1.1 genes, a higher influx NO3- rate in roots, and higher activities of NR and NiR in leaves and roots. Conclusively, the regulated effects of NO3- supplies on root growth and NO3- utilization were more significant for J26. Under high NO3- conditions, J26 exhibited higher capacities of NO3- absorption and distributed more N in leaves and in growth points, which may contribute to higher growth potential in shoots and more easily cause vine overgrowth.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Shasha Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
2
|
Zhang X, Zhang Q, Gao N, Liu M, Zhang C, Luo J, Sun Y, Feng Y. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14486. [PMID: 39187436 DOI: 10.1111/ppl.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Nitrate (NO3 -) is a significant inorganic nitrogen source in soil, playing a crucial role in influencing crop productivity. As sessile organisms, plants have evolved complex mechanisms for nitrate uptake and response to varying soil levels. Recent advancements have enhanced our understanding of nitrate uptake and signaling pathways. This mini-review offers a comparative analysis of nitrate uptake mechanisms in Arabidopsis and rice. It also examines nitrate signal transduction, highlighting the roles of AtNRT1.1 and AtNLP7 as nitrate receptors and elucidating the OsNRT1.1B-OsSPX4-OsNLP3 cascade. Additionally, it investigates nuclear transcriptional networks that regulate nitrate-responsive genes, controlled by various transcription factors (TFs) crucial for plant development. By integrating these findings, we highlight mechanisms that may help to enhance crop nitrogen utilization.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qian Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Na Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mingchao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Jiajun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Wu W, Dong X, Chen G, Lin Z, Chi W, Tang W, Yu J, Wang S, Jiang X, Liu X, Wu Y, Wang C, Cheng X, Zhang W, Xuan W, Terzaghi W, Ronald PC, Wang H, Wang C, Wan J. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nat Genet 2024; 56:1516-1526. [PMID: 38872029 PMCID: PMC11250373 DOI: 10.1038/s41588-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaolan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yujun Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Hu Z, Huang X, Xia H, Zhang Z, Lu H, Wang X, Sun Y, Cui M, Yang S, Kant S, Xu G, Sun S. Transcription factor OsSHR2 regulates rice architecture and yield per plant in response to nitrogen. PLANTA 2024; 259:148. [PMID: 38717679 DOI: 10.1007/s00425-024-04400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.
Collapse
Affiliation(s)
- Zhi Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihuang Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhantian Zhang
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Huixin Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agriculture Science, Shanghai, 201403, China
| | - Mengyuan Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Wu D, Cao Y, Wang D, Zong G, Han K, Zhang W, Qi Y, Xu G, Zhang Y. Auxin receptor OsTIR1 mediates auxin signaling during seed filling in rice. PLANT PHYSIOLOGY 2024; 194:2434-2448. [PMID: 38214208 DOI: 10.1093/plphys/kiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.
Collapse
Affiliation(s)
- Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China
| | - Yanan Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoxinan Zong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunxu Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
6
|
Mostafa K, Yerlikaya BA, Abdulla MF, Aydin A, Yerlikaya S, Kavas M. Genome-wide analysis of PvMADS in common bean and functional characterization of PvMADS31 in Arabidopsis thaliana as a player in abiotic stress responses. THE PLANT GENOME 2024; 17:e20432. [PMID: 38327143 DOI: 10.1002/tpg2.20432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Changing climatic conditions with rising temperatures and altered precipitation patterns pose significant challenges to agricultural productivity, particularly for common bean crops. Transcription factors (TFs) are crucial regulators that can mitigate the impact of biotic and abiotic stresses on crop production. The MADS-box TFs family has been implicated in various plant physiological processes, including stress-responsive mechanisms. However, their role in common bean and their response to stressful conditions remain poorly understood. Here, we identified 35 MADS-box gene family members in common bean, with conserved MADS-box domains and other functional domains. Gene duplication events were observed, suggesting the significance of duplication in the evolutionary development of gene families. The analysis of promoter regions revealed diverse elements, including stress-responsive elements, indicating their potential involvement in stress responses. Notably, PvMADS31, a member of the PvMADS-box gene family, demonstrated rapid upregulation under various abiotic stress conditions, including NaCl, polyethylene glycol, drought, and abscisic acid (ABA) treatments. Transgenic plants overexpressing PvMADS31 displayed enhanced lateral root development, root elongation, and seed germination under stress conditions. Furthermore, PvMADS31 overexpression in Arabidopsis resulted in improved drought tolerance, likely attributed to the enhanced scavenging of ROS and increased proline accumulation. These findings suggest that PvMADS31 might play a crucial role in modulating seed germination, root development, and stress responses, potentially through its involvement in auxin and ABA signaling pathways. Overall, this study provides valuable insights into the potential roles of PvMADS-box genes in abiotic stress responses in common bean, offering prospects for crop improvement strategies to enhance resilience under changing environmental conditions.
Collapse
Affiliation(s)
- Karam Mostafa
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- The Central Laboratory for Date Palm Research and Development, Agricultural Research Center (ARC), Giza, Egypt
| | - Bayram Ali Yerlikaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Mohamed Farah Abdulla
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Abdullah Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Seher Yerlikaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
7
|
Du LD, Guan ZJ, Liu YH, Zhu HD, Sun Q, Hu DG, Sun CH. The BTB/TAZ domain-containing protein CmBT1-mediated CmANR1 ubiquitination negatively regulates root development in chrysanthemum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:285-299. [PMID: 38314502 DOI: 10.1111/jipb.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
Roots are fundamental for plants to adapt to variable environmental conditions. The development of a robust root system is orchestrated by numerous genetic determinants and, among them, the MADS-box gene ANR1 has garnered substantial attention. Prior research has demonstrated that, in chrysanthemum, CmANR1 positively regulates root system development. Nevertheless, the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified. In this study, we successfully identified bric-a-brac, tramtrack and broad (BTB) and transcription adapter putative zinc finger (TAZ) domain protein CmBT1 as the interacting partner of CmANR1 through a yeast-two-hybrid (Y2H) screening library. Furthermore, we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays. Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum. In both in vitro and in vivo assays, it was evident that CmBT1 mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway. This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2, which was crucial for root development in chrysanthemum. Genetic analysis suggested that CmBT1 modulated root development, at least in part, by regulating the level of CmANR1 protein. Collectively, these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination, thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.
Collapse
Affiliation(s)
- Lian-Da Du
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Zhang-Ji Guan
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yan-Hong Liu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hui-Dong Zhu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Quan Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Da-Gang Hu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Cui-Hui Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
8
|
Nan Y, Xie Y, He H, Wu H, Gao L, Atif A, Zhang Y, Tian H, Hui J, Gao Y. Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.). Int J Biol Macromol 2024; 254:127771. [PMID: 38287600 DOI: 10.1016/j.ijbiomac.2023.127771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the important oil crops, with a high demand for nitrogen (N). It is essential to explore the potential of rapeseed to improve nitrogen utilization efficiency (NUtE). Rapeseed is an allotetraploid crop with a relatively large and complex genome, and there are few studies on the mapping of genes related to NUtE regulation. In this study, we used the combination of bulk segregant analysis sequencing (BSA-Seq) and RNA sequencing (RNA-Seq) to analyze the N-efficient genotype 'Zheyou 18' and N-inefficient genotype 'Sollux', to identify the genetic regulatory mechanisms. Several candidate genes were screened, such as the high-affinity nitrate transporter gene NRT2.1 (BnaC08g43370D) and the abscisic acid (ABA) signal transduction-related genes (BnaC02g14540D, BnaA03g20760D, and BnaA05g01330D). BnaA05g01330D was annotated as ABA-INDUCIBLE bHLH-TYPE TRANSCRIPTION FACTOR (AIB/bHLH17), which was highly expressed in the root. The results showed that the primary root length of the ataib mutant was significantly longer than that of the wild type under low N conditions. Overexpression of BnaA5.AIB could reduce the NUtE under low N levels in Arabidopsis (Arabidopsis thaliana). Candidate genes identified in this study may be involved in the regulation of NUtE in rapeseed, and new functions of AIB in orchestrating N uptake and utilization have been revealed. It is indicated that BnaA5.AIB may be the key factor that links ABA to N signaling and a negative regulator of NUtE. It will provide a theoretical basis and application prospect for resource conservation, environmental protection, and sustainable agricultural development.
