1
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
2
|
Soboleva A, Frolova N, Bureiko K, Shumilina J, Balcke GU, Zhukov VA, Tikhonovich IA, Frolov A. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress. Int J Mol Sci 2022; 23:2726. [PMID: 35269869 PMCID: PMC8910736 DOI: 10.3390/ijms23052726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Julia Shumilina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Gerd U. Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
3
|
Mohanta TK, Al-Harrasi A. Fungal genomes: suffering with functional annotation errors. IMA Fungus 2021; 12:32. [PMID: 34724975 PMCID: PMC8559351 DOI: 10.1186/s43008-021-00083-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background The genome sequence data of more than 65985 species are publicly available as of October 2021 within the National Center for Biotechnology Information (NCBI) database alone and additional genome sequences are available in other databases and also continue to accumulate at a rapid pace. However, an error-free functional annotation of these genome is essential for the research communities to fully utilize these data in an optimum and efficient manner. Results An analysis of proteome sequence data of 689 fungal species (7.15 million protein sequences) was conducted to identify the presence of functional annotation errors. Proteins associated with calcium signaling events, including calcium dependent protein kinases (CDPKs), calmodulins (CaM), calmodulin-like (CML) proteins, WRKY transcription factors, selenoproteins, and proteins associated with the terpene biosynthesis pathway, were targeted in the analysis. Gene associated with CDPKs and selenoproteins are known to be absent in fungal genomes. Our analysis, however, revealed the presence of proteins that were functionally annotated as CDPK proteins. However, InterproScan analysis indicated that none of the protein sequences annotated as “calcium dependent protein kinase” were found to encode calcium binding EF-hands at the regulatory domain. Similarly, none of a protein sequences annotated as a “selenocysteine” were found to contain a Sec (U) amino acid. Proteins annotated as CaM and CMLs also had significant discrepancies. CaM proteins should contain four calcium binding EF-hands, however, a range of 2–4 calcium binding EF-hands were present in the fungal proteins that were annotated as CaM proteins. Similarly, CMLs should possess four calcium binding EF-hands, but some of the CML annotated fungal proteins possessed either three or four calcium binding EF-hands. WRKY transcription factors are characterized by the presence of a WRKY domain and are confined to the plant kingdom. Several fungal proteins, however, were annotated as WRKY transcription factors, even though they did not contain a WRKY domain. Conclusion The presence of functional annotation errors in fungal genome and proteome databases is of considerable concern and needs to be addressed in a timely manner. Supplementary Information The online version contains supplementary material available at 10.1186/s43008-021-00083-x.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
4
|
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:340-354. [PMID: 28394446 DOI: 10.1111/tpj.13569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.
Collapse
Affiliation(s)
- Sylwia A Stopka
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
5
|
Yang Y, Hu XP, Ma BG. Construction and simulation of the Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison between free-living and symbiotic states. MOLECULAR BIOSYSTEMS 2017; 13:607-620. [DOI: 10.1039/c6mb00553e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first genome-scale metabolic network forBradyrhizobiumwas constructed and the metabolic properties were compared between the free-living and symbiotic physiological states.
Collapse
Affiliation(s)
- Yi Yang
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
| | - Xiao-Pan Hu
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
| |
Collapse
|
6
|
Sangwan I, O'brian MR. Evidence for an inter-organismic heme biosynthetic pathway in symbiotic soybean root nodules. Science 2010; 251:1220-2. [PMID: 17799282 DOI: 10.1126/science.251.4998.1220] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The successful symbiosis of soybean with Bradyrhizobium japonicum depends on their complex interactions, culminating in the development and maintenance of root nodules. A B. japonicum mutant defective in heme synthesis in culture was able to produce heme as a result of its symbiotic association with the soybean host. The bacterial mutant was incapable of synthesizing the committed heme precursor delta-aminolevulinic acid (ALA), but nodule plant cells formed ALA from glutamate. In addition, exogenous ALA was taken up by isolated nodule bacteria of the parent strain and of the mutant. It is proposed that bacterial heme found in nodules can be synthesized from plant ALA, hence segments of a single metabolic pathway are spatially separated into two organisms.
