1
|
Zhao Y, Han Q, Zhang D. Recent Advances in the Crosstalk between Brassinosteroids and Environmental Stimuli. PLANT & CELL PHYSIOLOGY 2024; 65:1552-1567. [PMID: 38578169 DOI: 10.1093/pcp/pcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Due to their sessile lifestyle, plants need to optimize their growth in order to adapt to ever-changing environments. Plants receive stimuli from the environment and convert them into cellular responses. Brassinosteroids (BRs), as growth-promoting steroid hormones, play a significant role in the tradeoff between growth and environmental responses. Here, we provide a comprehensive summary for understanding the crosstalk between BR and various environmental stresses, including water availability, temperature fluctuations, salinization, nutrient deficiencies and diseases. We also highlight the bottlenecks that need to be addressed in future studies. Ultimately, we suppose to improve plant environmental adaptability and crop yield by excavating natural BR mutants or modifying BR signaling and its targets.
Collapse
Affiliation(s)
- Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qing Han
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Zhang G, Wang H, Ren X, Xiao Y, Liu D, Meng W, Qiu Y, Hu B, Xie Q, Chu C, Tong H. Brassinosteroid-dependent phosphorylation of PHOSPHATE STARVATION RESPONSE2 reduces its DNA-binding ability in rice. THE PLANT CELL 2024; 36:2253-2271. [PMID: 38416876 PMCID: PMC11132879 DOI: 10.1093/plcell/koae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Brassinosteroids (BRs) are widely used as plant growth regulators in modern agriculture. Understanding how BRs regulate nutrient signaling is crucial for reducing fertilizer usage. Here we elucidate that the central BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 (GSK2) interacts directly with and phosphorylates PHOSPHATE STARVATION RESPONSE2 (OsPHR2), the key regulator of phosphate (Pi) signaling, to suppress its transcription factor activity in rice (Oryza sativa). We identify a critical phosphorylation site at serine residue S269 of OsPHR2 and demonstrate that phosphorylation by GSK2 or phosphor-mimic mutation of S269 substantially impairs the DNA-binding activity of OsPHR2, and thus diminishes expression of OsPHR2-induced genes and reduces Pi levels. Like BRs, Pi starvation noticeably induces GSK2 instability. We further show that this site-specific phosphorylation event is conserved in Arabidopsis (Arabidopsis thaliana), but varies among the PHR-family members, being present only in most land plants. These results unveil a distinctive post-transcriptional regulatory mechanism in Pi signaling by which BRs promote Pi acquisition, with a potential contribution to the environmental adaptability of plants during their evolution.
Collapse
Affiliation(s)
- Guoxia Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xiangle Ren
- Division of Hematology/Oncology, Department of Pediatrics, Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02138, USA
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dapu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjing Meng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yahong Qiu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingjun Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Huang Y, Ji Z, Zhang S, Li S. Function of hormone signaling in regulating nitrogen-use efficiency in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154191. [PMID: 38335845 DOI: 10.1016/j.jplph.2024.154191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen (N) is one of the most important nutrients for crop plant performance, however, the excessive application of nitrogenous fertilizers in agriculture significantly increases production costs and causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N-use efficiency (NUE) with the aim of developing new crop varieties that combine high yields with improved NUE is an urgent goal for achieving more sustainable agriculture. Plant NUE is a complex trait that is affected by multiple factors, of which hormones are known to play pivotal roles. In this review, we focus on the interaction between the biosynthesis and signaling pathways of plant hormones with N metabolism, and summarize recent studies on the interplay between hormones and N, including how N regulates multiple hormone biosynthesis, transport and signaling and how hormones modulate root system architecture (RSA) in response to external N sources. Finally, we explore potential strategies for promoting crop NUE by modulating hormone synthesis, transport and signaling. This provides insights for future breeding of N-efficient crop varieties and the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Guo X, Chen Y, Hu Y, Feng F, Zhu X, Sun H, Li J, Zhao Q, Sun H. OsMADS5 interacts with OsSPL14/17 to inhibit rice root elongation by restricting cell proliferation of root meristem under ammonium supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:87-99. [PMID: 37340958 DOI: 10.1111/tpj.16361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium (NH 4 + ) is the primary source of N for rice,NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism thatNH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased underNH 4 + compared withNO 3 - supply. UnderNH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 underNO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 byNH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation underNH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation underNH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 byNH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yake Chen
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yibo Hu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fan Feng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junzhou Li
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huwei Sun
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Chojnacka A, Smoczynska A, Bielewicz D, Pacak A, Hensel G, Kumlehn J, Maciej Karlowski W, Grabsztunowicz M, Sobieszczuk-Nowicka E, Jarmolowski A, Szweykowska-Kulinska Z. PEP444c encoded within the MIR444c gene regulates microRNA444c accumulation in barley. PHYSIOLOGIA PLANTARUM 2023; 175:e14018. [PMID: 37882256 DOI: 10.1111/ppl.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/15/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs are small, noncoding RNA molecules that regulate the expression of their target genes. The MIR444 gene family is present exclusively in monocotyledons, and microRNAs444 from this family have been shown to target certain MADS-box transcription factors in rice and barley. We identified three barley MIR444 (MIR444a/b/c) genes and comprehensively characterised their structure and the processing pattern of the primary transcripts (pri-miRNAs444). Pri-microRNAs444 undergo extensive alternative splicing, generating functional and nonfunctional pri-miRNA444 isoforms. We show that barley pri-miRNAs444 contain numerous open reading frames (ORFs) whose transcripts associate with ribosomes. Using specific antibodies, we provide evidence that selected ORFs encoding PEP444a within MIR444a and PEP444c within MIR444c are expressed in barley plants. Moreover, we demonstrate that CRISPR-associated endonuclease 9 (Cas9)-mediated mutagenesis of the PEP444c-encoding sequence results in a decreased level of PEP444 transcript in barley shoots and roots and a 5-fold reduced level of mature microRNA444c in roots. Our observations suggest that PEP444c encoded by the MIR444c gene is involved in microRNA444c biogenesis in barley.
