1
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Malvino ML. Unraveling the dynamics of Xanthomonas' flagella: insights into host-pathogen interactions. PeerJ 2024; 12:e18204. [PMID: 39465145 PMCID: PMC11505878 DOI: 10.7717/peerj.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024] Open
Abstract
Understanding the intricate interplay between plants and bacteria is paramount for elucidating mechanisms of immunity and disease. This review synthesizes current knowledge on the role of flagella in bacterial motility and host recognition, shedding light on the molecular mechanisms underlying plant immunity and bacterial pathogenicity. We delve into the sophisticated signaling network of plants, highlighting the pivotal role of pattern recognition receptors (PRRs) in detecting conserved molecular patterns known as microbe-associated molecular patterns (MAMPs), with a particular focus on flagellin as a key MAMP. Additionally, we explore recent discoveries of solanaceous-specific receptors, such as FLAGELLIN SENSING 3 (FLS3), and their implications for plant defense responses. Furthermore, we examine the role of bacterial motility in host colonization and infection, emphasizing the multifaceted relationship between flagella-mediated chemotaxis and bacterial virulence. Through a comprehensive analysis of flagellin polymorphisms within the genus Xanthomonas, we elucidate their potential impact on host recognition and bacterial pathogenicity, offering insights into strategies for developing disease-resistant crops. This review is intended for professionals within the fields of crops sciences and microbiology.
Collapse
Affiliation(s)
- Maria L. Malvino
- Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
3
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
Singh P, St Clair JB, Lind BM, Cronn R, Wilhelmi NP, Feau N, Lu M, Vidakovic DO, Hamelin RC, Shaw DC, Aitken SN, Yeaman S. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. THE NEW PHYTOLOGIST 2024; 243:705-719. [PMID: 38803110 DOI: 10.1111/nph.19797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Aquatic Ecology & Evolution Division, Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland
- Department of Fish Ecology & Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, CH-6047, Switzerland
| | - J Bradley St Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Brandon M Lind
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Nicholas P Wilhelmi
- Forest Health Protection, USDA Forest Service, Arizona Zone, Flagstaff, AZ, 86001, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - David C Shaw
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
5
|
Talbot SC, Vining KJ, Snelling JW, Clevenger J, Mehlenbacher SA. A haplotype-resolved chromosome-level assembly and annotation of European hazelnut (C. avellana cv. Jefferson) provides insight into mechanisms of eastern filbert blight resistance. G3 (BETHESDA, MD.) 2024; 14:jkae021. [PMID: 38325326 DOI: 10.1093/g3journal/jkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has released cultivars with a dominant allele at a single resistance locus identified by classical breeding, linkage mapping, and molecular markers. C. avellana cultivar "Jefferson" is resistant to the predominant EFB biotype in Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut genome assembly for "Jefferson". This new assembly is a significant improvement over a previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for downstream molecular marker development, thereby facilitating breeding efforts.
Collapse
Affiliation(s)
- Samuel C Talbot
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Kelly J Vining
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Jacob W Snelling
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Shawn A Mehlenbacher
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Zhong T, Zhu M, Zhang Q, Zhang Y, Deng S, Guo C, Xu L, Liu T, Li Y, Bi Y, Fan X, Balint-Kurti P, Xu M. The ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize. Nat Genet 2024; 56:315-326. [PMID: 38238629 PMCID: PMC10864183 DOI: 10.1038/s41588-023-01644-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024]
Abstract
Gray leaf spot (GLS), caused by the fungal pathogens Cercospora zeae-maydis and Cercospora zeina, is a major foliar disease of maize worldwide (Zea mays L.). Here we demonstrate that ZmWAKL encoding cell-wall-associated receptor kinase-like protein is the causative gene at the major quantitative disease resistance locus against GLS. The ZmWAKLY protein, encoded by the resistance allele, can self-associate and interact with a leucine-rich repeat immune-related kinase ZmWIK on the plasma membrane. The ZmWAKLY/ZmWIK receptor complex interacts with and phosphorylates the receptor-like cytoplasmic kinase (RLCK) ZmBLK1, which in turn phosphorylates its downstream NADPH oxidase ZmRBOH4. Upon pathogen infection, ZmWAKLY phosphorylation activity is transiently increased, initiating immune signaling from ZmWAKLY, ZmWIK, ZmBLK1 to ZmRBOH4, ultimately triggering a reactive oxygen species burst. Our study thus uncovers the role of the maize ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 receptor/signaling/executor module in perceiving the pathogen invasion, transducing immune signals, activating defense responses and conferring increased resistance to GLS.