Collapse
|
7
|
Gober JW, Kashket ER. K regulates bacteroid-associated functions of Bradyrhizobium. Proc Natl Acad Sci U S A 2010; 84:4650-4. [PMID: 16593858 PMCID: PMC305148 DOI: 10.1073/pnas.84.13.4650] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cowpea Bradyrhizobium 32H1 cells, when grown under 0.2% O(2), synthesize nitrogenase, as well as a methylammonium (ammonium) transport system and an electrogenic K(+)/H(+) antiporter. This effect was seen in growth medium containing 8-12 mM K(+) but not with 50 muM K(+). Addition of K(+) to cells growing under low O(2) tensions in low-K(+) medium led to various phenotypic properties associated with bacteroids, including the ability to reduce acetylene, induction of an ammonium transport carrier and the K(+)/H(+) antiporter, and increased synthesis of two heme-biosynthetic enzymes, delta-aminolevulinate synthase and delta-aminolevulinate dehydratase. K(+) addition caused the repression of glutamine synthetase and of capsular polysaccharide synthesis, functions related to the free-living state. A similar pattern of regulation was observed in Bradyrhizobium japonicum. In addition, K(+)-mediated depression in Bradyrhizobium 32H1 was inhibited by exudate of Vigna unguiculata, its host plant. We conclude that K(+) ions, in addition to low O(2) tension, are needed for the expression of several bacteroid-related functions in bradyrhizobia and thus are a major controlling influence in bacteroid development.
Collapse
Affiliation(s)
- J W Gober
- Department of Microbiology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118
| | | |
Collapse
|
8
|
Guerinot ML, Chelm BK. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci U S A 2010; 83:1837-41. [PMID: 16593670 PMCID: PMC323179 DOI: 10.1073/pnas.83.6.1837] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies of legume nodules have indicated that formation of the heme moiety of leghemoglobin is a function of the bacterial symbiont. We now show that a hemA mutant of Bradyrhizobium japonicum that cannot carry out the first step in heme biosynthesis forms fully effective nodules on soybeans. The bacterial mutant strain was constructed by first isolating the wild-type hemA gene encoding delta-aminolevulinic acid synthase (EC 2.3.1.37) from a cosmid library, using a fragment of the Rhizobium meliloti hemA gene as a hybridization probe. A deletion of the hemA gene region, generated in vitro, then was used to construct the analogous chromosomal mutation by gene-directed mutagenesis. The mutant strain had no delta-aminolevulinic acid synthase activity and was unable to grow in minimal medium unless delta-aminolevulinic acid was added. Despite its auxotrophy, the mutant strain incited nodules that appeared normal, contained heme, and were capable of high levels of acetylene reduction. These results rule out bacterial delta-aminolevulinic acid synthase activity as the exclusive source of delta-aminolevulinic acid for heme formation in soybean nodules.
Collapse
Affiliation(s)
- M L Guerinot
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
9
|
Gober JW, Kashket ER. Role of DNA Superhelicity in Regulation of Bacteroid-Associated Functions of Bradyrhizobium sp. Strain 32H1. Appl Environ Microbiol 2010; 55:1420-5. [PMID: 16347935 PMCID: PMC202881 DOI: 10.1128/aem.55.6.1420-1425.1989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium sp. strain 32H1 cells express a number of bacteroid-associated functions and repress some functions related to the free-living state when grown ex planta under conditions of low (0.2%) oxygen tension and relatively high levels (>8 mM) of medium K. Expression of the bacteroid-associated phenotype was blocked by the DNA gyrase inhibitor novobiocin. Because the degree of negative supercoiling of DNA is the result of the activities of both DNA gyrase and topoisomerase I, we measured these enzymes in cells grown under nitrogen-fixing (low O(2), high K) and non-nitrogen-fixing conditions (low O(2), low [50 muM] K or high O(2), high K). Lower topoisomerase I activities were seen in extracts from nitrogen-fixing cells than in those from non-nitrogen-fixing cells. In contrast, DNA gyrase levels were lower in high-O(2)-grown cells than under the other conditions tested. These differences are consistent with an increase in DNA superhelicity associated with growth under low-O(2), high-K conditions. A spontaneous mutant resistant to the DNA gyrase inhibitor ciprofloxacin was found to be constitutive with respect to the K requirement, because it expressed the bacteroid-associated phenotype when grown under low-O(2), low-K conditions. The mutant cells gave rise to effective nodules on Macroptilium atropurpureum and possessed the low topoisomerase I activities and high DNA gyrase levels of low-O(2)-, high-K-grown wild-type cells. Our data suggest that changes in DNA supercoiling resulting from low O(2) tension and a high K concentration exert a major influence on the expression of the bacteroid-associated phenotype.