Collapse
Affiliation(s)
- Aleksandra Chojnacka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Wojciech Maciej Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
7
|
Xie Y, Lv Y, Jia L, Zheng L, Li Y, Zhu M, Tian M, Wang M, Qi W, Luo L, De Gernier H, Pélissier PM, Motte H, Lin S, Luo L, Xu G, Beeckman T, Xuan W. Plastid-localized amino acid metabolism coordinates rice ammonium tolerance and nitrogen use efficiency. NATURE PLANTS 2023; 9:1514-1529. [PMID: 37604972 DOI: 10.1038/s41477-023-01494-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.
Collapse
Affiliation(s)
- Yuanming Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Letian Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Lulu Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Yonghui Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Long Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Shaoyan Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Le Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Chandra T, Jaiswal S, Iquebal MA, Singh R, Gautam RK, Rai A, Kumar D. Revitalizing miRNAs mediated agronomical advantageous traits improvement in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107933. [PMID: 37549574 DOI: 10.1016/j.plaphy.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
One of the key enigmas in conventional and modern crop improvement programmes is how to introduce beneficial traits without any penalty impairment. Rice (Oryza sativa L.), among the essential staple food crops grown and utilized worldwide, needs to improve genotypes in multifaceted ways. With the global view to feed ten billion under the climatic perturbation, only a potent functional master regulator can withstand with hope for the next green revolution and food security. miRNAs are such, miniature, fine tuners for crop improvement and provide a value addition in emerging technologies, namely large-scale genotyping, phenotyping, genome editing, marker-assisted selection, and genomic selection, to make rice production feasible. There has been surplus research output generated since the last decade on miRNAs in rice, however, recent functional knowledge is limited to reaping the benefits for conventional and modern improvements in rice to avoid ambiguity and redundancy in the generated data. Here, we present the latest functional understanding of miRNAs in rice. In addition, their biogenesis, intra- and inter-kingdom signaling and communication, implication of amiRNAs, and consequences upon integration with CRISPR-Cas9. Further, highlights refer to the application of miRNAs for rice agronomical trait improvements, broadly classified into three functional domains. The majority of functionally established miRNAs are responsible for growth and development, followed by biotic and abiotic stresses. Tabular cataloguing reveals and highlights two multifaceted modules that were extensively studied. These belong to miRNA families 156 and 396, orchestrate multifarious aspects of advantageous agronomical traits. Moreover, updated and exhaustive functional aspects of different supplemental miRNA modules that would strengthen rice improvement are also being discussed.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - R K Gautam
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India; Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
9
|
Liu L, Cui K, Qi X, Wu Y, Huang J, Peng S. Varietal responses of root characteristics to low nitrogen application explain the differing nitrogen uptake and grain yield in two rice varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1244281. [PMID: 37600168 PMCID: PMC10435752 DOI: 10.3389/fpls.2023.1244281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Rice root characteristics are tightly associated with high-efficient nitrogen uptake. To understand the relationship of root plastic responses with nitrogen uptake when reducing nitrogen application for green rice production, a hydroponic experiment and a soil pot experiment were conducted under high (HN) and low (LN) nitrogen applications, using two rice (Oryza sativa L.) varieties, NK57 and YD6, three nitrogen absorption traits (total nitrogen accumulation, net NH4 + influx on root surface, nitrogen uptake via apoplasmic pathway) and root characteristics were investigated. In comparison with HN, LN significantly reduced nitrogen absorption and grain yield in both varieties. Concomitantly, there was a decrease in total root length, root surface area, root number, root volume, and root cortical area under LN, while single root length, root aerenchyma area, and root lignin content increased. The expression of OsAMT1;1 and OsAMT1;2 down-regulated in both varieties. The findings revealed that YD6 had smaller reduction degree for the three nitrogen absorption traits and grain yield, accompanied by smaller reduction degree in total root length, root surface area, root cortical area, and expression of the two genes under LN. These root characteristics were significantly and positively correlated with the three nitrogen absorption traits and grain yield, especially under LN. These results indicate that a large root system, lower reduction degree in several root characters, and high expression of OsAMT genes in YD6 explains its high nitrogen accumulation and grain yield under reduced nitrogen application. The study may provide rationale for developing varieties with low nitrogen fertilizer requirements for enabling green rice production.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Qi
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Wu
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Wuhan, Hubei, China
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Han C, Wang L, Lyu J, Shi W, Yao L, Fan M, Bai MY. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genomics 2023; 50:541-553. [PMID: 36914050 DOI: 10.1016/j.jgg.2023.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