Collapse
Affiliation(s)
- Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Mang Zhu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Yan Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P.R. China
| | - Suining Deng
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Chenyu Guo
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China
| | - Ling Xu
- State Key Laboratory of Plant Environmental Resilience/College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Tingting Liu
- Baoshan Institute of Agricultural Science, Baoshan, P.R. China
| | - Yancong Li
- Baoshan Institute of Agricultural Science, Baoshan, P.R. China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P.R. China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P.R. China
| | - Peter Balint-Kurti
- USDA-ARS Plant Science Research Unit, Raleigh NC and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
7
|
Lortzing V, Valsamakis G, Jantzen F, Hundacker J, Paniagua Voirol LR, Schumacher F, Kleuser B, Hilker M. Plant defensive responses to insect eggs are inducible by general egg-associated elicitors. Sci Rep 2024; 14:1076. [PMID: 38212511 PMCID: PMC10784483 DOI: 10.1038/s41598-024-51565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.
Collapse
Affiliation(s)
- Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Friederike Jantzen
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Luis R Paniagua Voirol
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Fabian Schumacher
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
- Core-Facility BioSupraMol, PharmaMS Subunit, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Burkhard Kleuser
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
8
|
Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Fan J, Gong G, He M, Wang J, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis. Nat Commun 2023; 14:8399. [PMID: 38110425 PMCID: PMC10728069 DOI: 10.1038/s41467-023-44197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.
Collapse
Affiliation(s)
- Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tianyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Guobang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peili Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
9
|
Shu LJ, Kahlon PS, Ranf S. The power of patterns: new insights into pattern-triggered immunity. THE NEW PHYTOLOGIST 2023; 240:960-967. [PMID: 37525301 DOI: 10.1111/nph.19148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
The plant immune system features numerous immune receptors localized on the cell surface to monitor the apoplastic space for danger signals from a broad range of plant colonizers. Recent discoveries shed light on the enormous complexity of molecular signals sensed by these receptors, how they are generated and removed to maintain cellular homeostasis and immunocompetence, and how they are shaped by host-imposed evolutionary constraints. Fine-tuning receptor sensing mechanisms at the molecular, cellular and physiological level is critical for maintaining a robust but adaptive host barrier to commensal, pathogenic, and symbiotic colonizers alike. These receptors are at the core of any plant-colonizer interaction and hold great potential for engineering disease resistance and harnessing beneficial microbiota to keep crops healthy.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
10
|
Zhou D, Chen X, Chen X, Xia Y, Liu J, Zhou G. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Front Microbiol 2023; 14:1252039. [PMID: 37876778 PMCID: PMC10591190 DOI: 10.3389/fmicb.2023.1252039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Phytopathogens pose a devastating threat to the productivity and yield of crops by causing destructive plant diseases in natural and agricultural environments. Hemibiotrophic pathogens have a variable-length biotrophic phase before turning to necrosis and are among the most invasive plant pathogens. Plant resistance to hemibiotrophic pathogens relies mainly on the activation of innate immune responses. These responses are typically initiated after the plant plasma membrane and various plant immune receptors detect immunogenic signals associated with pathogen infection. Hemibiotrophic pathogens evade pathogen-triggered immunity by masking themselves in an arms race while also enhancing or manipulating other receptors to promote virulence. However, our understanding of plant immune defenses against hemibiotrophic pathogens is highly limited due to the intricate infection mechanisms. In this review, we summarize the strategies that different hemibiotrophic pathogens interact with host immune receptors to activate plant immunity. We also discuss the significant role of the plasma membrane in plant immune responses, as well as the current obstacles and potential future research directions in this field. This will enable a more comprehensive understanding of the pathogenicity of hemibiotrophic pathogens and how distinct plant immune receptors oppose them, delivering valuable data for the prevention and management of plant diseases.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xingzhou Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
11
|