Collapse
Affiliation(s)
- J W Gober
- Department of Microbiology, Boston University School of Medicine, 80 E. Concord St., Boston, Massachusetts 02118-2394
| | | |
Collapse
|
10
|
Lim BL. TonB-Dependent Receptors in Nitrogen-Fixing Nodulating Bacteria. Microbes Environ 2010; 25:67-74. [DOI: 10.1264/jsme2.me10102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Boon L. Lim
- School of Biological Sciences, University of Hong Kong
| |
Collapse
|
11
|
|
12
|
|
13
|
Santana MA, Pihakaski-Maunsbach K, Sandal N, Marcker KA, Smith AG. Evidence that the plant host synthesizes the heme moiety of leghemoglobin in root nodules. PLANT PHYSIOLOGY 1998; 116:1259-1269. [PMID: 9536042 PMCID: PMC35032 DOI: 10.1104/pp.116.4.1259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/1997] [Accepted: 01/06/1998] [Indexed: 05/22/2023]
Abstract
Although it is well established that the plant host encodes and synthesizes the apoprotein for leghemoglobin in root nodules, the source of the heme moiety has been uncertain. We recently found that the transcript for coproporphyrinogen III oxidase, one of the later enzymes of heme synthesis, is highly elevated in soybean (Glycine max L.) nodules compared with roots. In this study we measured enzyme activity and carried out western-blot analysis and in situ hybridization of mRNA to investigate the levels during nodulation of the plant-specific coproporphyrinogen oxidase and four other enzymes of the pathway in both soybean and pea (Pisum sativum L.). We compared them with the activity found in leaves and uninfected roots. Our results demonstrate that all of these enzymes are elevated in the infected cells of nodules. Because these are the same cells that express apoleghemoglobin, the data strongly support a role for the plant in the synthesis of the heme moiety of leghemoglobin.
Collapse
|
14
|
Molecular analysis of theRhizobiumgenes involved in the induction of nitrogen-fixing nodules on legumes. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rstb.1987.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent developments in the molecular genetics ofRhizobium spp. are presented, and the use of mutant bacterial strains to determine which properties are required for symbiotic nitrogen fixation and nodulation of legumes is described. Both the lipopolysaccharide and the exopolysaccharide ofRhizobium spp. are implicated in infection. Recent studies have identified several genes involved in the early steps of this process and in the determination of host-range specificity. Analysis of their products has given some indications of their functions. The expression of most of these nodulation (nod) genes is controlled by the regulatory genenodD, which is itself expressed constitutively, whereas other nod genes are transcribed only when the cells are exposed to compounds present in the rhizosphere of legumes. These compounds were identified as various flavones and flavanones. Other plant-specified aromatic molecules, such as isoflavonoids, antagonize this induction.
Collapse
|
15
|
O'Brian MR. Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments. J Bacteriol 1996; 178:2471-8. [PMID: 8626311 PMCID: PMC177968 DOI: 10.1128/jb.178.9.2471-2478.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- M R O'Brian
- Department of Biochemistry, State University of New York at Buffalo 14214, USA
| |
Collapse
|
16
|
Mylona P, Pawlowski K, Bisseling T. Symbiotic Nitrogen Fixation. THE PLANT CELL 1995; 7:869-885. [PMID: 12242391 DOI: 10.2307/3870043] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- P. Mylona
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
17
|
Mylona P, Pawlowski K, Bisseling T. Symbiotic Nitrogen Fixation. THE PLANT CELL 1995; 7:869-885. [PMID: 12242391 PMCID: PMC160880 DOI: 10.1105/tpc.7.7.869] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- P. Mylona
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
18
|
Mylona P, Pawlowski K, Bisseling T. Symbiotic Nitrogen Fixation. THE PLANT CELL 1995. [PMID: 12242391 DOI: 10.1105/2ftpc.7.7.869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- P. Mylona
- Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
19
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
20
|
Abstract
Symbiosomes and bacteroids isolated from soybean nodules are able to take up the iron-citrate complex. The kinetics are characterized by initial high rates of iron internalization, and ATPase inhibitors significantly lower the uptake. This is consistent with an energy-dependent process on both membranes, although the involvement of a simultaneous facilitated diffusion can not be completely ruled out. Citrate alone is poorly absorbed by symbiosomes; this uptake is greatly enhanced by addition of iron. Iron-citrate was found both in the nodule cytosol and in the bacteroids. These results provide the first experimental evidence for the existence, at least in young nodules, of an important iron trafficking system from the plant host cell to the microsymbiont, through the peribacteroid membrane.