As sessile organisms, plants have evolved sophisticated mechanisms to optimize their growth and development in response to fluctuating nutrient levels. Brassinosteroids (BRs) are a group of plant steroid hormones that play critical roles in plant growth and developmental processes as well as plant responses to environmental stimuli. Recently, multiple molecular mechanisms have been proposed to explain the integration of BRs with different nutrient signaling processes to coordinate gene expression, metabolism, growth, and survival. Here, we review recent advances in understanding the molecular regulatory mechanisms of the BR signaling pathway and the multifaceted roles of BR in the intertwined sensing, signaling, and metabolic processes of sugar, nitrogen, phosphorus, and iron. Further understanding and exploring these BR-related processes and mechanisms will facilitate advances in crop breeding for higher resource efficiency.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
11
|
Qin X, Li X, Li C, Li Y, Wu Q, Wen H, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511. FRONTIERS IN PLANT SCIENCE 2023; 14:1198809. [PMID: 37332718 PMCID: PMC10272429 DOI: 10.3389/fpls.2023.1198809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar Nanhui 511 (NH511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
12
|
Lei X, Chen M, Xu K, Sun R, Zhao S, Wu N, Zhang S, Yang X, Xiao K, Zhao Y. The miR166d/ TaCPK7-D Signaling Module Is a Critical Mediator of Wheat ( Triticum aestivum L.) Tolerance to K + Deficiency. Int J Mol Sci 2023; 24:ijms24097926. [PMID: 37175632 PMCID: PMC10178733 DOI: 10.3390/ijms24097926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
It is well established that potassium (K+) is an essential nutrient for wheat (Triticum aestivum L.) growth and development. Several microRNAs (miRNAs), including miR166, are reportedly vital roles related to plant growth and stress responses. In this study, a K+ starvation-responsive miRNA (miR166d) was identified, which showed increased expression in the roots of wheat seedlings exposed to low-K+ stress. The overexpression of miR166d considerably increased the tolerance of transgenic Arabidopsis plants to K+ deprivation treatment. Furthermore, disrupting miR166d expression via virus-induced gene silencing (VIGS) adversely affected wheat adaptation to low-K+ stress. Additionally, miR166d directly targeted the calcium-dependent protein kinase 7-D gene (TaCPK7-D) in wheat. The TaCPK7-D gene expression was decreased in wheat seedling roots following K+ starvation treatment. Silencing TaCPK7-D in wheat increased K+ uptake under K+ starvation. Moreover, we observed that the miR166d/TaCPK7-D module could affect wheat tolerance to K+ starvation stress by regulating TaAKT1 and TaHAK1 expression. Taken together, our results indicate that miR166d is vital for K+ uptake and K+ starvation tolerance of wheat via regulation of TaCPK7-D.
Collapse
Affiliation(s)
- Xiaotong Lei
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ruoxi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Sihang Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ningjing Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
13
|
Zhang G, Liu Y, Xie Q, Tong H, Chu C. Crosstalk between brassinosteroid signaling and variable nutrient environments. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2319-0. [PMID: 36907968 DOI: 10.1007/s11427-022-2319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Brassinosteroid (BR) represents a group of steroid hormones that regulate plant growth and development as well as environmental adaptation. The fluctuation of external nutrient elements is a situation that plants frequently face in the natural environment, in which nitrogen (N) and phosphorus (P) are two of the most critical nutrients restraint of the early growth of plants. As the macronutrients, N and P are highly required by plants, but their availability or solubility in the soil is relatively low. Since iron (Fe) and P always modulate each other's content and function in plants mutually antagonistically, the regulatory mechanisms of Fe and P are inextricably linked. Recently, BR has emerged as a critical regulator in nutrient acquisition and phenotypic plasticity in response to the variable nutrient levels in Arabidopsis and rice. Here, we review the current understanding of the crosstalk between BR and the three major nutrients (N, P, and Fe), highlighting how nutrient signaling regulates BR synthesis and signaling to accommodate plant growth and development in Arabidopsis and rice.
Collapse
Affiliation(s)
- Guoxia Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingjun Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Feng T, Zhang ZY, Gao P, Feng ZM, Zuo SM, Ouyang SQ. Suppression of Rice Osa-miR444.2 Improves the Resistance to Sheath Blight in Rice Mediating through the Phytohormone Pathway. Int J Mol Sci 2023; 24:ijms24043653. [PMID: 36835070 PMCID: PMC9963240 DOI: 10.3390/ijms24043653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of conserved small RNA with a length of 21-24 nucleotides in eukaryotes, which are involved in development and defense responses against biotic and abiotic stresses. By RNA-seq, Osa-miR444b.2 was identified to be induced after Rhizoctonia solani (R. solani) infection. In order to clarify the function of Osa-miR444b.2 responding to R. solani infection in rice, transgenic lines over-expressing and knocking out Osa-miR444b.2 were generated in the background of susceptible cultivar Xu3 and resistant cultivar YSBR1, respectively. Over-expressing Osa-miR444b.2 resulted in compromised resistance to R. solani. In contrast, the knocking out Osa-miR444b.2 lines exhibited improved resistance to R. solani. Furthermore, knocking out Osa-miR444b.2 resulted in increased height, tillers, smaller panicle, and decreased 1000-grain weight and primary branches. However, the transgenic lines over-expressing Osa-miR444b.2 showed decreased primary branches and tillers, but increased panicle length. These results indicated that Osa-miR444b.2 was also involved in regulating the agronomic traits in rice. The RNA-seq assay revealed that Osa-miR444b.2 mainly regulated the resistance to rice sheath blight disease by affecting the expression of plant hormone signaling pathways-related genes such as ET and IAA, and transcription factors such as WRKYs and F-boxes. Together, our results suggest that Osa-miR444b.2 negatively mediated the resistance to R. solani in rice, which will contribute to the cultivation of sheath blight resistant varieties.