Collapse
Affiliation(s)
- Yunyou Nan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyu Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiying He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Han Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixing Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ayub Atif
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Hui Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jing Hui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Wu J, Yang S, Chen N, Jiang Q, Huang L, Qi J, Xu G, Shen L, Yu H, Fan X, Gan Y. Nuclear translocation of OsMADS25 facilitated by OsNAR2.1 in reponse to nitrate signals promotes rice root growth by targeting OsMADS27 and OsARF7. PLANT COMMUNICATIONS 2023; 4:100642. [PMID: 37353931 PMCID: PMC10721473 DOI: 10.1016/j.xplc.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development. Although several components of the nitrate signaling pathway have been identified, the detailed mechanisms are still unclear. Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals, but the mechanism is still unknown. Here, we try to answer two key questions: how does OsMADS25 move from the cytoplasm to the nucleus, and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate? Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependent manner. Chromatin immunoprecipitation sequencing, chromatin immunoprecipitation qPCR, yeast one-hybrid, and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7, which are reported to be associated with root growth. Finally, OsMADS25-RNAi lines, the Osnar2.1 mutant, and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply, and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines. Collectively, these results reveal a new mechanism by which OsMADS25 interacts with OsNAR2.1. This interaction is required for nuclear accumulation of OsMADS25, which promotes OsMADS27 and OsARF7 expression and root growth in a nitrate-dependent manner.
Collapse
Affiliation(s)
- Junyu Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Nana Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Qining Jiang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Linli Huang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
10
|
Xu W, Chen Y, Liu B, Li Q, Zhou Y, Li X, Guo W, Hu Z, Liu Z, Xin M, Yao Y, You M, Peng H, Ni Z, Xing J. TaANR1-TaMADS25 module regulates lignin biosynthesis and root development in wheat (Triticum aestivum L.). J Genet Genomics 2023; 50:917-920. [PMID: 37666357 DOI: 10.1016/j.jgg.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Weiya Xu
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Bin Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qiuyuan Li
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yilan Zhou
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuanshuang Li
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingshan You
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jiewen Xing
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Guo X, Chen Y, Hu Y, Feng F, Zhu X, Sun H, Li J, Zhao Q, Sun H. OsMADS5 interacts with OsSPL14/17 to inhibit rice root elongation by restricting cell proliferation of root meristem under ammonium supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:87-99. [PMID: 37340958 DOI: 10.1111/tpj.16361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium (NH 4 + ) is the primary source of N for rice,NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism thatNH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased underNH 4 + compared withNO 3 - supply. UnderNH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 underNO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 byNH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation underNH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation underNH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 byNH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yake Chen
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yibo Hu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fan Feng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junzhou Li
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huwei Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
12
|
Alfatih A, Zhang J, Song Y, Jan SU, Zhang ZS, Xia JQ, Zhang ZY, Nazish T, Wu J, Zhao PX, Xiang CB. Nitrate-responsive OsMADS27 promotes salt tolerance in rice. PLANT COMMUNICATIONS 2023; 4:100458. [PMID: 36199247 PMCID: PMC10030316 DOI: 10.1016/j.xplc.2022.100458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 05/04/2023]
Abstract
Salt stress is a major constraint on plant growth and yield. Nitrogen (N) fertilizers are known to alleviate salt stress. However, the underlying molecular mechanisms remain unclear. Here, we show that nitrate-dependent salt tolerance is mediated by OsMADS27 in rice. The expression of OsMADS27 is specifically induced by nitrate. The salt-inducible expression of OsMADS27 is also nitrate dependent. OsMADS27 knockout mutants are more sensitive to salt stress than the wild type, whereas OsMADS27 overexpression lines are more tolerant. Transcriptomic analyses revealed that OsMADS27 upregulates the expression of a number of known stress-responsive genes as well as those involved in ion homeostasis and antioxidation. We demonstrate that OsMADS27 directly binds to the promoters of OsHKT1.1 and OsSPL7 to regulate their expression. Notably, OsMADS27-mediated salt tolerance is nitrate dependent and positively correlated with nitrate concentration. Our results reveal the role of nitrate-responsive OsMADS27 and its downstream target genes in salt tolerance, providing a molecular mechanism for the enhancement of salt tolerance by nitrogen fertilizers in rice. OsMADS27 overexpression increased grain yield under salt stress in the presence of sufficient nitrate, suggesting that OsMADS27 is a promising candidate for the improvement of salt tolerance in rice.
Collapse
Affiliation(s)
- Alamin Alfatih
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Sami Ullah Jan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Tahmina Nazish
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Ping-Xia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
13
|
Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, Wang D, Wu Y, Zhao Q, Xu G, Fu X, Zhang Y. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. MOLECULAR PLANT 2023; 16:588-598. [PMID: 36683328 DOI: 10.1016/j.molp.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Modern semi-dwarf rice varieties of the "Green Revolution" require a high supply of nitrogen (N) fertilizer to produce high yields. A better understanding of the interplay between N metabolism and plant developmental processes is required for improved N-use efficiency and agricultural sustainability. Here, we show that strigolactones (SLs) modulate root metabolic and developmental adaptations to low N availability for ensuring efficient uptake and translocation of available N. The key repressor DWARF 53 (D53) of the SL signaling pathway interacts with the transcription factor GROWTH-REGULATING FACTOR 4 (GRF4) and prevents GRF4 from binding to its target gene promoters. N limitation induces the accumulation of SLs, which in turn promotes SL-mediated degradation of D53, leading to the release of GRF4 and thus promoting the expression of genes associated with N metabolism. N limitation also induces degradation of the DELLA protein SLENDER RICE 1 (SLR1) in an D14- and D53-dependent manner, effectively releasing GRF4 from competitive inhibition caused by SLR1. Collectively, our findings reveal a previously unrecognized mechanism underlying SL and gibberellin crosstalk in response to N availability, advancing our understanding of plant growth-metabolic coordination and facilitating the design of the strategies for improving N-use efficiency in high-yield crops.