Collapse
Affiliation(s)
- S Moreau
- Laboratoire de Biologie Végétale et Microbiologie, URA CNRS 1114, Université de Nice-Sophia Antipolis, France
| | | | | |
Collapse
|
21
|
Kaczor CM, Smith MW, Sangwan I, O'Brian MR. Plant delta-aminolevulinic acid dehydratase. Expression in soybean root nodules and evidence for a bacterial lineage of the Alad gene. PLANT PHYSIOLOGY 1994; 104:1411-7. [PMID: 8016269 PMCID: PMC159307 DOI: 10.1104/pp.104.4.1411] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We isolated a soybean (Glycine max) cDNA encoding the heme and chlorophyll synthesis enzyme delta-aminolevulinic acid (ALA) dehydratase by functional complementation of an Escherichia coli hemB mutant, and we designated the gene Alad. ALA dehydratase was strongly expressed in nodules but not in uninfected roots, although Alad mRNA was only 2- to 3-fold greater in the symbiotic tissue. Light was not essential for expression of Alad in leaves of dark-grown etiolated plantlets as discerned by mRNA, protein, and enzyme activity levels; hence, its expression in subterranean nodules was not unique in that regard. The data show that soybean can metabolize the ALA it synthesizes in nodules, which argues in favor of tetrapyrrole formation by the plant host in that organ. Molecular phylogenetic analysis of ALA dehydratases from 11 organisms indicated that plant and bacterial enzymes have a common lineage not shared by animals and yeast. We suggest that plant ALA dehydratase is descended from the bacterial endosymbiont ancestor of chloroplasts and that the Alad gene was transferred to the nucleus during plant evolution.
Collapse
Affiliation(s)
- C M Kaczor
- Department of Biochemistry, State University of New York at Buffalo 14214
| | | | | | | |
Collapse
|
22
|
Madsen O, Sandal L, Sandal NN, Marcker KA. A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. PLANT MOLECULAR BIOLOGY 1993; 23:35-43. [PMID: 8219054 DOI: 10.1007/bf00021417] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In plants the enzyme coproporphyrinogen oxidase catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX in the heme and chlorophyll biosynthesis pathway(s). We have isolated a soybean coproporphyrinogen oxidase cDNA from a cDNA library and determined the primary structure of the corresponding gene. The coproporphyrinogen oxidase gene encodes a polypeptide with a predicted molecular mass of 43 kDa. The derived amino acid sequence shows 50% similarity to the corresponding yeast amino acid sequence. The main difference is an extension of 67 amino acids at the N-terminus of the soybean polypeptide which may function as a transit peptide. A full-length coproporphyrinogen oxidase cDNA clone complements a yeast mutant deleted of the coproporphyrinogen oxidase gene, thus demonstrating the function of the soybean protein. The soybean coproporphyrinogen oxidase gene is highly expressed in nodules at the stage where several late nodulins including leghemoglobin appear. The coproporphyrinogen oxidase mRNA is also detectable in leaves but at a lower level than in nodules while no mRNA is detectable in roots. The high level of coproporphyrinogen oxidase mRNA in soybean nodules implies that the plant increases heme production in the nodules to meet the demand for additional heme required for hemoprotein formation.
Collapse
Affiliation(s)
- O Madsen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
23
|
Sangwan I, O'Brian MR. Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. PLANT PHYSIOLOGY 1993; 102:829-34. [PMID: 8278535 PMCID: PMC158853 DOI: 10.1104/pp.102.3.829] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Extracts of soybean (Glycine max) root nodules and greening etiolated leaves catalyzed radiolabeled delta-aminolevulinic acid (ALA) formation from 3,4-[3H]glutamate but not from 1-[14C]glutamate. Nevertheless, those tissue extracts expressed the activity of glutamate 1-semialdehyde (GSA) aminotransferase, the C5 pathway enzyme that catalyzes ALA synthesis from GSA for tetrapyrrole formation. A soybean nodule cDNA clone that conferred ALA prototrophy, GSA aminotransferase activity, and glutamate-dependent ALA formation activity on an Escherichia coli GSA aminotransferase mutant was isolated. The deduced product of the nodule cDNA shared 79% identity with the GSA aminotransferase expressed in barley leaves, providing, along with the complementation data, strong evidence that the cDNA encodes GSA aminotransferase. GSA aminotransferase mRNA and enzyme activity were expressed in nodules but not in uninfected roots, indicating that the Gsa gene is induced in the symbiotic tissue. The Gsa gene was strongly expressed in leaves of etiolated plantlets independently of light treatment and, to a much lesser extent, in leaves of mature plants. We conclude that GSA aminotransferase, and possibly the C5 pathway, is expressed in a nonphotosynthetic plant organ for nodule heme synthesis and that Gsa is a regulated gene in soybean.