Collapse
Affiliation(s)
- Tao Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhao-Yang Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Ming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Shi-Min Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Shou-Qiang Ouyang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Ahmad N, Jiang Z, Zhang L, Hussain I, Yang X. Insights on Phytohormonal Crosstalk in Plant Response to Nitrogen Stress: A Focus on Plant Root Growth and Development. Int J Mol Sci 2023; 24:ijms24043631. [PMID: 36835044 PMCID: PMC9958644 DOI: 10.3390/ijms24043631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Nitrogen (N) is a vital mineral component that can restrict the growth and development of plants if supplied inappropriately. In order to benefit their growth and development, plants have complex physiological and structural responses to changes in their nitrogen supply. As higher plants have multiple organs with varying functions and nutritional requirements, they coordinate their responses at the whole-plant level based on local and long-distance signaling pathways. It has been suggested that phytohormones are signaling substances in such pathways. The nitrogen signaling pathway is closely associated with phytohormones such as auxin (AUX), abscisic acid (ABA), cytokinins (CKs), ethylene (ETH), brassinosteroid (BR), strigolactones (SLs), jasmonic acid (JA), and salicylic acid (SA). Recent research has shed light on how nitrogen and phytohormones interact to modulate physiology and morphology. This review provides a summary of the research on how phytohormone signaling affects root system architecture (RSA) in response to nitrogen availability. Overall, this review contributes to identifying recent developments in the interaction between phytohormones and N, as well as serving as a foundation for further study.
Collapse
Affiliation(s)
- Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Iqbal Hussain
- Department of Horticulture, Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
16
|
Wang H, Jiao X, Zhang X, Zhang M, Liu Y, Chen X, Fang R, Yan Y. Ammonium protects rice against rice stripe virus by activating HDA703/OsBZR1-mediated BR signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111504. [PMID: 36272547 DOI: 10.1016/j.plantsci.2022.111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4+) is a major inorganic nitrogen source for plants and also as a signal regulates plant growth and defense. Brassinosteroids (BRs) are a class of steroid hormones that control plant developmental and physiological processes through its signaling pathway. Rice is a kind of NH4+-preferring plant which responds to virus infection involving in the regulation of BR biosynthesis and signaling. However, the BR-mediated regulatory mechanisms in rice-virus interactions are not fully understood. In addition, it remains unknown whether there is a direct link between NH4+ and BRs in regulating rice response to virus. HDA703, a histone deacetylase and OsBZR1, a transcription factor, are two positive regulator of BR signaling and interact with each other. In this study, we show that rice plants grown with NH4+ as the sole N source have enhanced resistance to rice stripe virus (RSV), one of the most devastating viruses of rice, than those grown with NO3- as the sole N source. We also show that in contrast to NO3-, NH4+ does not affect BR biosynthesis but promotes BR signaling by upregulating the expression of HDA703 and promoting the accumulation of OsBZR1 in rice shoots. We further show that BR biosynthesis and signaling is required for rice defense against RSV and BR-mediated resistance to RSV attributes to activating HDA703/OsBZR1 module, then decreasing the expression of Ghd7, a direct target of HDA703/OsBZR1. Consistently, increase of the expression of HDA703 or decrease of the expression of Ghd7 enhances rice resistance to RSV. Together, our study reveals that activation of HDA703/OsBZR1-Ghd7 signaling cascade is an undescribed mechanism conferring BR-mediated RSV resistance and NH4+ protects rice against RSV by activating HDA703/OsBZR1-Ghd7-mediated BR signaling in rice.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Plant Gene Research Center, Beijing 100101, China.
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Xing J, Cao X, Zhang M, Wei X, Zhang J, Wan X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36435985 DOI: 10.1111/pbi.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiaocong Cao
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Juan Zhang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing, China
| |
Collapse
|
18
|
What Do We Know about Barley miRNAs? Int J Mol Sci 2022; 23:ijms232314755. [PMID: 36499082 PMCID: PMC9740008 DOI: 10.3390/ijms232314755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Plant miRNAs are powerful regulators of gene expression at the post-transcriptional level, which was repeatedly proved in several model plant species. miRNAs are considered to be key regulators of many developmental, homeostatic, and immune processes in plants. However, our understanding of plant miRNAs is still limited, despite the fact that an increasing number of studies have appeared. This systematic review aims to summarize our current knowledge about miRNAs in spring barley (Hordeum vulgare), which is an important agronomical crop worldwide and serves as a common monocot model for studying abiotic stress responses as well. This can help us to understand the connection between plant miRNAs and (not only) abiotic stresses in general. In the end, some future perspectives and open questions are summarized.