Collapse
Affiliation(s)
- Huwei Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyuan Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqing Tao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Daojian Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yali Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Aluko OO, Kant S, Adedire OM, Li C, Yuan G, Liu H, Wang Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1074839. [PMID: 36895876 PMCID: PMC9989036 DOI: 10.3389/fpls.2023.1074839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
15
|
Luo L. Is strigolactone signaling a key player in regulating tiller formation in response to nitrogen? FRONTIERS IN PLANT SCIENCE 2022; 13:1081740. [PMID: 36589130 PMCID: PMC9800024 DOI: 10.3389/fpls.2022.1081740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
|
16
|
Nasrollahi V, Yuan ZC, Kohalmi SE, Hannoufa A. SPL12 Regulates AGL6 and AGL21 to Modulate Nodulation and Root Regeneration under Osmotic Stress and Nitrate Sufficiency Conditions in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223071. [PMID: 36432802 PMCID: PMC9697194 DOI: 10.3390/plants11223071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 06/12/2023]
Abstract
The highly conserved plant microRNA, miR156, affects root architecture, nodulation, symbiotic nitrogen fixation, and stress response. In Medicago sativa, transcripts of eleven SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE, SPLs, including SPL12, are targeted for cleavage by miR156. Our previous research revealed the role of SPL12 and its target gene, AGL6, in nodulation in alfalfa. Here, we investigated the involvement of SPL12, AGL6 and AGL21 in nodulation under osmotic stress and different nitrate availability conditions. Characterization of phenotypic and molecular parameters revealed that the SPL12/AGL6 module plays a negative role in maintaining nodulation under osmotic stress. While there was a decrease in the nodule numbers in WT plants under osmotic stress, the SPL12-RNAi and AGL6-RNAi genotypes maintained nodulation under osmotic stress. Moreover, the results showed that SPL12 regulates nodulation under a high concentration of nitrate by silencing AGL21. AGL21 transcript levels were increased under nitrate treatment in WT plants, but SPL12 was not affected throughout the treatment period. Given that AGL21 was significantly upregulated in SPL12-RNAi plants, we conclude that SPL12 may be involved in regulating nitrate inhibition of nodulation in alfalfa by targeting AGL21. Taken together, our results suggest that SPL12, AGL6, and AGL21 form a genetic module that regulates nodulation in alfalfa under osmotic stress and in response to nitrate.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
17
|
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life (Basel) 2022; 12:1653. [PMID: 36295087 PMCID: PMC9605605 DOI: 10.3390/life12101653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrogen (N) is an important nutrient for the growth and development of rice. The application of N fertilizer has become one of the inevitable ways to increase rice yield due to insufficient soil N content. However, in order to achieve stable and high yield, farmers usually increase N fertilizer input without hesitation, resulting in a series of problems such as environmental pollution, energy waste and low production efficiency. For sustainable agriculture, improving the nitrogen use efficiency (NUE) to decrease N fertilizer input is imperative. In the present review, we firstly demonstrate the role of N in mediating root architecture, photosynthesis, metabolic balance, and yield components in rice. Furthermore, we further summarize the current agronomic practices for enhancing rice NUE, including balanced fertilization, the use of nitrification inhibitors and slow-release N fertilizers, the split application of N fertilizer, root zone fertilization, and so on. Finally, we discuss the recent advances of N efficiency-related genes with potential breeding value. These genes will contribute to improving the N uptake, maintain the N metabolism balance, and enhance the NUE, thereby breeding new varieties against low N tolerance to improve the rice yield and quality. Moreover, N-efficient varieties also need combine with precise N fertilizer management and advanced cultivation techniques to realize the maximum exploitation of their biological potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Genyou Zhou
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Shiyang Guo
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| | - Xiaohui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiaqi Yuan
- Department of Food Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, China
| | - Anyong Hu
- School of Geographic Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
18
|
OsTBP2.1, a TATA-Binding Protein, Alters the Ratio of OsNRT2.3b to OsNRT2.3a and Improves Rice Grain Yield. Int J Mol Sci 2022; 23:ijms231810795. [PMID: 36142708 PMCID: PMC9503026 DOI: 10.3390/ijms231810795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The OsNRT2.3a and OsNRT2.3b isoforms play important roles in the uptake and transport of nitrate during rice growth. However, it is unclear which cis-acting element controls the transcription of OsNRT2.3 into these specific isoforms. In this study, we used a yeast one-hybrid assay to obtain the TATA-box binding protein OsTBP2.1, which binds to the TATA-box of OsNRT2.3, and verified its important role through transient expression and RNA-seq. We found that the TATA-box of OsNRT2.3 mutants and binding protein OsTBP2.1 together increased the transcription ratio of OsNRT2.3b to OsNRT2.3a. The overexpression of OsTBP2.1 promoted nitrogen uptake and increased rice yield compared with the wild-type; however, the OsTBP2.1 T-DNA mutant lines exhibited the opposite trend. Detailed analyses demonstrated that the TATA-box was the key cis-regulatory element for OsNRT2.3 to be transcribed into OsNRT2.3a and OsNRT2.3b. Additionally, this key cis-regulatory element, together with the binding protein OsTBP2.1, promoted the development of rice and increased grain yield.
Collapse
|
19
|
Gao Y, Qi S, Wang Y. Nitrate signaling and use efficiency in crops. PLANT COMMUNICATIONS 2022; 3:100353. [PMID: 35754172 PMCID: PMC9483113 DOI: 10.1016/j.xplc.2022.100353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3-) is not only an essential nutrient but also an important signaling molecule for plant growth. Low nitrogen use efficiency (NUE) of crops is causing increasingly serious environmental and ecological problems. Understanding the molecular mechanisms of NO3- regulation in crops is crucial for NUE improvement in agriculture. During the last several years, significant progress has been made in understanding the regulation of NO3- signaling in crops, and some key NO3- signaling factors have been shown to play important roles in NO3- utilization. However, no detailed reviews have yet summarized these advances. Here, we focus mainly on recent advances in crop NO3- signaling, including short-term signaling, long-term signaling, and the impact of environmental factors. We also review the regulation of crop NUE by crucial genes involved in NO3- signaling. This review provides useful information for further research on NO3- signaling in crops and a theoretical basis for breeding new crop varieties with high NUE, which has great significance for sustainable agriculture.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
20
|
Verma PK, Verma S, Pandey N. Root system architecture in rice: impacts of genes, phytohormones and root microbiota. 3 Biotech 2022; 12:239. [PMID: 36016841 PMCID: PMC9395555 DOI: 10.1007/s13205-022-03299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
To feed the continuously expanding world's population, new crop varieties have been generated, which significantly contribute to the world's food security. However, the growth of these improved plant varieties relies primarily on synthetic fertilizers, which negatively affect the environment and human health; therefore, continuous improvement is needed for sustainable agriculture. Several plants, including cereal crops, have the adaptive capability to combat adverse environmental changes by altering physiological and molecular mechanisms and modifying their root system to improve nutrient uptake efficiency. These plants operate distinct pathways at various developmental stages to optimally establish their root system. These processes include changes in the expression profile of genes, changes in phytohormone level, and microbiome-induced root system architecture (RSA) modification. Several studies have been performed to understand microbial colonization and their involvement in RSA improvement through changes in phytohormone and transcriptomic levels. This review highlights the impact of genes, phytohormones, and particularly root microbiota in influencing RSA and provides new insights resulting from recent studies on rice root as a model system and summarizes the current knowledge about biochemical and central molecular mechanisms.