Adachi H, Sakai T, Kourelis J, Pai H, Gonzalez Hernandez JL, Utsumi Y, Seki M, Maqbool A, Kamoun S. Jurassic NLR: Conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. THE PLANT CELL 2023; 35:3662-3685. [PMID: 37467141 PMCID: PMC10533333 DOI: 10.1093/plcell/koad175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors generally exhibit hallmarks of rapid evolution, even at the intraspecific level. We used iterative sequence similarity searches coupled with phylogenetic analyses to reconstruct the evolutionary history of HOPZ-ACTIVATED RESISTANCE1 (ZAR1), an atypically conserved NLR that traces its origin to early flowering plant lineages ∼220 to 150 million yrs ago (Jurassic period). We discovered 120 ZAR1 orthologs in 88 species, including the monocot Colocasia esculenta, the magnoliid Cinnamomum micranthum, and most eudicots, notably the Ranunculales species Aquilegia coerulea, which is outside the core eudicots. Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition and cell death activation. We functionally reconstructed the cell death activity of ZAR1 and its partner receptor-like cytoplasmic kinase (RLCK) from distantly related plant species, experimentally validating the hypothesis that ZAR1 evolved to partner with RLCKs early in its evolution. In addition, ZAR1 acquired novel molecular features. In cassava (Manihot esculenta) and cotton (Gossypium spp.), ZAR1 carries a C-terminal thioredoxin-like domain, and in several taxa, ZAR1 duplicated into 2 paralog families, which underwent distinct evolutionary paths. ZAR1 stands out among angiosperm NLR genes for having experienced relatively limited duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 also gave rise to noncanonical NLRs with integrated domains and degenerated molecular features.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jose L Gonzalez Hernandez
- Agronomy, Horticulture and Plant Sciences Department, South Dakota State University, Brookings, SD 57007, USA
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
12
|
Hao Y, Pan Y, Chen W, Rashid MAR, Li M, Che N, Duan X, Zhao Y. Contribution of Duplicated Nucleotide-Binding Leucine-Rich Repeat (NLR) Genes to Wheat Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2794. [PMID: 37570947 PMCID: PMC10420896 DOI: 10.3390/plants12152794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Wheat has a large and diverse repertoire of NLRs involved in disease resistance, with over 1500 NLRs detected in some studies. These NLR genes occur as singletons or clusters containing copies of NLRs from different phylogenetic clades. The number of NLRs and cluster size can differ drastically among ecotypes and cultivars. Primarily, duplication has led to the evolution and diversification of NLR genes. Among the various mechanisms, whole genome duplication (WGD) is the most intense and leading cause, contributing to the complex evolutionary history and abundant gene set of hexaploid wheat. Tandem duplication or recombination is another major mechanism of NLR gene expansion in wheat. The diversity and divergence of duplicate NLR genes are responsible for the broad-spectrum resistance of most plant species with limited R genes. Understanding the mechanisms underlying the rapid evolution and diversification of wheat NLR genes will help improve disease resistance in crops. The present review focuses on the diversity and divergence of duplicate NLR genes and their contribution to wheat disease resistance. Moreover, we provide an overview of disease resistance-associated gene duplication and the underlying strategies in wheat.
Collapse
Affiliation(s)
- Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wuying Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Muhammad Abdul Rehman Rashid
- Department of Agricultural Sciences/Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Xu Duan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
13
|
Liu J, Wu X, Fang Y, Liu Y, Bello EO, Li Y, Xiong R, Li Y, Fu ZQ, Wang A, Cheng X. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity. Nat Commun 2023; 14:3580. [PMID: 37328517 PMCID: PMC10275998 DOI: 10.1038/s41467-023-39254-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is the master regulator of salicylic acid-mediated basal and systemic acquired resistance in plants. Here, we report that NPR1 plays a pivotal role in restricting compatible infection by turnip mosaic virus, a member of the largest plant RNA virus genus Potyvirus, and that such resistance is counteracted by NUCLEAR INCLUSION B (NIb), the viral RNA-dependent RNA polymerase. We demonstrate that NIb binds to the SUMO-interacting motif 3 (SIM3) of NPR1 to prevent SUMO3 interaction and sumoylation, while sumoylation of NIb by SUMO3 is not essential but can intensify the NIb-NPR1 interaction. We discover that the interaction also impedes the phosphorylation of NPR1 at Ser11/Ser15. Moreover, we show that targeting NPR1 SIM3 is a conserved ability of NIb from diverse potyviruses. These data reveal a molecular "arms race" by which potyviruses deploy NIb to suppress NPR1-mediated resistance through disrupting NPR1 sumoylation.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yue Fang
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ye Liu
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Esther Oreofe Bello
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yong Li
- College of Life Science, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