Collapse
|
19
|
Smoczynska A, Pacak A, Grabowska A, Bielewicz D, Zadworny M, Singh K, Dolata J, Bajczyk M, Nuc P, Kesy J, Wozniak M, Ratajczak I, Harwood W, Karlowski WM, Jarmolowski A, Szweykowska-Kulinska Z. Excess nitrogen responsive HvMADS27 transcription factor controls barley root architecture by regulating abscisic acid level. FRONTIERS IN PLANT SCIENCE 2022; 13:950796. [PMID: 36172555 PMCID: PMC9511987 DOI: 10.3389/fpls.2022.950796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 β-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.
Collapse
Affiliation(s)
- Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Grabowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jacek Kesy
- Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wozniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Wendy Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norfolk, United Kingdom
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
20
|
Fan B, Sun F, Yu Z, Zhang X, Yu X, Wu J, Yan X, Zhao Y, Nie L, Fang Y, Ma Y. Integrated analysis of small RNAs, transcriptome and degradome sequencing reveal the drought stress network in Agropyron mongolicum Keng. FRONTIERS IN PLANT SCIENCE 2022; 13:976684. [PMID: 36061788 PMCID: PMC9433978 DOI: 10.3389/fpls.2022.976684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Agropyron mongolicum (A. mongolicum) is an excellent gramineous forage with extreme drought tolerance, which lives in arid and semiarid desert areas. However, the mechanism that underlies the response of microRNAs (miRNAs) and their targets in A. mongolicum to drought stress is not well understood. In this study, we analyzed the transcriptome, small RNAome (specifically the miRNAome) and degradome to generate a comprehensive resource that focused on identifying key regulatory miRNA-target circuits under drought stress. The most extended transcript in each collection is known as the UniGene, and a total of 41,792 UniGenes and 1,104 miRNAs were identified, and 99 differentially expressed miRNAs negatively regulated 1,474 differentially expressed target genes. Among them, eight miRNAs were unique to A. mongolicum, and there were 36 target genes. A weighted gene co-expression network analysis identified five hub genes. The miRNAs of five hub genes were screened with an integration analysis of the degradome and sRNAs, such as osa-miR444a-3p.2-MADS47, bdi-miR408-5p_1ss19TA-CCX1, tae-miR9774_L-2R-1_1ss11GT-carC, ata-miR169a-3p-PAO2, and bdi-miR528-p3_2ss15TG20CA-HOX24. The functional annotations revealed that they were involved in mediating the brassinosteroid signal pathway, transporting and exchanging sodium and potassium ions and regulating the oxidation-reduction process, hydrolase activity, plant response to water deprivation, abscisic acid (ABA) and the ABA-activated signaling pathway to regulate drought stress. Five hub genes were discovered, which could play central roles in the regulation of drought-responsive genes. These results show that the combined analysis of miRNA, the transcriptome and degradation group provides a useful platform to investigate the molecular mechanism of drought resistance in A. mongolicum and could provide new insights into the genetic engineering of Poaceae crops in the future.
Collapse
Affiliation(s)
- Bobo Fan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengcheng Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Zhuo Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuefeng Zhang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Wu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuxiu Yan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lizhen Nie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yongyu Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yanhong Ma
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
21
|
Kumar K, Mandal SN, Neelam K, de los Reyes BG. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential. BMC PLANT BIOLOGY 2022; 22:351. [PMID: 35850632 PMCID: PMC9290239 DOI: 10.1186/s12870-022-03723-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/29/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is the major source of daily caloric intake for more than 30% of the human population. However, the sustained productivity of this staple food crop is continuously threatened by various pathogens and herbivores. Breeding has been successful in utilizing various mechanisms of defense by gene pyramiding in elite cultivars, but the continuous resurgence of highly resistant races of pathogens and herbivores often overcomes the inherent capacity of host plant immunity. MicroRNAs (miRNAs) are endogenous, short, single-stranded, non-coding RNA molecules that regulate gene expression by sequence-specific cleavage of target mRNA or suppressing target mRNA translation. While miRNAs function as upstream regulators of plant growth, development, and host immunity, their direct effects on growth and development in the context of balancing defenses with agronomic potential have not been extensively discussed and explored as a more viable strategy in breeding for disease and pest resistant cultivars of rice with optimal agronomic potentials. RESULTS Using the available knowledge in rice and other model plants, this review examines the important roles of miRNAs in regulating host responses to various fungal, bacterial, and viral pathogens, and insect pests, in the context of gains and trade-offs to crop yield. Gains from R-gene-mediated resistance deployed in modern rice cultivars are often undermined by the rapid breakdown of resistance, negative pleiotropic effects, and linkage drags with undesirable traits. In stark contrast, several classes of miRNAs are known to efficiently balance the positive gains from host immunity without significant costs in terms of losses in agronomic potentials (i.e., yield penalty) in rice. Defense-related miRNAs such as Osa-miR156, Osa-miR159, Osa-miR162, Osa-miR396, Osa-530, Osa-miR1432, Osa-miR1871, and Osa-miR1873 are critical in fine-tuning and integrating immune responses with physiological processes that are necessary to the maintenance of grain yield. Recent research has shown that many defense-related miRNAs regulate complex and agronomically important traits. CONCLUSIONS Identification of novel immune-responsive miRNAs that orchestrate physiological processes critical to the full expression of agronomic potential will facilitate the stacking of optimal combinations of miRNA-encoding genes to develop high-yielding cultivars with durable resistance to disease and insect pests with minimal penalties to yield.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700103 India
| | - Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX-79415 USA
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101 India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | | |
Collapse
|
22
|
Pachamuthu K, Hari Sundar V, Narjala A, Singh RR, Das S, Avik Pal HCY, Shivaprasad PV. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3511-3530. [PMID: 35243491 DOI: 10.1093/jxb/erac083] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.