Collapse
Affiliation(s)
- I Sangwan
- Department of Biochemistry, State University of New York at Buffalo 14214
| | | |
Collapse
|
24
|
Taha AESHY. Nematode interactions with root-nodule bacteria. NEMATODE INTERACTIONS 1993:175-202. [DOI: 10.1007/978-94-011-1488-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Vinogradov SN, Walz DA, Pohajdak B. Organization of non-vertebrate globin genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 103:759-73. [PMID: 1478060 DOI: 10.1016/0305-0491(92)90193-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of non-vertebrate globin genes exhibits substantially more variability than the three-exon, two-intron structure of the vertebrate globin genes. (1) The structures of genes of the single-domain globin chains of the annelid Lumbricus and the mollusc Anadara, and the globin gene coding for the two-domain chains of the clam Barbatia, are similar to the vertebrate plan. (2) Genes for single-domain chains exist in bacteria and protozoa. Although the globin gene is highly expressed in the bacterium Vitreoscilla, the putative globin gene hmp in E. coli, which codes for a chimeric protein whose N-terminal moiety of 139 residues contains 67 residues identical to the Vitreoscilla globin, may be either unexpressed or expressed at very low levels, despite the presence of normal regulatory sequences. The DNA sequence of the globin gene of the protozoan Paramecium, determined recently by Yamauchi and collaborators, appears to consist of two exons separated by a short intron. (3) Among the lower eukaryotes, the yeasts Saccharomyces and Candida have chimeric proteins consisting of N-terminal globin and C-terminal flavoprotein moieties of about the same size. The structure of the gene for the chimeric protein of Saccharomyces exhibits no introns. According to Riggs, the presence of chimeric proteins in E. coli and other prokaryotes, such as Alcaligenes and Rhizobium, as well as in yeasts, suggests a previously unrecognized evolutionary pathway for hemoglobin, namely that of a multipurpose heme-binding domain attached to a variety of unrelated proteins with diverse functions. (4) The published globin gene sequences of the insect larva Chironomus have an intron-less structure and are present as clusters of multiple copies; the expression of the globin genes is tissue and developmental stage-specific. Furthermore, the expression of many of these genes has not yet been demonstrated despite the presence of apparently normal regulatory sequences in the two flanking regions. Unexpectedly, Bergtrom and collaborators have recently shown that at least three Ctt globin II beta genes contain putative introns. (5) Pohajdak and collaborators have found a seven-exon and six-intron structure for the globin gene of the nematode Pseudoterranova which codes for a two-domain globin chain. Although the second and fourth introns of the N-terminal domain correspond to the two introns found in vertebrate globin genes, the position of the third intron is close to that of the central intron in plant hemoglobins.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S N Vinogradov
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | |
Collapse
|
26
|
Frustaci JM, O'Brian MR. Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene. J Bacteriol 1992; 174:4223-9. [PMID: 1624416 PMCID: PMC206202 DOI: 10.1128/jb.174.13.4223-4229.1992] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A Tn5-induced mutant of Bradyrhizobium japonicum, strain LORBF1, was isolated on the basis of the formation of fluorescent colonies, and stable derivatives were constructed in backgrounds of strains LO and I110. The stable mutant strains LOek4 and I110ek4 were strictly dependent upon the addition of exogenous hemin for growth in liquid culture and formed fluorescent colonies. The fluorescent compound was identified as protoporphyrin IX, the immediate precursor of protoheme. Cell extracts of strains LOek4 and I110ek4 were deficient in ferrochelatase activity, the enzyme which catalyzes the incorporation of ferrous iron into protoporphyrin IX to produce protoheme. Mutant strain I110ek4 could take up 55Fe from the growth medium, but, unlike the parent strain, no significant incorporation of radiolabel into heme was found. This observation shows that heme was not synthesized in mutant strain I110ek4 and that the heme found in those cells was derived from exogenous hemin in the growth medium. The putative protein encoded by the gene disrupted in strain LORBF1 and its derivatives was homologous to ferrochelatases from eukaryotic organisms. This homology, along with the described mutant phenotype, provides strong evidence that the disrupted gene is hemH, that which encodes ferrochelatase. Mutant strain I110ek4 incited nodules on soybean that did not fix nitrogen, contained few viable bacteria, and did not express leghemoglobin heme or apoprotein. The data show that B. japonicum ferrochelatase is essential for normal nodule development.