- A&L Canada Laboratories Lnc., London, N5V 3P5, ON, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
| |
Collapse
|
14
|
Discovering and prioritizing candidate resistance genes against soybean pests by integrating GWAS and gene coexpression networks. Gene 2023; 860:147231. [PMID: 36731618 DOI: 10.1016/j.gene.2023.147231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Soybean is one of the most important legume crops worldwide. Soybean pests have a considerable impact on crop yield. Here, we integrated publicly available genome-wide association studies and transcriptomic data to prioritize candidate resistance genes against the insects Aphis glycines and Spodoptera litura, and the nematode Heterodera glycines. We identified 171, 7, and 228 high-confidence candidate resistance genes against A. glycines, S. litura, and H. glycines, respectively. We found some overlap of candidate genes between insect species, but not between insects and H. glycines. Although 15% of the prioritized candidate genes encode proteins of unknown function, the vast majority of the candidates are related to plant immunity processes, such as transcriptional regulation, signaling, oxidative stress, recognition, and physical defense. Based on the number of resistance alleles, we selected the ten most promising accessions against each pest species in the soybean USDA germplasm. The most resistant accessions do not reach the maximum theoretical resistance potential, indicating that they might be further improved to increase resistance in breeding programs or through genetic engineering. Finally, the coexpression networks we inferred in this work are available in a user-friendly web application (https://soypestgcn.venanciogroup.uenf.br/) and an R/Shiny package (https://github.com/almeidasilvaf/SoyPestGCN) that serve as a public resource to explore soybean-pest interactions at the transcriptional level.
Collapse
|
15
|
Reim S, Emeriewen OF, Peil A, Flachowsky H. Deciphering the Mechanism of Tolerance to Apple Replant Disease Using a Genetic Mapping Approach in a Malling 9 × M. × robusta 5 Population Identifies SNP Markers Linked to Candidate Genes. Int J Mol Sci 2023; 24:ijms24076307. [PMID: 37047278 PMCID: PMC10094387 DOI: 10.3390/ijms24076307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apple replant disease (ARD) is a worldwide economic risk in apple production. Although several studies have shown that the wild apple accession Malus × robusta 5 (Mr5) is ARD-tolerant, the genetics of this tolerance have not yet been elucidated. A genetic mapping approach with a biparental population derived from contrasting parents involving molecular markers provides a means for marker-assisted selection of genetically complex traits and for determining candidate genes. In this study, we crossed the ARD-tolerant wild apple accession Mr5 and the ARD-susceptible rootstock ‘M9’ and analyzed the resultant progeny for ARD tolerance. Hence, a high-density genetic map using a tunable genotyping-by-sequencing (tGBS) approach was established. A total of 4804 SNPs together with 77 SSR markers were included in the parental maps comprising 17 linkage groups. The phenotypic responses to ARD were evaluated for 106 offspring and classified by an ARD-susceptibility index (ASI). A Kruskal–Wallis test identified SNP markers and one SSR marker on linkage groups (LG) 6 and 2 that correlated with ARD tolerance. We found nine candidate genes linked with these markers, which may be associated with plant response to ARD. These candidate genes provide some insight into the defense mechanisms against ARD and should be studied in more detail.
Collapse
|
16
|
Knieper M, Viehhauser A, Dietz KJ. Oxylipins and Reactive Carbonyls as Regulators of the Plant Redox and Reactive Oxygen Species Network under Stress. Antioxidants (Basel) 2023; 12:antiox12040814. [PMID: 37107189 PMCID: PMC10135161 DOI: 10.3390/antiox12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Reactive oxygen species (ROS), and in particular H2O2, serve as essential second messengers at low concentrations. However, excessive ROS accumulation leads to severe and irreversible cell damage. Hence, control of ROS levels is needed, especially under non-optimal growth conditions caused by abiotic or biotic stresses, which at least initially stimulate ROS synthesis. A complex network of thiol-sensitive proteins is instrumental in realizing tight ROS control; this is called the redox regulatory network. It consists of sensors, input elements, transmitters, and targets. Recent evidence revealed that the interplay of the redox network and oxylipins–molecules derived from oxygenation of polyunsaturated fatty acids, especially under high ROS levels–plays a decisive role in coupling ROS generation and subsequent stress defense signaling pathways in plants. This review aims to provide a broad overview of the current knowledge on the interaction of distinct oxylipins generated enzymatically (12-OPDA, 4-HNE, phytoprostanes) or non-enzymatically (MDA, acrolein) and components of the redox network. Further, recent findings on the contribution of oxylipins to environmental acclimatization will be discussed using flooding, herbivory, and establishment of thermotolerance as prime examples of relevant biotic and abiotic stresses.