Collapse
Affiliation(s)
- Pankaj Kumar Verma
- Department of Botany, University of Lucknow, Lucknow, India
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Shikha Verma
- Present Address: French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, India
| |
Collapse
|
21
|
Shen C, Li Q, An Y, Zhou Y, Zhang Y, He F, Chen L, Liu C, Mao W, Wang X, Liang H, Yin W, Xia X. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4778-4792. [PMID: 35526197 DOI: 10.1093/jxb/erac190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plants have evolved complex mechanisms to cope with the fluctuating environmental availability of nitrogen. However, potential genes modulating plant responses to nitrate are yet to be characterized. Here, a poplar GATA transcription factor gene PdGNC (GATA nitrate-inducible carbon-metabolism-involved) was found to be strongly induced by low nitrate. Overexpressing PdGNC in poplar clone 717-1B4 (P. tremula × alba) significantly improved nitrate uptake, remobilization, and assimilation with higher nitrogen use efficiency (NUE) and faster growth, particularly under low nitrate conditions. Conversely, CRISPR/Cas9-mediated poplar mutant gnc exhibited decreased nitrate uptake, relocation, and assimilation, combined with lower NUE and slower growth. Assays with yeast one-hybrid, electrophoretic mobility shift, and a dual-luciferase reporter showed that PdGNC directly activated the promoters of nitrogen pathway genes PdNRT2.4b, PdNR, PdNiR, and PdGS2, leading to a significant increase in nitrate utilization in poplar. As expected, the enhanced NUE promoted growth under low nitrate availability. Taken together, our data show that PdGNC plays an important role in the regulation of NUE and growth in poplar by improving nitrate acquisition, remobilization, and assimilation, and provide a promising strategy for molecular breeding to improve productivity under nitrogen limitation in trees.
Collapse
Affiliation(s)
- Chao Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Qing Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yi An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yangyan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yue Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Fang He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Lingyun Chen
- Hangzhou Lifeng Seed Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Xiaofei Wang
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| |
Collapse
|
22
|
Sathee L, Jagadhesan B, Pandesha PH, Barman D, Adavi B S, Nagar S, Krishna GK, Tripathi S, Jha SK, Chinnusamy V. Genome Editing Targets for Improving Nutrient Use Efficiency and Nutrient Stress Adaptation. Front Genet 2022; 13:900897. [PMID: 35774509 PMCID: PMC9237392 DOI: 10.3389/fgene.2022.900897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, the development of RNA-guided genome editing (CRISPR-Cas9 technology) has revolutionized plant genome editing. Under nutrient deficiency conditions, different transcription factors and regulatory gene networks work together to maintain nutrient homeostasis. Improvement in the use efficiency of nitrogen (N), phosphorus (P) and potassium (K) is essential to ensure sustainable yield with enhanced quality and tolerance to stresses. This review outlines potential targets suitable for genome editing for understanding and improving nutrient use (NtUE) efficiency and nutrient stress tolerance. The different genome editing strategies for employing crucial negative and positive regulators are also described. Negative regulators of nutrient signalling are the potential targets for genome editing, that may improve nutrient uptake and stress signalling under resource-poor conditions. The promoter engineering by CRISPR/dead (d) Cas9 (dCas9) cytosine and adenine base editing and prime editing is a successful strategy to generate precise changes. CRISPR/dCas9 system also offers the added advantage of exploiting transcriptional activators/repressors for overexpression of genes of interest in a targeted manner. CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) are variants of CRISPR in which a dCas9 dependent transcription activation or interference is achieved. dCas9-SunTag system can be employed to engineer targeted gene activation and DNA methylation in plants. The development of nutrient use efficient plants through CRISPR-Cas technology will enhance the pace of genetic improvement for nutrient stress tolerance of crops and improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - B. Jagadhesan
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pratheek H. Pandesha
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Dipankar Barman
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandeep Adavi B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shivani Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. K. Krishna
- Department of Plant Physiology, College of Agriculture, KAU, Thrissur, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
23
|
Pachamuthu K, Hari Sundar V, Narjala A, Singh RR, Das S, Avik Pal HCY, Shivaprasad PV. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3511-3530. [PMID: 35243491 DOI: 10.1093/jxb/erac083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris- Saclay, Versailles, France
| | - Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Rahul R Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Harshith C Y Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| |
Collapse
|
24
|
Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 2022; 59:107963. [PMID: 35452778 DOI: 10.1016/j.biotechadv.2022.107963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
We need to improve food production to feed the ever growing world population especially in a changing climate. Nutrient deficiency in soils is one of the primary bottlenecks affecting the crop production both in developed and developing countries. Farmers are forced to apply synthetic fertilizers to improve the crop production to meet the demand. Understanding the mechanism of nutrient transport is helpful to improve the nutrient-use efficiency of crops and promote the sustainable agriculture. Many transporters involved in the acquisition, export and redistribution of nutrients in plants are characterized. In these studies, heterologous systems like yeast and Xenopus were most frequently used to study the transport function of plant nutrient transporters. CRIPSR/Cas system introduced recently has taken central stage for efficient genome editing in diverse organisms including plants. In this review, we discuss the key nutrient transporters involved in the acquisition and redistribution of nutrients from soil. We draw insights on the possible application CRISPR/Cas system for improving the nutrient transport in plants by engineering key residues of nutrient transporters, transcriptional regulation of nutrient transport signals, engineering motifs in promoters and transcription factors. CRISPR-based engineering of plant nutrient transport not only helps to study the process in native plants with conserved regulatory system but also aid to develop non-transgenic crops with better nutrient use-efficiency. This will reduce the application of synthetic fertilizers and promote the sustainable agriculture strengthening the food and nutrient security.