Collapse
Affiliation(s)
- Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris- Saclay, Versailles, France
| | - Vivek Hari Sundar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Rahul R Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Harshith C Y Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| |
Collapse
|
23
|
Luo L, Zhu M, Jia L, Xie Y, Wang Z, Xuan W. Ammonium transporters cooperatively regulate rice crown root formation responding to ammonium nitrogen. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3671-3685. [PMID: 35176162 DOI: 10.1093/jxb/erac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Crown roots (CRs) are major components of the rice root system. They form at the basal node of the shoot, and their development is greatly influenced by environmental factors. Ammonium nitrogen is known to impact plant root development through ammonium transporters (AMTs), but it remains unclear whether ammonium and AMTs play roles in rice CR formation. In this study, we revealed a significant role of ammonium, rather than nitrate, in regulating rice CR development. High ammonium supply increases CR formation but inhibits CR elongation. Genetic evidence showed that ammonium regulation of CR development relies on ammonium uptake mediated jointly by ammonium transporters OsAMT1;1, OsAMT1;2; OsAMT1;3, and OsAMT2;1, but not on root acidification which was the result of ammonium uptake. OsAMTs are also needed for glutamine-induced CR formation. Furthermore, we showed that polar auxin transport dependent on the PIN auxin efflux carriers acts downstream of ammonium uptake and assimilation to activate local auxin signaling at CR primordia, in turn promoting CR formation. Taken together, our results highlight a critical role for OsAMTs in cooperatively regulating CR formation through regulating auxin transport under nitrogen-rich conditions.
Collapse
Affiliation(s)
- Long Luo
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Zhu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanming Xie
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziniu Wang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Li G, Zhang L, Wu J, Yue X, Wang M, Sun L, Di D, Kronzucker HJ, Shi W. OsEIL1 protects rice growth under NH 4+ nutrition by regulating OsVTC1-3-dependent N-glycosylation and root NH 4+ efflux. PLANT, CELL & ENVIRONMENT 2022; 45:1537-1553. [PMID: 35133011 DOI: 10.1111/pce.14283] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Rice is known for its superior adaptation to ammonium (NH4+ ) as a nitrogen source. Compared to many other cereals, it displays lower NH4+ efflux in roots and higher nitrogen-use efficiency on NH4+ . A critical role for GDP-mannose pyrophosphorylase (VTC1) in controlling root NH4+ fluxes was previously documented in Arabidopsis, but the molecular pathways involved in regulating VTC1-dependent NH4+ efflux remain unclear. Here, we report that ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1) acts as a key transcription factor regulating OsVTC1-3-dependent NH4+ efflux and protein N-glycosylation in rice grown under NH4+ nutrition. We show that OsEIL1 in rice plays a contrasting role to Arabidopsis-homologous ETHYLENE-INSENSITIVE3 (AtEIN3) and maintains rice growth under NH4+ by stabilizing protein N-glycosylation and reducing root NH4+ efflux. OsEIL1 constrains NH4+ efflux by activation of OsVTC1-3, but not OsVTC1-1 or OsVTC1-8. OsEIL1 binds directly to the promoter EIN3-binding site (EBS) of OsVTC1-3 in vitro and in vivo and acts to increase the transcription of OsVTC1-3. Our work demonstrates an important link between excessive root NH4+ efflux and OsVTC1-3-mediated protein N-glycosylation in rice grown under NH4+ nutrition and identifies OsEIL1 as a direct genetic regulator of OsVTC1-3 expression.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Yue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Li Sun
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Herbert J Kronzucker
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
25
|
Jia Z, Giehl RFH, von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. MOLECULAR PLANT 2022; 15:86-103. [PMID: 34920172 DOI: 10.1016/j.molp.2021.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
26
|
Jia P, Tang Y, Hu G, Quan Y, Chen A, Zhong N, Peng Q, Wu J. Cotton miR319b-Targeted TCP4-Like Enhances Plant Defense Against Verticillium dahliae by Activating GhICS1 Transcription Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:870882. [PMID: 35668804 PMCID: PMC9164164 DOI: 10.3389/fpls.2022.870882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 05/16/2023]
Abstract
Teosinte branched1/Cincinnata/proliferating cell factor (TCP) transcription factors play important roles in plant growth and defense. However, the molecular mechanisms of TCPs participating in plant defense remain unclear. Here, we characterized a cotton TCP4-like fine-tuned by miR319b, which could interact with NON-EXPRESSER OF PATHOGEN-RELATED GENES 1 (NPR1) to directly activate isochorismate synthase 1 (ICS1) expression, facilitating plant resistance against Verticillium dahliae. mRNA degradome data and GUS-fused assay showed that GhTCP4-like mRNA was directedly cleaved by ghr-miR319b. Knockdown of ghr-miR319b increased plant resistance to V. dahliae, whereas silencing GhTCP4-like increased plant susceptibility by the virus-induced gene silencing (VIGS) method, suggesting that GhTCP4-like is a positive regulator of plant defense. According to the electrophoretic mobility shift assay and GUS reporter analysis, GhTCP4-like could transcriptionally activate GhICS1 expression, resulting in increased salicylic acid (SA) accumulation. Yeast two-hybrid and luciferase complementation image analyses demonstrated that GhTCP4-like interacts with GhNPR1, which can promote GhTCP4-like transcriptional activation in GhICS1 expression according to the GUS reporter assay. Together, these results revealed that GhTCP4-like interacts with GhNPR1 to promote GhICS1 expression through fine-tuning of ghr-miR319b, leading to SA accumulation, which is percepted by NPR1 to increase plant defense against V. dahliae. Therefore, GhTCP4-like participates in a positive feedback regulation loop of SA biosynthesis via NPR1, increasing plant defenses against fungal infection.