Collapse
|
17
|
Bonnamy M, Pinel-Galzi A, Gorgues L, Chalvon V, Hébrard E, Chéron S, Nguyen TH, Poulicard N, Sabot F, Pidon H, Champion A, Césari S, Kroj T, Albar L. Rapid evolution of an RNA virus to escape recognition by a rice nucleotide-binding and leucine-rich repeat domain immune receptor. THE NEW PHYTOLOGIST 2023; 237:900-913. [PMID: 36229931 DOI: 10.1111/nph.18532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs. RYMV3 detects the virus by forming a recognition complex with the viral coat protein (CP). The virus escapes efficiently from detection by mutations in its CP, some of which interfere with the formation of the recognition complex. This study establishes that NLRs also confer in monocotyledonous plants immunity to viruses, and reveals an unexpected functional diversity for NLRs of the Mla clade that were previously only known as fungal disease resistance proteins. In addition, it provides precise insight into the mechanisms by which viruses adapt to plant immunity and gives important knowledge for the development of sustainable resistance against viral diseases of cereals.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Agnès Pinel-Galzi
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Lucille Gorgues
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Véronique Chalvon
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Eugénie Hébrard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Sophie Chéron
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | | | - Nils Poulicard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - François Sabot
- DIADE, Univ Montpellier, IRD, 34394, Montpellier, France
| | - Hélène Pidon
- DIADE, Univ Montpellier, IRD, 34394, Montpellier, France
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, 06484, Quedlinburg, Germany
| | | | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| | - Laurence Albar
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34980, Montpellier, France
| |
Collapse
|
18
|
Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs. MOLECULAR PLANT 2023; 16:75-95. [PMID: 36415130 DOI: 10.1016/j.molp.2022.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To counter pathogen invasion, plants have evolved a large number of immune receptors, including membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat receptors (NLRs). Our knowledge about PRR and NLR signaling mechanisms has expanded significantly over the past few years. Plant NLRs form multi-protein complexes called resistosomes in response to pathogen effectors, and the signaling mediated by NLR resistosomes converges on Ca2+-permeable channels. Ca2+-permeable channels important for PRR signaling have also been identified. These findings highlight a crucial role of Ca2+ in triggering plant immune signaling. In this review, we first discuss the structural and biochemical mechanisms of non-canonical NLR Ca2+ channels and then summarize our knowledge about immune-related Ca2+-permeable channels and their roles in PRR and NLR signaling. We also discuss the potential role of Ca2+ in the intricate interaction between PRR and NLR signaling.
Collapse
Affiliation(s)
- Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| | - Wen Song
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | - Jijie Chai
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
19
|
Guo J, Cheng Y. Advances in Fungal Elicitor-Triggered Plant Immunity. Int J Mol Sci 2022; 23:12003. [PMID: 36233304 PMCID: PMC9569958 DOI: 10.3390/ijms231912003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an array of pathogenic fungi in the natural environment of plants, which produce some molecules including pathogen-associated molecular patterns (PAMPs) and effectors during infection. These molecules, which can be recognized by plant specific receptors to activate plant immunity, including PTI (PAMP-triggered immunity) and ETI (effector-triggered immunity), are called elicitors. Undoubtedly, identification of novel fungal elicitors and their plant receptors and comprehensive understanding about fungal elicitor-triggered plant immunity will be of great significance to effectively control plant diseases. Great progress has occurred in fungal elicitor-triggered plant immunity, especially in the signaling pathways of PTI and ETI, in recent years. Here, recent advances in fungal elicitor-triggered plant immunity are summarized and their important contribution to the enlightenment of plant disease control is also discussed.