Collapse
Affiliation(s)
| | | | - V Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
25
|
Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153591. [PMID: 34936969 DOI: 10.1016/j.jplph.2021.153591] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi-root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Gao Y, Quan S, Lyu B, Tian T, Liu Z, Nie Z, Qi S, Jia J, Shu J, Groot E, Wu J, Wang Y. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:770-783. [PMID: 34050753 DOI: 10.1093/jxb/erab245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Plants have evolved complex mechanisms to adapt to the changing nitrogen levels in the environment. In Arabidopsis, more than a dozen nitrate signaling regulatory genes have been characterized, including the NODULE INCEPTION-LIKE PROTEIN (AtNLP) genes, which play essential roles in nitrate signaling. However, whether NLP genes in the Triticeae crops are involved in nitrate regulation and nitrogen use efficiency (NUE) remains unknown. Here, we isolated a barley (Hordeum vulgare L.) mutant, hvnlp2-1, from a TILLING (Targeting Local Lesions IN Genomes) population and constructed two RNAi lines, hvnlp2-2 and hvnlp2-3, to study the function of HvNLP2. The expression of the nitrate-responsive genes was substantially inhibited after nitrate treatment in the hvnlp2 mutants, indicating that HvNLP2 controls nitrate signaling. Nitrate content was significantly higher in the hvnlp2 mutants, which may result from the decreased assimilation of nitrogen caused by reduced nitrate reductase activity and expression of nitrate assimilatory genes. HvNLP2 is localized to the nucleus in the presence of nitrate. Further investigation showed that HvNLP2 binds to and activates the nitrate-responsive cis-elements. Moreover, hvnlp2 exhibited reduced biomass, seed yield, and NUE. Therefore, HvNLP2 controls nitrate signaling and plays an important role in NUE.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Bo Lyu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhiguang Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhentian Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jingbo Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Shu
- College of Agriculture Science and Technology, Shandong Agriculture and Engineering University, Jinan, Shandong, China
| | - Edwin Groot
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
27
|
Mandal VK, Jangam AP, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis reveals additional genes/processes and associated traits viz. height, tillering, heading date, stomatal density and yield in japonica rice. PLANTA 2022; 255:42. [PMID: 35038039 DOI: 10.1007/s00425-021-03816-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 05/22/2023]
Abstract
Our transcriptomic analysis expanded the repertoire of nitrate-responsive genes/processes in rice and revealed their phenotypic association with root/shoot, stomata, tiller, panicle/flowering and yield, with agronomic implications for nitrogen use efficiency. Nitrogen use efficiency (NUE) is a multigenic quantitative trait, involving many N-responsive genes/processes that are yet to be fully characterized. Microarray analysis of early nitrate response in excised leaves of japonica rice revealed 6688 differentially expressed genes (DEGs), including 2640 hitherto unreported across multiple functional categories. They include transporters, enzymes involved in primary/secondary metabolism, transcription factors (TFs), EF-hand containing calcium binding proteins, hormone metabolism/signaling and methytransferases. Some DEGs belonged to hitherto unreported processes viz. alcohol, lipid and trehalose metabolism, mitochondrial membrane organization, protein targeting and stomatal opening. 1158 DEGs were associated with growth physiology and grain yield or phenotypic traits for NUE. We identified seven DEGs for shoot apical meristem, 66 for leaf/culm/root, 31 for tiller, 70 for heading date/inflorescence/spikelet/panicle, 144 for seed and 78 for yield. RT-qPCR validated nitrate regulation of 31 DEGs belonging to various important functional categories/traits. Physiological validation of N-dose responsive changes in plant development revealed that relative to 1.5 mM, 15 mM nitrate significantly increased stomatal density, stomatal conductance and transpiration rate. Further, root/shoot growth, number of tillers and grain yield declined and panicle emergence/heading date delayed, despite increased photosynthetic rate. We report the binding sites of diverse classes of TFs such as WRKY, MYB, HMG etc., in the 1 kb up-stream regions of 6676 nitrate-responsive DEGs indicating their role in regulating nitrate response/NUE. Together, these findings expand the repertoire of genes and processes involved in genomewide nitrate response in rice and reveal their physiological, phenotypic and agronomic implications for NUE.
Collapse
Affiliation(s)
- Vikas Kumar Mandal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Annie Prasanna Jangam
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Navjyoti Chakraborty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India
| | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, India.
| |
Collapse
|
28
|
Raza Q, Riaz A, Atif RM, Hussain B, Rana IA, Ali Z, Budak H, Alaraidh IA. Genome-Wide Diversity of MADS-Box Genes in Bread Wheat is Associated with its Rapid Global Adaptability. Front Genet 2022; 12:818880. [PMID: 35111207 PMCID: PMC8801776 DOI: 10.3389/fgene.2021.818880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
MADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. Here, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more rapid evolution was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that could accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Pakistan
- *Correspondence: Qasim Raza, ; Ibrahim A. Alaraidh,
| | - Awais Riaz
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Precision Agriculture and Analytics Lab, National Centre for Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| | - Ibrahim A. Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Qasim Raza, ; Ibrahim A. Alaraidh,
| |
Collapse
|
29
|
Daryani P, Darzi Ramandi H, Dezhsetan S, Mirdar Mansuri R, Hosseini Salekdeh G, Shobbar ZS. Pinpointing genomic regions associated with root system architecture in rice through an integrative meta-analysis approach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:81-106. [PMID: 34623472 DOI: 10.1007/s00122-021-03953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Applying an integrated meta-analysis approach led to identification of meta-QTLs/ candidate genes associated with rice root system architecture, which can be used in MQTL-assisted breeding/ genetic engineering of root traits. Root system architecture (RSA) is an important factor for facilitating water and nutrient uptake from deep soils and adaptation to drought stress conditions. In the present research, an integrated meta-analysis approach was employed to find candidate genes and genomic regions involved in rice RSA traits. A whole-genome meta-analysis was performed for 425 initial QTLs reported in 34 independent experiments controlling RSA traits under control and drought stress conditions in the previous twenty years. Sixty-four consensus meta-QTLs (MQTLs) were detected, unevenly distributed on twelve rice chromosomes. The confidence interval (CI) of the identified MQTLs was obtained as 0.11-14.23 cM with an average of 3.79 cM, which was 3.88 times narrower than the mean CI of the original QTLs. Interestingly, 52 MQTLs were co-located with SNP peak positions reported in rice genome-wide association studies (GWAS) for root morphological traits. The genes located in these RSA-related MQTLs were detected and explored to find the drought-responsive genes in the rice root based on the RNA-seq and microarray data. Multiple RSA and drought tolerance-associated genes were found in the MQTLs including the genes involved in auxin biosynthesis or signaling (e.g. YUCCA, WOX, AUX/IAA, ARF), root angle (DRO1-related genes), lateral root development (e.g. DSR, WRKY), root diameter (e.g. OsNAC5), plant cell wall (e.g. EXPA), and lignification (e.g. C4H, PAL, PRX and CAD). The genes located within both the SNP peak positions and the QTL-overview peaks for RSA are suggested as novel candidate genes for further functional analysis. The promising candidate genes and MQTLs can be used as basis for genetic engineering and MQTL-assisted breeding of root phenotypes to improve yield potential, stability and performance in a water-stressed environment.
Collapse
Affiliation(s)
- Parisa Daryani
- Department of Agronomy & Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran
| | - Hadi Darzi Ramandi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Sara Dezhsetan
- Department of Agronomy & Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran.
| |
Collapse
|
30
|
Wu D, Li Y, Cao Y, Hu R, Wu X, Zhang W, Tao W, Xu G, Wang X, Zhang Y. Increased glutamine synthetase by overexpression of TaGS1 improves grain yield and nitrogen use efficiency in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:259-268. [PMID: 34814097 DOI: 10.1016/j.plaphy.2021.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Improving nitrogen use efficiency (NUE) has been a focal point for crop growth and yield throughout the world. Glutamine synthetase (GS), which plays a fundamental role in N metabolism, has been exploited to improve crop NUE. However, increased GS activity in rice by overexpressing its own GS genes hasn't shown superior plant productivity. Here, transgenic rice plants with increased GS activity by overexpressing TaGS1 were analyzed under field and culture conditions at two N rates. Transgenic expression of TaGS1 significantly increases GS activity in leaves, junctions and roots of rice plants relative to wide-type plants. When rice plants grown under consecutive field trials with N rates of 60 and 240 kg/ha, three transgenic lines have higher grain yield than wild-type plants, with increment of 15%-22% in T2 generation and with that of 28%-36% in T3 generation, respectively. And increased panicle numbers (effective tiller numbers) mainly contribute to the advantage of grain yield in transgenic plants. Analysis of N use-related traits shows that transgenic plants with enhanced GS activity promote root capacity to obtain N, N accumulation during growth stages and N remobilization to grains, ultimately conferring 31%-40% improvement of NUE relative to wild-type rice plants.