Collapse
Affiliation(s)
- J M Frustaci
- Department of Biochemistry, State University of New York, Buffalo 14214
| | | |
Collapse
|
27
|
Herrada G, Puppo A, Rigaud J. delta-Aminolevulinate uptake by Rhizobium bacteroids and its limitation by the peribacteroid membrane in Legume nodules. Biochem Biophys Res Commun 1992; 184:1324-30. [PMID: 1590795 DOI: 10.1016/s0006-291x(05)80027-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heme is overproduced during Rhizobium-Legume symbiosis and delta-aminolevulinate (ALA) is a common precursor in both bacterial and plant synthesis pathways of this molecule. ALA uptake by bacteroids from French bean and soybean nodules was characterized. The action of several metabolic inhibitors and the competition effect of malate on this uptake were studied. ALA transport appeared to be mediated by the dicarboxylate carrier system. Purified symbiosomes--bacteroids surrounded by the peribacteroid membrane--failed to accumulate significant amount of ALA. These experiments rule out the possibility for the plant cytosol to provide the bacteroid with ALA and strengthen the restrictive role of the peribacteroid membrane for exchanges between the two symbiotic partners.
Collapse
Affiliation(s)
- G Herrada
- Laboratoire de Biologie Végétale et Microbiologie, URA CNRS 1114, Faculté des Sciences, Nice, France
| | | | | |
Collapse
|
28
|
Sangwan I, O'brian MR. Characterization of delta-Aminolevulinic Acid Formation in Soybean Root Nodules. PLANT PHYSIOLOGY 1992; 98:1074-9. [PMID: 16668729 PMCID: PMC1080310 DOI: 10.1104/pp.98.3.1074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Formation of the heme precursor delta-aminolevulinic acid (ALA) was studied in soybean root nodules elicited by Bradyrhizobium japonicum. Glutamate-dependent ALA formation activity by soybean (Glycine max) in nodules was maximal at pH 6.5 to 7.0 and at 55 to 60 degrees C. A low level of the plant activity was detected in uninfected roots and was 50-fold greater in nodules from 17-day-old plants; this apparent stimulation correlated with increases in both plant and bacterial hemes in nodules compared with the respective asymbiotic cells. The glutamate-dependent ALA formation activity was greatest in nodules from 17-day-old plants and decreased by about one-half in those from 38-day-old plants. Unlike the eukaryotic ALA formation activity, B. japonicum ALA synthase activity was not significantly different in nodules than in cultured cells, and the symbiotic activity was independent of nodule age. The lack of symbiotic induction of B. japonicum ALA synthase indicates either that ALA formation is not rate-limiting, or that ALA synthase is not the only source of ALA for bacterial heme synthesis in nodules. Plant cytosol from nodules catalyzed the formation of radiolabeled ALA from U-[(14)C]glutamate and 3,4-[(3)H]glutamate but not from 1-[(14)C]glutamate, and thus, operation of the C(5) pathway could not be confirmed.