Collapse
Affiliation(s)
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
20
|
Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. ZAR1: Guardian of plant kinases. FRONTIERS IN PLANT SCIENCE 2022; 13:981684. [PMID: 36212348 PMCID: PMC9539561 DOI: 10.3389/fpls.2022.981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Racquel A. Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Zhang L, Liu Y, Wang Q, Wang C, Lv S, Wang Y, Wang J, Wang Y, Yuan J, Zhang H, Kang Z, Ji W. An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5474-5489. [PMID: 35652375 DOI: 10.1093/jxb/erac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum) is a commercially important crop and its production is seriously threatened by the fungal pathogen Puccinia striiformis f. sp. tritici West (Pst). Resistance (R) genes are critical factors that facilitate plant immune responses. Here, we report a wheat R gene NB-ARC-LRR ortholog, TaYRG1, that is associated with distinct alternative splicing events in wheat infected by Pst. The native splice variant, TaYRG1.6, encodes internal-motif-deleted polypeptides with the same N- and C-termini as TaYRG1.1, resulting in gain of function. Transient expression of protein variants in Nicotiana benthamiana showed that the NB and ARC domains, and TaYRG1.6 (half LRR domain), stimulate robust elicitor-independent cell death based on a signal peptide, although the activity was negatively modulated by the CC and complete LRR domains. Furthermore, molecular genetic analyses indicated that TaYRG1.6 enhanced resistance to Pst in wheat. Moreover, we provide multiple lines of evidence that TaYRG1.6 interacts with a dynamin-related protein, TaDrp1. Proteome profiling suggested that the TaYRG1.6-TaDrp1-DNM complex in the membrane trafficking systems may trigger cell death by mobilizing lipid and kinase signaling in the endocytosis pathway. Our findings reveal a unique mechanism by which TaYRG1 activates cell death and enhances disease resistance by reconfiguring protein structure through alternative splicing.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shikai Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Membrane Localized GbTMEM214s Participate in Modulating Cotton Resistance to Verticillium Wilt. PLANTS 2022; 11:plants11182342. [PMID: 36145743 PMCID: PMC9505811 DOI: 10.3390/plants11182342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022]
Abstract
Verticillium wilt (VW) is a soil-borne fungal disease caused by Verticillium dahliae Kleb, which leads to serious damage to cotton production annually in the world. In our previous study, a transmembrane protein 214 protein (TMEM214) gene associated with VW resistance was map-based cloned from Gossypium barbadense (G. barbadense). TMEM214 proteins are a kind of transmembrane protein, but their function in plants is rarely studied. To reveal the function of TMEM214s in VW resistance, all six TMEM214s were cloned from G. barbadense in this study. These genes were named as GbTMEM214-1_A/D, GbTMEM214-4_A/D and GbTMEM214-7_A/D, according to their location on the chromosomes. The encoded proteins are all located on the cell membrane. TMEM214 genes were all induced with Verticillium dahliae inoculation and showed significant differences between resistant and susceptible varieties, but the expression patterns of GbTMEM214s under different hormone treatments were significantly different. Virus-induced gene silencing analysis showed the resistance to VW of GbTMEM214s-silenced lines decreased significantly, which further proves the important role of GbTMEM214s in the resistance to Verticillium dahliae. Our study provides an insight into the involvement of GbTMEM214s in VW resistance, which was helpful to better understand the disease-resistance mechanism of plants.
Collapse
|
23
|
Lam SK, Wille U, Hu HW, Caruso F, Mumford K, Liang X, Pan B, Malcolm B, Roessner U, Suter H, Stevens G, Walker C, Tang C, He JZ, Chen D. Next-generation enhanced-efficiency fertilizers for sustained food security. NATURE FOOD 2022; 3:575-580. [PMID: 37118587 DOI: 10.1038/s43016-022-00542-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/06/2022] [Indexed: 04/30/2023]
Abstract
Nitrogen losses in agricultural systems can be reduced through enhanced-efficiency fertilizers (EEFs), which control the physicochemical release from fertilizers and biological nitrogen transformations in soils. The adoption of EEFs by farmers requires evidence of consistent performance across soils, crops and climates, paired with information on the economic advantages. Here we show that the benefits of EEFs due to avoided social costs of nitrogen pollution considerably outweigh their costs-and must be incorporated in fertilizer policies. We outline new approaches to the design of EEFs using enzyme inhibitors with modifiable chemical structures and engineered, biodegradable coatings that respond to plant rhizosphere signalling molecules.
Collapse
Affiliation(s)
- Shu Kee Lam
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Uta Wille
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Caruso
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Mumford
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Xia Liang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Baobao Pan
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill Malcolm
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Helen Suter
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoff Stevens
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Charlie Walker
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- Incitec Pivot Fertilisers, North Shore, Victoria, Australia
| | - Caixian Tang
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Ji-Zheng He
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia
| | - Deli Chen
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia.