Collapse
Affiliation(s)
- Pei Jia
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Tang
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang Hu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yonggang Quan
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds Co. Ltd., Changji, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds Co. Ltd., Changji, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhong Peng
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- Qingzhong Peng
| | - Jiahe Wu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiahe Wu
| |
Collapse
|
27
|
Pélissier PM, Motte H, Beeckman T. Lateral root formation and nutrients: nitrogen in the spotlight. PLANT PHYSIOLOGY 2021; 187:1104-1116. [PMID: 33768243 PMCID: PMC8566224 DOI: 10.1093/plphys/kiab145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics toward nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
28
|
Supraoptimal Brassinosteroid Levels Inhibit Root Growth by Reducing Root Meristem and Cell Elongation in Rice. PLANTS 2021; 10:plants10091962. [PMID: 34579493 PMCID: PMC8469756 DOI: 10.3390/plants10091962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinosteroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear. Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified 4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively. The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the treatments could not promote root meristem size and cell elongation simultaneously. Our study demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth and the foraging response to N deficiency.
Collapse
|
29
|
Huang X, Liang Y, Zhang B, Song X, Li Y, Qin Z, Li D, Chen R, Zhou Z, Deng Y, Wei J, Wu J. Integration of Transcriptional and Post-transcriptional Analysis Revealed the Early Response Mechanism of Sugarcane to Cold Stress. Front Genet 2021; 11:581993. [PMID: 33569078 PMCID: PMC7868625 DOI: 10.3389/fgene.2020.581993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Cold stress causes major losses to sugarcane production, yet the precise molecular mechanisms that cause losses due to cold stress are not well-understood. To survey miRNAs and genes involved in cold tolerance, RNA-seq, miRNA-seq, and integration analyses were performed on Saccharum spontaneum. Results showed that a total of 118,015 genes and 6,034 of these differentially expressed genes (DEGs) were screened. Protein–protein interaction (PPI) analyses revealed that ABA signaling via protein phosphatase 2Cs was the most important signal transduction pathway and late embryogenesis abundant protein was the hub protein associated with adaptation to cold stress. Furthermore, a total of 856 miRNAs were identified in this study and 109 of them were differentially expressed in sugarcane responding to cold stress. Most importantly, the miRNA–gene regulatory networks suggested the complex post-transcriptional regulation in sugarcane under cold stress, including 10 miRNAs−42 genes, 16 miRNAs−70 genes, and three miRNAs−18 genes in CT vs. LT0.5, CT vs. LT1, and CT0.5 vs. LT1, respectively. Specifically, key regulators from 16 genes encoding laccase were targeted by novel-Chr4C_47059 and Novel-Chr4A_40498, while five LRR-RLK genes were targeted by Novel-Chr6B_65233 and Novel-Chr5D_60023, 19 PPR repeat proteins by Novel-Chr5C_57213 and Novel-Chr5D_58065. Our findings suggested that these miRNAs and cell wall-related genes played vital regulatory roles in the responses of sugarcane to cold stress. Overall, the results of this study provide insights into the transcriptional and post-transcriptional regulatory network underlying the responses of sugarcane to cold stress.