Collapse
Affiliation(s)
- I Sangwan
- Department of Biochemistry and Center for Advanced Molecular Biology and Immunology, State University of New York at Buffalo, Buffalo, New York 14214
| | | |
Collapse
|
29
|
Dickstein R, Scheirer DC, Fowle WH, Ausubel FM. Nodules elicited by Rhizobium meliloti heme mutants are arrested at an early stage of development. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:423-32. [PMID: 1766439 DOI: 10.1007/bf00280299] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-deficient mutants of Rhizobium and Bradyrhizobium have been found to exhibit diverse phenotypes with respect to symbiotic interactions with plant hosts. We observed that R. meliloti hemA mutants elicit nodules that do not contain intracellular bacteria; the nodules contain either no infection threads ("empty" nodule phenotype) or aberrant infection threads that failed to release bacteria (Bar- phenotype). These mutant nodules expressed nodulin genes associated with nodules arrested at an early stage of development, including ENOD2, Nms-30, and four previously undescribed nodulin genes. These nodules also failed to express any of six late nodulin genes tested by hybridization, including leghemoglobin, and twelve tested by in vitro translation product analysis which are not yet correlated with specific cloned genes. We observed that R. meliloti leucine and adenosine auxotrophs induced invaded Fix- nodules that expressed late nodulin genes, suggesting that it is not auxotrophy per se that causes the hemA mutants to elicit Bar- or empty nodules. Because R. meliloti hemA mutants elicit nodules that do not contain intracellular bacteria, it is not possible to decide whether or not the Fix- phenotype of these nodules is a direct consequence of the failure of R. meliloti to supply the heme moiety of hololeghemoglobin. Our results demonstrate the importance of establishing the stage in development at which a mutant nodule is arrested before conclusions are drawn about the role of small metabolite exchange in the symbiosis.
Collapse
Affiliation(s)
- R Dickstein
- Department of Genetics, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
30
|
Jacobs JM, Jacobs NJ, Borotz SE, Guerinot ML. Effects of the photobleaching herbicide, acifluorfen-methyl, on protoporphyrinogen oxidation in barley organelles, soybean root mitochondria, soybean root nodules, and bacteria. Arch Biochem Biophys 1990; 280:369-75. [PMID: 2369128 DOI: 10.1016/0003-9861(90)90344-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The photobleaching herbicide, acifluorfen-methyl (AFM), has been reported to be an inhibitor of the heme and chlorophyll biosynthetic enzyme protoporphyrinogen oxidase (Protox) in several plant species. However, AFM had no effect on the levels of Protox activity measured in a mitochondrial fraction from soybean roots. In contrast, AFM inhibited Protox activity in etioplasts from barley leaves and in mitochondria from barley roots, but the extent of inhibition varied depending upon the assay conditions and was maximal only in the presence of 5 mM dithiothreitol (DTT). AFM inhibition was enhanced by preincubation of barley organelle extract in the presence of DTT. Preincubation of barley extract with DTT and AFM together (but not with AFM alone) caused extensive enzyme inhibition which was not reversible by dialysis. These findings have implications for the mechanism of AFM action and for the differential effect of these herbicides on crop and weed species. AFM had no effect on the Protox activity of membranes from free-living bacterial cell of Bradyrhizobium japonicum or Escherichia coli, or on the high levels of Protox activity associated with the plant-derived membrane surrounding the symbiotic bacteria within the soybean root nodule.
Collapse
Affiliation(s)
- J M Jacobs
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire
| | | | | | | |
Collapse
|
31
|
Abstract
Iron acquisition by symbiotic Rhizobium spp. is essential for nitrogen fixation in the legume root nodule symbiosis. Rhizobium leguminosarum 116, an ineffective mutant strain with a defect in iron acquisition, was isolated after nitrosoguanidine mutagenesis of the effective strain 1062. The pop-1 mutation in strain 116 imparted to it a complex phenotype, characteristic of iron deficiency: the accumulation of porphyrins (precursors of hemes) so that colonies emitted a characteristic pinkish-red fluorescence when excited by UV light, reduced levels of cytochromes b and c, and wild-type growth on high-iron media but low or no growth in low-iron broth and on solid media supplemented with the iron scavenger dipyridyl. Several iron(III)-solubilizing agents, such as citrate, hydroxyquinoline, and dihydroxybenzoate, stimulated growth of 116 on low-iron solid medium; anthranilic acid, the R. leguminosarum siderophore, inhibited low-iron growth of 116. The initial rate of 55Fe uptake by suspensions of iron-starved 116 cells was 10-fold less than that of iron-starved wild-type cells. Electron microscopic observations revealed no morphological abnormalities in the small, white nodules induced by 116. Nodule cortical cells were filled with vesicles containing apparently normal bacteroids. No premature degeneration of bacteroids or of plant cell organelles was evident. We mapped pop-1 by R plasmid-mediated conjugation and recombination to the ade-27-rib-2 region of the R. leguminosarum chromosome. No segregation of pop-1 and the symbiotic defect was observed among the recombinants from these crosses. Cosmid pKN1, a pLAFR1 derivative containing a 24-kilobase-pair fragment of R. leguminosarum DNA, conferred on 116 the ability to grow on dipyridyl medium and to fix nitrogen symbiotically. These results indicate that the insert cloned in pKN1 encodes an element of the iron acquisition system of R. leguminosarum that is essential for symbiotic nitrogen fixation.