Collapse
Affiliation(s)
- Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanan Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ripeng Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaochun Wang
- College of life sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Luo Z, Janssen BJ, Snowden KC. The molecular and genetic regulation of shoot branching. PLANT PHYSIOLOGY 2021; 187:1033-1044. [PMID: 33616657 PMCID: PMC8566252 DOI: 10.1093/plphys/kiab071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 05/27/2023]
Abstract
The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
32
|
Wu J, Yu C, Huang L, Gan Y. A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. PHYSIOLOGIA PLANTARUM 2021; 173:1120-1135. [PMID: 34287928 DOI: 10.1111/ppl.13508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 05/24/2023]
Abstract
MADS-box transcription factors (TFs) play indispensable roles in various aspects of plant growth, development as well as in response to environmental stresses. Several MADS-box genes have been reported to be involved in the salt tolerance in different plant species. However, the role of the transcription factor OsMADS57 under salinity stress is still unknown. Here, the results of this study showed that OsMADS57 was mainly expressed in roots and leaves of rice plants (Oryza sativa). Gene expression pattern analysis revealed that OsMADS57 was induced by NaCl. Overexpression of OsMADS57 in both Arabidopsis thaliana (A. thaliana) and rice could improve their salt tolerance, which was demonstrated by higher germination rates, longer root length and better growth status of overexpression plants than wild type (WT) under salinity conditions. In contrast, RNA interference (RNAi) lines of rice showed more sensitivity towards salinity. Moreover, less reactive oxygen species (ROS) accumulated in OsMADS57 overexpressing lines when exposed to salt stress, as measured by 3, 3'-diaminobenzidine (DAB) or nitroblue tetrazolium (NBT) staining. Further experiments exhibited that overexpression of OsMADS57 in rice significantly increased the tolerance ability of plants to oxidative damage under salt stress, mainly by increasing the activities of antioxidative enzymes such as superoxide dismutase (SOD) and peroxidase (POD), reducing malonaldehyde (MDA) content and improving the expression of stress-related genes. Taken together, these results demonstrated that OsMADS57 plays a positive role in enhancing salt tolerance by activating the antioxidant system.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunyan Yu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ludong University, College of Agriculture, Yantai, China
| | - Linli Huang
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
33
|
Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Res 2021; 31:23-42. [PMID: 34524604 DOI: 10.1007/s11248-021-00284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Nitrogen (N) as a macronutrient is an important determinant of plant growth. The excessive usage of chemical fertilizers is increasing environmental pollution; hence, the improvement of crop's nitrogen use efficiency (NUE) is imperative for sustainable agriculture. N uptake, transportation, assimilation, and remobilization are four important determinants of plant NUE. Oryza sativa L. (rice) is a staple food for approximately half of the human population, around the globe and improvement in rice yield is pivotal for rice breeders. The N transporters, enzymes indulged in N assimilation, and several transcription factors affect the rice NUE and subsequent yield. Although, a couple of improvements have been made regarding rice NUE, the knowledge about regulatory mechanisms operating NUE is scarce. The current review provides a precise knowledge of how rice plants detect soil N and how this detection is translated into the language of responses that regulate the growth. Additionally, the transcription factors that control N-associated genes in rice are discussed in detail. This mechanistic insight will help the researchers to improve rice yield with minimized use of chemical fertilizers.
Collapse
|
34
|
Liang T, Yuan Z, Fu L, Zhu M, Luo X, Xu W, Yuan H, Zhu R, Hu Z, Wu X. Integrative Transcriptomic and Proteomic Analysis Reveals an Alternative Molecular Network of Glutamine Synthetase 2 Corresponding to Nitrogen Deficiency in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22147674. [PMID: 34299294 PMCID: PMC8304609 DOI: 10.3390/ijms22147674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.
Collapse
Affiliation(s)
- Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhengqing Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Fu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Menghan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wuwu Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xianting Wu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610000, China
- Correspondence: ; Tel.: +86-181-8061-4938
| |
Collapse
|
35
|
Nitrate Modulates Lateral Root Formation by Regulating the Auxin Response and Transport in Rice. Genes (Basel) 2021; 12:genes12060850. [PMID: 34205855 PMCID: PMC8229813 DOI: 10.3390/genes12060850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
Nitrate (NO3-) plays a pivotal role in stimulating lateral root (LR) formation and growth in plants. However, the role of NO3- in modulating rice LR formation and the signalling pathways involved in this process remain unclear. Phenotypic and genetic analyses of rice were used to explore the role of strigolactones (SLs) and auxin in NO3--modulated LR formation in rice. Compared with ammonium (NH4+), NO3- stimulated LR initiation due to higher short-term root IAA levels. However, this stimulation vanished after 7 d, and the LR density was reduced, in parallel with the auxin levels. Application of the exogenous auxin α-naphthylacetic acid to NH4+-treated rice plants promoted LR initiation to levels similar to those under NO3- at 7 d; conversely, the application of the SL analogue GR24 to NH4+-treated rice inhibited LR initiation to levels similar to those under NO3- supply by reducing the root auxin levels at 10 d. D10 and D14 mutations caused loss of sensitivity of the LR formation response to NO3-. The application of NO3- and GR24 downregulated the transcription of PIN-FORMED 2(PIN2), an auxin efflux carrier in roots. LR number and density in pin2 mutant lines were insensitive to NO3- treatment. These results indicate that NO3- modulates LR formation by affecting the auxin response and transport in rice, with the involvement of SLs.
Collapse
|
36
|
Fan X, Liu L, Qian K, Chen J, Zhang Y, Xie P, Xu M, Hu Z, Yan W, Wu Y, Xu G, Fan X. Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice. BMC PLANT BIOLOGY 2021; 21:211. [PMID: 33975546 PMCID: PMC8111971 DOI: 10.1186/s12870-021-02953-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) is an important nutrient for plant growth, development, and agricultural production. Nitrogen stress could induce epigenetic changes in plants. In our research, overexpression of the OsNAR2.1 line was used as a testing target in rice plants with high nitrogen-use efficiency to study the changes of rice methylation and growth in respond of the endogenous and external nitrogen stress. RESULTS Our results showed that external N deficiency could decrease seed N content and plant growth of the overexpression line. During the filial growth, we found that the low parent seed nitrogen (LPSN) in the overexpression line could lead to a decrease in the filial seed nitrogen content, total plant nitrogen content, yield, and OsNAR2.1 expression (28, 35, 23, and 55%, respectively) compared with high parent seed nitrogen (HPSN) in high nitrogen external supply. However, such decreases were not observed in wild type. Furthermore, methylation sequencing results showed that LPSN caused massive gene methylation changes, which enriched in over 20 GO pathways in the filial overexpression line, and the expression of OsNAR2.1 in LPSN filial overexpression plants was significantly reduced compared to HPSN filial plants in high external N, which was not shown in wild type. CONCLUSIONS We suggest that the parent seed nitrogen content decreased induced DNA methylation changes at the epigenetic level and significantly decreased the expression of OsNAR2.1, resulting in a heritable phenotype of N deficiency over two generations of the overexpression line.