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
24
|
Zhao Y, Zhu X, Chen X, Zhou JM. From plant immunity to crop disease resistance. J Genet Genomics 2022; 49:693-703. [PMID: 35728759 DOI: 10.1016/j.jgg.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Plant diseases caused by diverse pathogens lead to serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly CRISPR/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainai 572025, China.
| |
Collapse
|
25
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
26
|
Identification of the Capsicum baccatum NLR Protein CbAR9 Conferring Disease Resistance to Anthracnose. Int J Mol Sci 2021; 22:ijms222212612. [PMID: 34830493 PMCID: PMC8620258 DOI: 10.3390/ijms222212612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Anthracnose is caused by Colletotrichum species and is one of the most virulent fungal diseases affecting chili pepper (Capsicum) yield globally. However, the noble genes conferring resistance to Colletotrichum species remain largely elusive. In this study, we identified CbAR9 as the causal locus underlying the large effect quantitative trait locus CcR9 from the anthracnose-resistant chili pepper variety PBC80. CbAR9 encodes a nucleotide-binding and leucine-rich repeat (NLR) protein related to defense-associated NLRs in several other plant species. CbAR9 transcript levels were induced dramatically after Colletotrichum capsici infection. To explore the biological function, we generated transgenic Nicotiana benthamiana lines overexpressing CbAR9, which showed enhanced resistance to C. capsici relative to wild-type plants. Transcript levels of pathogenesis-related (PR) genes increased markedly in CbAR9-overexpressing N. benthamiana plants. Moreover, resistance to anthracnose and transcript levels of PR1 and PR2 were markedly reduced in CbAR9-silenced chili pepper fruits after C. capsici infection. Our results revealed that CbAR9 contributes to innate immunity against C. capsici.
Collapse
|
27
|
Li P, Chang M. Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147688. [PMID: 34299310 PMCID: PMC8306625 DOI: 10.3390/ijms22147688] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0760
| |
Collapse
|
28
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
29
|
del Hierro I, Mélida H, Broyart C, Santiago J, Molina A. Computational prediction method to decipher receptor-glycoligand interactions in plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1710-1726. [PMID: 33316845 PMCID: PMC8048873 DOI: 10.1111/tpj.15133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Microbial and plant cell walls have been selected by the plant immune system as a source of microbe- and plant damage-associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD-PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM-PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4-β-d-(GlcNAc)6 ) and laminarihexaose (1,3-β-d-(Glc)6 ). Our in silico results predicted CERK1 interactions with 1,4-β-d-(GlcNAc)6 whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co-receptor for its recognition. These in silico results were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs-LysM-PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4-β-d-(Glc)6 (cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsis cerk1 mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein-glycan interactions and provide information on immune responses activated by glycoligands.
Collapse
Affiliation(s)
- Irene del Hierro
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Present address:
Área de Fisiología VegetalDepartamento de Ingeniería y Ciencias AgrariasUniversidad de León24071LeónSpain
| | - Caroline Broyart
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Julia Santiago
- Département de Biologie Moléculaire Végétale (DBMV)University of Lausanne (UNIL)Biophore Building, UNIL SorgeCH‐1015LausanneSwitzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (CBGP)Universidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Campus de Montegancedo‐UPM28223Pozuelo de Alarcón, MadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)28040MadridSpain
| |
Collapse
|
30
|
Waheed S, Anwar M, Saleem MA, Wu J, Tayyab M, Hu Z. The Critical Role of Small RNAs in Regulating Plant Innate Immunity. Biomolecules 2021; 11:biom11020184. [PMID: 33572741 PMCID: PMC7912340 DOI: 10.3390/biom11020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plants, due to their sessile nature, have an innate immune system that helps them to defend against different pathogen infections. The defense response of plants is composed of a highly regulated and complex molecular network, involving the extensive reprogramming of gene expression during the presence of pathogenic molecular signatures. Plants attain proper defense against pathogens through the transcriptional regulation of genes encoding defense regulatory proteins and hormone signaling pathways. Small RNAs are emerging as versatile regulators of plant development and act in different tiers of plant immunity, including pathogen-triggered immunity (PTI) and effector-triggered immunity (ETI). The versatile regulatory functions of small RNAs in plant growth and development and response to biotic and abiotic stresses have been widely studied in recent years. However, available information regarding the contribution of small RNAs in plant immunity against pathogens is more limited. This review article will focus on the role of small RNAs in innate immunity in plants.
Collapse
Affiliation(s)
- Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.A.); (Z.H.)