Collapse
Affiliation(s)
- Xing Huang
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | | | - Baoqing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Yangrui Li
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Zhengqiang Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Dewei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Rongfa Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Zhongfeng Zhou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Yuchi Deng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - Jianming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| |
Collapse
|
30
|
Kong L, Zhang Y, Du W, Xia H, Fan S, Zhang B. Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:656696. [PMID: 34135921 PMCID: PMC8200679 DOI: 10.3389/fpls.2021.656696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 05/16/2023]
Abstract
Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
31
|
Yang S, Yuan D, Zhang Y, Sun Q, Xuan YH. BZR1 Regulates Brassinosteroid-Mediated Activation of AMT1;2 in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:665883. [PMID: 34220889 PMCID: PMC8247761 DOI: 10.3389/fpls.2021.665883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/10/2021] [Indexed: 05/11/2023]
Abstract
Although it is known that brassinosteroids (BRs) play pleiotropic roles in plant growth and development, their roles in plant nutrient uptake remain unknown. Here, we hypothesized that BRs directly regulate ammonium uptake by activating the expression of rice AMT1-type genes. Exogenous BR treatment upregulated both AMT1;1 and AMT1;2 expression, while this induction was impaired in the BR-receptor gene BRI1 mutant d61-1. We then focused on brassinazole-resistant 1 (BZR1), a central hub of the BR signaling pathway, demonstrating the important role of this signaling pathway in regulating AMT1 expression and rice roots NH4 + uptake. The results showed that BR-induced expression of AMT1;2 was suppressed in BZR1 RNAi plants but was increased in bzr1-D, a gain-of-function BZR1 mutant. Further EMSA and ChIP analyses showed that BZR1 bound directly to the BRRE motif located in the promoter region of AMT1;2. Moreover, cellular ammonium contents, 15NH4 + uptake, and the regulatory effect of methyl-ammonium on root growth are strongly dependent on the levels of BZR1. Overexpression lines of BRI1 and BZR1 and Genetic combination of them mutants showed that BZR1 activates AMT1;2 expression downstream of BRI1. In conclusion, the findings suggest that BRs regulation of NH4+ uptake in rice involves transcription regulation of ammonium transporters.
Collapse
|
32
|
Jia L, Xie Y, Wang Z, Luo L, Zhang C, Pélissier PM, Parizot B, Qi W, Zhang J, Hu Z, Motte H, Luo L, Xu G, Beeckman T, Xuan W. Rice plants respond to ammonium stress by adopting a helical root growth pattern. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1023-1037. [PMID: 32890411 DOI: 10.1111/tpj.14978] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 05/26/2023]
Abstract
High levels of ammonium nutrition reduce plant growth and different plant species have developed distinct strategies to maximize ammonium acquisition while alleviating ammonium toxicity through modulating root growth. To date, the mechanisms underlying plant tolerance or sensitivity towards ammonium remain unclear. Rice (Oryza sativa) uses ammonium as its main N source. Here we show that ammonium supply restricts rice root elongation and induces a helical growth pattern, which is attributed to root acidification resulting from ammonium uptake. Ammonium-induced low pH triggers the asymmetric distribution of auxin in rice root tips through changes in auxin signaling, thereby inducing a helical growth response. Blocking auxin signaling completely inhibited this root response. In contrast, this root response is not activated in ammonium-treated Arabidopsis. Acidification of Arabidopsis roots leads to the protonation of indole-3-acetic acid and dampening of the intracellular auxin signaling levels that are required for maintaining root growth. Our study suggests a different mode of action by ammonium on the root pattern and auxin response machinery in rice versus Arabidopsis, and the rice-specific helical root response towards ammonium is an expression of the ability of rice to moderate auxin signaling and root growth to utilize ammonium while confronting acidic stress.
Collapse
Affiliation(s)
- Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanming Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Weicong Qi
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhubing Hu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
33
|
Modelling the diffusion and exchange of ammoniacal nitrogen following deep placement of urea supergranules in wetland rice cultivation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Li T, Gonzalez N, Inzé D, Dubois M. Emerging Connections between Small RNAs and Phytohormones. TRENDS IN PLANT SCIENCE 2020; 25:912-929. [PMID: 32381482 DOI: 10.1016/j.tplants.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs), mainly including miRNAs and siRNAs, are ubiquitous in eukaryotes. sRNAs mostly negatively regulate gene expression via (post-)transcriptional gene silencing through DNA methylation, mRNA cleavage, or translation inhibition. The mechanisms of sRNA biogenesis and function in diverse biological processes, as well as the interactions between sRNAs and environmental factors, like (a)biotic stress, have been deeply explored. Phytohormones are central in the plant's response to stress, and multiple recent studies highlight an emerging role for sRNAs in the direct response to, or the regulation of, plant hormonal pathways. In this review, we discuss recent progress on the unraveling of crossregulation between sRNAs and nine plant hormones.
Collapse
Affiliation(s)
- Ting Li
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, F-33882 Villenave d'Ornon cedex, France
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
35
|
Wei Z, Li J. Regulation of Brassinosteroid Homeostasis in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:583622. [PMID: 33133120 PMCID: PMC7550685 DOI: 10.3389/fpls.2020.583622] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Brassinosteroids (BRs) are known as one of the major classes of phytohormones essential for various processes during normal plant growth, development, and adaptations to biotic and abiotic stresses. Significant progress has been achieved on revealing mechanisms regulating BR biosynthesis, catabolism, and signaling in many crops and in model plant Arabidopsis. It is known that BRs control plant growth and development in a dosage-dependent manner. Maintenance of BR homeostasis is therefore critical for optimal functions of BRs. In this review, updated discoveries on mechanisms controlling BR homeostasis in higher plants in response to internal and external cues are discussed.
Collapse
|