Collapse
Affiliation(s)
- Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laihua Liu
- Vazyme Biotech Co Ltd, Nanjing, 210033, China
| | - Kaiyun Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuyue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Man Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - WenKai Yan
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
37
|
Sun H, Guo X, Qi X, Feng F, Xie X, Zhang Y, Zhao Q. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:649-660. [PMID: 33547682 DOI: 10.1111/tpj.15188] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is an essential major nutrient for food crops. Although ammonium (NH4+ ) is the primary N source of rice (Oryza sativa), nitrate (NO3- ) can also be absorbed and utilized. Rice responds to NO3- application by altering its root morphology, such as root elongation. Strigolactones (SLs) are important modulators of root length. However, the roles of SLs and their downstream genes in NO3- -induced root elongation remain unclear. Here, the levels of total N and SL (4-deoxyorobanchol) and the responses of seminal root (SR) lengths to NH4+ and NO3- were investigated in rice plants. NO3- promoted SR elongation, possibly due to short-term signal perception and long-term nutrient function. Compared with NH4+ conditions, higher SL signalling/levels and less D53 protein were recorded in roots of NO3- -treated rice plants. In contrast to wild-type plants, SR lengths of d mutants were less responsive to NO3- conditions, and application of rac-GR24 (SL analogue) restored SR length in d10 (SL biosynthesis mutant) but not in d3, d14, and d53 (SL-responsive mutants), suggesting that higher SL signalling/levels participate in NO3- -induced root elongation. D53 interacted with SPL17 and inhibited SPL17-mediated transactivation from the PIN1b promoter. Mutation of SPL14/17 and PIN1b caused insensitivity of the root elongation response to NO3- and rac-GR24 applications. Therefore, we conclude that perception of SLs by D14 leads to degradation of D53 via the proteasome system, which releases the suppression of SPL14/17-modulated transcription of PIN1b, resulting in root elongation under NO3- supply.
Collapse
Affiliation(s)
- Huwei Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuejiao Qi
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fan Feng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaonan Xie
- Weed Science Center, Utsunomiya University, 350 Mine-Machi, Utsunomiya, 321-8505, Japan
| | - Yali Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
38
|
Hou M, Wu D, Li Y, Tao W, Chao L, Zhang Y. The role of auxin in nitrogen-modulated shoot branching. PLANT SIGNALING & BEHAVIOR 2021; 16:1885888. [PMID: 33570443 PMCID: PMC7971330 DOI: 10.1080/15592324.2021.1885888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Shoot branching is determined by axillary bud formation and outgrowth and remains one of the most variable determinants of yield in many crops. Plant nitrogen (N) acquired mainly in the forms of nitrate and ammonium from soil, dominates plant development, and high-yield crop production relies heavily on N fertilization. In this review, the regulation of axillary bud outgrowth by N availability and forms is summarized in plant species. The mechanisms of auxin function in this process have been well characterized and reviewed, while recent literature has highlighted that auxin export from a bud plays a critical role in N-modulating this process.
Collapse
Affiliation(s)
- Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ling Chao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- CONTACT Yali Zhang State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
39
|
Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, Yan M, Mao C, Fan X, Xu G, Zhang Y. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. THE NEW PHYTOLOGIST 2021; 229:935-949. [PMID: 32865276 DOI: 10.1111/nph.16901] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 05/25/2023]
Abstract
The degree of rice tillering is an important agronomic trait that can be markedly affected by nitrogen supply. However, less is known about how nitrogen-regulated rice tillering is related to polar auxin transport. Compared with nitrate, ammonium induced tiller development and was paralleled with increased 3 H-indole-acetic acid (IAA) transport and greater auxin into the junctions. OsPIN9, an auxin efflux carrier, was selected as the candidate gene involved in ammonium-regulated tillering based on GeneChip data. Compared with wild-type plants, ospin9 mutants had fewer tillers, and OsPIN9 overexpression increased the tiller number. Additionally, OsPIN9 was mainly expressed in vascular tissue of the junction and tiller buds, and encoded a membrane-localised protein. Heterologous expression in Xenopus oocytes and yeast demonstrated that OsPIN9 is a functional auxin efflux transporter. More importantly, its RNA and protein levels were induced by ammonium but not by nitrate, and tiller numbers in mutants did not respond to nitrogen forms. Further advantages, including increased tiller number and grain yield, were observed in overexpression lines grown in the paddy field at a low-nitrogen rate compared with at a high-nitrogen rate. Our data revealed that ammonium supply and an auxin efflux transporter co-ordinately control tiller bud elongation in rice.
Collapse
Affiliation(s)
- Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feifei Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuhong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manman Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Defeng Shen
- Molecular Biology Group, Wageningen University Research, Wageningen, 6708 PB, the Netherlands
| | - Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
40
|
Maurya J, Bandyopadhyay T, Prasad M. Transcriptional regulators of nitrate metabolism: Key players in improving nitrogen use in crops. J Biotechnol 2020; 324:121-133. [PMID: 33031844 DOI: 10.1016/j.jbiotec.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/19/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Green revolution has boosted crop yields by the development of varieties which rely on high fertilizer application. Since then, higher productivity has largely witnessed excessive nitrogen (N) fertilizer application resulting in many environmentally and agronomically unsustainable consequences. One possible solution to this problem is to develop varieties with efficient N use endowed with genetically superior N metabolizing machinery, thereby significantly reducing N loss in soil and facilitating gainful yield performance at lower N conditions. Nitrate (NO3-) is the major form of N acquired by plants in aerobic soils. Hence, its efficient acquisition, transport, assimilation into complex organic compounds, and overall homeostasis is crucial to ensure productivity under optimal and suboptimal N conditions. Transcription factors are prime regulators of these processes, and insights into their mechanism of action and the resultant effect on N metabolism are crucial to generating crops with efficient and durable nitrogen use efficiency. The present review, therefore, presents a comprehensive updated account of major N responsive transcription factor families, their cross-talk with other growth factors, and explores existing and potential areas of their biotechnological application to maximize crop yields.
Collapse
Affiliation(s)
- Jyoti Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
41
|
Jia Z, von Wirén N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4393-4404. [PMID: 31970412 PMCID: PMC7382383 DOI: 10.1093/jxb/eraa033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2020] [Indexed: 05/16/2023]
Abstract
Among all essential mineral elements, nitrogen (N) is required in the largest amounts and thus is often a limiting factor for plant growth. N is taken up by plant roots in the form of water-soluble nitrate, ammonium, and, depending on abundance, low-molecular weight organic N. In soils, the availability and composition of these N forms can vary over space and time, which exposes roots to various local N signals that regulate root system architecture in combination with systemic signals reflecting the N nutritional status of the shoot. Uncovering the molecular mechanisms underlying N-dependent signaling provides great potential to optimize root system architecture for the sake of higher N uptake efficiency in crop breeding. In this review, we summarize prominent signaling mechanisms and their underlying molecular players that derive from external N forms or the internal N nutritional status and modulate root development including root hair formation and gravitropism. We also compare the current state of knowledge of these pathways between Arabidopsis and graminaceous plant species.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, OT Gatersleben, Germany
- Correspondence:
| |
Collapse
|
42
|
Liu Y, Jia Z, Li X, Wang Z, Chen F, Mi G, Forde B, Takahashi H, Yuan L. Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4547-4561. [PMID: 32133500 PMCID: PMC7382388 DOI: 10.1093/jxb/eraa116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/01/2020] [Indexed: 05/20/2023]
Abstract
Plants can develop root systems with distinct anatomical features and morphological plasticity to forage nutrients distributed heterogeneously in soils. Lateral root proliferation is a typical nutrient-foraging response to a local supply of nitrate, which has been investigated across many plant species. However, the underlying mechanism in maize roots remains largely unknown. Here, we report on identification of a maize truncated MIKC-type MADS-box transcription factor (ZmTMM1) lacking K- and C-domains, expressed preferentially in the lateral root branching zone and induced by the localized supply of nitrate. ZmTMM1 belongs to the AGL17-like MADS-box transcription factor family that contains orthologs of ANR1, a key regulator for root nitrate foraging in Arabidopsis. Ectopic overexpression of ZmTMM1 recovers the defective growth of lateral roots in the Arabidopsis anr1 agl21 double mutant. The local activation of glucocorticoid receptor fusion proteins for ZmTMM1 and an artificially truncated form of AtANR1 without the K- and C-domains stimulates the lateral root growth of the Arabidopsis anr1 agl21 mutant, providing evidence that ZmTMM1 encodes a functional MADS-box that modulates lateral root development. However, no phenotype was observed in ZmTMM1-RNAi transgenic maize lines, suggesting a possible genetic redundancy of ZmTMM1 with other AGL17-like genes in maize. A comparative genome analysis further suggests that a nitrate-inducible transcriptional regulation is probably conserved in both truncated and non-truncated forms of ZmTMM1-like MADS-box transcription factors found in grass species.