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
- Correspondence: (M.A.); (Z.H.)
| |
Collapse
|
31
|
Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH 2021; 2:226-239. [PMID: 34377580 PMCID: PMC8209778 DOI: 10.1007/s42994-021-00053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Being sessile, plants have evolved sophisticated mechanisms to balance between growth and defense to survive in the harsh environment. The transition from growth to defense is commonly achieved by factors, such as protein kinases (PKs) and transcription factors, that initiate signal transduction and regulate specialized metabolism. Plants produce an array of lineage-specific specialized metabolites for chemical defense and stress tolerance. Some of these molecules are also used by humans as drugs. However, many of these defense-responsive metabolites are toxic to plant cells and inhibitory to growth and development. Plants have, thus, evolved complex regulatory networks to balance the accumulation of the toxic metabolites. Perception of external stimuli is a vital part of the regulatory network. Protein kinase-mediated signaling activates a series of defense responses by phosphorylating the target proteins and translating the stimulus into downstream cellular signaling. As biosynthesis of specialized metabolites is triggered when plants perceive stimuli, a possible connection between PKs and specialized metabolism is well recognized. However, the roles of PKs in plant specialized metabolism have not received much attention until recently. Here, we summarize the recent advances in understanding PKs in plant specialized metabolism. We aim to highlight how the stimulatory signals are transduced, leading to the biosynthesis of corresponding metabolites. We discuss the post-translational regulation of specialized metabolism and provide insights into the mechanisms by which plants respond to the external signals. In addition, we propose possible strategies to increase the production of plant specialized metabolites in biotechnological applications using PKs.
Collapse
|
32
|
Martin R, Qi T, Zhang H, Liu F, King M, Toth C, Nogales E, Staskawicz BJ. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 2020; 370:eabd9993. [PMID: 33273074 PMCID: PMC7995448 DOI: 10.1126/science.abd9993] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022]
Abstract
Plants and animals detect pathogen infection using intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) that directly or indirectly recognize pathogen effectors and activate an immune response. How effector sensing triggers NLR activation remains poorly understood. Here we describe the 3.8-angstrom-resolution cryo-electron microscopy structure of the activated ROQ1 (recognition of XopQ 1), an NLR native to Nicotiana benthamiana with a Toll-like interleukin-1 receptor (TIR) domain bound to the Xanthomonas euvesicatoria effector XopQ (Xanthomonas outer protein Q). ROQ1 directly binds to both the predicted active site and surface residues of XopQ while forming a tetrameric resistosome that brings together the TIR domains for downstream immune signaling. Our results suggest a mechanism for the direct recognition of effectors by NLRs leading to the oligomerization-dependent activation of a plant resistosome and signaling by the TIR domain.
Collapse
Affiliation(s)
- Raoul Martin
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- QB3, University of California, Berkeley, CA 94720, USA
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Haibo Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Furong Liu
- Innovative Genomics Institute, University of California, Berkeley, CA 94720 USA
| | - Miles King
- Innovative Genomics Institute, University of California, Berkeley, CA 94720 USA
| | - Claire Toth
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Eva Nogales
- QB3, University of California, Berkeley, CA 94720, USA.
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA.
- Innovative Genomics Institute, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
33
|
Li K, Xing R, Liu S, Li P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12203-12211. [PMID: 33095004 DOI: 10.1021/acs.jafc.0c05316] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chitin and chitosan are natural polysaccharides with huge application potential in agriculture, such as promoting plant growth, eliciting plant resistance against biotic and abiotic stress, and activating symbiotic signaling between plants and beneficial microorganisms. Chitin and chitosan offer a sustainable alternative for future crop production. The bioactivities of chitin and chitosan closely depend on their structural factors, including molecular size, degree of acetylation, and pattern of acetylation. It is of great significance to identify the key fragments in chitin and chitosan chains that are responsible for these agricultural bioactivities. Herein, we review the recent progress in the structure-function relationship of chitin and chitosan in the field of agriculture application. The preparation of chitin and chitosan fragments and their action mode for plant protection and growth are also discussed.
Collapse
Affiliation(s)
- Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
34
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
35
|
Cheung AY, Qu LJ, Russinova E, Zhao Y, Zipfel C. Update on Receptors and Signaling. PLANT PHYSIOLOGY 2020; 182:1527-1530. [PMID: 32253323 PMCID: PMC7140928 DOI: 10.1104/pp.20.00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, Ja Jolla, California 92093
| | - Cyril Zipfel
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich 8008, Switzerland and The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|