Collapse
Affiliation(s)
- Ying Liu
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Zhongtao Jia
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xuelian Li
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Zhangkui Wang
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Fanjun Chen
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Brian Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lixing Yuan
- Key Lab of Plant–Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
43
|
Luo L, Zhang Y, Xu G. How does nitrogen shape plant architecture? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4415-4427. [PMID: 32279073 PMCID: PMC7475096 DOI: 10.1093/jxb/eraa187] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 05/20/2023]
Abstract
Plant nitrogen (N), acquired mainly in the form of nitrate and ammonium from soil, dominates growth and development, and high-yield crop production relies heavily on N fertilization. The mechanisms of root adaptation to altered supply of N forms and concentrations have been well characterized and reviewed, while reports concerning the effects of N on the architecture of vegetative and reproductive organs are limited and are widely dispersed in the literature. In this review, we summarize the nitrate and amino acid regulation of shoot branching, flowering, and panicle development, as well as the N regulation of cell division and expansion in shaping plant architecture, mainly in cereal crops. The basic regulatory steps involving the control of plant architecture by the N supply are auxin-, cytokinin-, and strigolactone-controlled cell division in shoot apical meristem and gibberellin-controlled inverse regulation of shoot height and tillering. In addition, transport of amino acids has been shown to be involved in the control of shoot branching. The N supply may alter the timing and duration of the transition from the vegetative to the reproductive growth phase, which in turn may affect cereal crop architecture, particularly the structure of panicles for grain yield. Thus, proper manipulation of N-regulated architecture can increase crop yield and N use efficiency.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| |
Collapse
|
44
|
Zhang Z, Gao S, Chu C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1365-1384. [PMID: 31919537 DOI: 10.1007/s00122-019-03527-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/24/2019] [Indexed: 05/03/2023]
Abstract
Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the "hidden hunger." Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
45
|
Jiao X, Wang H, Yan J, Kong X, Liu Y, Chu J, Chen X, Fang R, Yan Y. Promotion of BR Biosynthesis by miR444 Is Required for Ammonium-Triggered Inhibition of Root Growth. PLANT PHYSIOLOGY 2020; 182:1454-1466. [PMID: 31871071 PMCID: PMC7054888 DOI: 10.1104/pp.19.00190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/08/2019] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa), the staple food for almost half of the world's population, prefers ammonium (NH4 +) as the major nitrogen resource, and while NH4 + has profound effects on rice growth and yields, the underlying regulatory mechanisms remain largely unknown. Brassinosteroids (BRs) are a class of steroidal hormones playing key roles in plant growth and development. In this study, we show that NH4 + promotes BR biosynthesis through miR444 to regulate rice root growth. miR444 targeted five homologous MADS-box transcription repressors potentially forming homologous or heterogeneous complexes in rice. miR444 positively regulated BR biosynthesis through its MADS-box targets, which directly repress the transcription of BR-deficient dwarf 1 (OsBRD1), a key BR biosynthetic gene. NH4 + induced the miR444-OsBRD1 signaling cascade in roots, thereby increasing the amount of BRs, whose biosynthesis and signaling were required for NH4 + -dependent root elongation inhibition. Consistently, miR444-overexpressing rice roots were hypersensitive to NH4 + depending on BR biosynthesis, and overexpression of miR444's target, OsMADS57, resulted in rice hyposensitivity to NH4 + in root elongation, which was associated with a reduction of BR content. In summary, our findings reveal a cross talk mechanism between NH4 + and BR in which NH4 + activates miR444-OsBRD1, an undescribed BR biosynthesis-promoting signaling cascade, to increase BR content, inhibiting root elongation in rice.
Collapse
Affiliation(s)
- Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jijun Yan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Center, Beijing 100101, China
| | - Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfang Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Center, Beijing 100101, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Center, Beijing 100101, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Center, Beijing 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Sun H, Xu F, Guo X, Wu D, Zhang X, Lou M, Luo F, Zhao Q, Xu G, Zhang Y. A Strigolactone Signal Inhibits Secondary Lateral Root Development in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1527. [PMID: 31824543 PMCID: PMC6882917 DOI: 10.3389/fpls.2019.01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) and their derivatives are plant hormones that have recently been identified as regulators of primary lateral root (LR) development. However, whether SLs mediate secondary LR production in rice (Oryza sativa L.), and how SLs and auxin interact in this process, remain unclear. In this study, the SL-deficient (dwarf10) and SL-insensitive (dwarf3) rice mutants and lines overexpressing OsPIN2 (OE) were used to investigate secondary LR development. The effects of exogenous GR24 (a synthetic SL analogue), 1-naphthylacetic acid (NAA; an exogenous auxin), 1-naphthylphthalamic acid (NPA; a polar auxin transport inhibitor), and abamine (a synthetic SL inhibitor) on rice secondary LR development were investigated. Rice d mutants with impaired SL biosynthesis and signaling exhibited increased secondary LR production compared with wild-type (WT) plants. Application of GR24 decreased the numbers of secondary LRs in dwarf10 (d10) plants but not in dwarf3 (d3), plants. These results indicate that SLs negatively regulate rice secondary LR production. Higher expression of DR5::GUS and more secondary LR primordia were found in the d mutants than in the WT plants. Exogenous NAA application increased expression of DR5::GUS in the WT, but had no effect on secondary LR formation. No secondary LRs were recorded in the OE lines, although DR5::GUS levels were higher than in the WT plants. However, on application of NPA, the numbers of secondary LRs were reduced in d10 and d3 mutants. Application of NAA increased the number of secondary LRs in the d mutants. GR24 eliminated the effect of NAA on secondary LR development in the d10, but not in the d3, mutants. These results demonstrate the importance of auxin in secondary LR formation, and that this process is inhibited by SLs via the D3 response pathway, but the interaction between auxin and SLs is complex.
Collapse
Affiliation(s)
- Huwei Sun
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Huwei Sun, ; Yali Zhang,
| | - Fugui Xu
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoli Guo
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Daxia Wu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuhong Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manman Lou
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feifei Luo
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Quanzhi Zhao
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Guohua Xu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yali Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Huwei Sun, ; Yali Zhang,
| |
Collapse
|