Collapse
|
32
|
de Bruijn FJ, Szabados L, Schell J. Chimeric genes and transgenic plants are used to study the regulation of genes involved in symbiotic plant-microbe interactions (nodulin genes). DEVELOPMENTAL GENETICS 1990; 11:182-96. [PMID: 2279354 DOI: 10.1002/dvg.1020110304] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nodulin genes are plant genes specifically activated during the formation of nitrogen-fixing nodules on leguminous plants. These genes are interesting to study since they are not only induced in a specific developmental fashion by signals coming directly or indirectly from the rhizobial symbiont, but are also expressed in a tissue-specific manner. By examining the expression of chimeric nodulin-reporter genes in transgenic legume plants it has been shown that nodule specific expression is mediated by DNA sequences present in the 5 upstream region of several nodulin genes. Here we summarize the available data on these cis-acting elements and the trans-acting factors interacting with them. We also review experiments designed to identify rhizobial "signals" which may play a role in nodule specific gene expression.
Collapse
Affiliation(s)
- F J de Bruijn
- Max-Plank-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
O'Brian MR, Maier RJ. Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:229-46. [PMID: 2659085 DOI: 10.1016/s0005-2728(89)80239-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
34
|
Avissar YJ, Ormerod JG, Beale SI. Distribution of delta-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 1989; 151:513-9. [PMID: 2789025 DOI: 10.1007/bf00454867] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two biosynthetic pathways are known for the universal tetrapyrrole precursor, delta-aminolevulinic acid (ALA). In the ALA synthase pathway which was first described in animal and some bacterial cells, the pyridoxal phosphate-dependent enzyme ALA synthase catalyzes condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO2. In the five-carbon pathway which was first described in plant and algal cells, the carbon skeleton of glutamate is converted intact to ALA in a proposed reaction sequence that requires three enzymes, tRNA(Glu), ATP, Mg2+, NADPH, and pyridoxal phosphate. We have examined the distribution of the two ALA biosynthetic pathways among various genera, using cell-free extracts obtained from representative organisms. Evidence for the operation of the five-carbon pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA, using 3,4-[3H]glutamate or 1-[14C]glutamate as substrate. ALA synthase activity was indicated by RNase-insensitive incorporation of label from 2-[14C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously established phylogenetic relationships and clearly indicates that the five-carbon pathway is the more ancient process, whereas the pathway utilizing ALA synthase probably evolved much later. The five-carbon pathway is apparently the more widely utilized one among bacteria, while the ALA synthase pathway seems to be limited to the alpha subgroup of purple bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | |
Collapse
|
35
|
Jacobs NJ, Borotz SE, Guerinot ML. Protoporphyrinogen oxidation, a step in heme synthesis in soybean root nodules and free-living rhizobia. J Bacteriol 1989; 171:573-6. [PMID: 2914857 PMCID: PMC209625 DOI: 10.1128/jb.171.1.573-576.1989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Extracts of the crude bacteroid fraction of symbiotically grown Bradyrhizobium japonicum were much more active in oxidizing protoporphyrinogen to protoporphyrin than were extracts of cells grown under free-living conditions, especially when assayed in atmospheres containing only traces of oxygen. This correlates with the higher heme content of the microaerophilic nodules. Furthermore, the high level of oxidative activity in the crude bacteroid fraction was associated with an uncharacterized membrane fraction, probably of plant origin, that was separable from the bacteroids by Percoll gradient centrifugation.
Collapse
Affiliation(s)
- N J Jacobs
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | |
Collapse
|
36
|
Stanley J, Dowling DN, Broughton WJ. Cloning of hemA from Rhizobium sp. NGR234 and symbiotic phenotype of a gene-directed mutant in diverse legume genera. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00331299] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
O'Brian MR, Kirshbom PM, Maier RJ. Bacterial heme synthesis is required for expression of the leghemoglobin holoprotein but not the apoprotein in soybean root nodules. Proc Natl Acad Sci U S A 1987; 84:8390-3. [PMID: 3479799 PMCID: PMC299548 DOI: 10.1073/pnas.84.23.8390] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Bradyrhizobium japonicum/soybean symbiosis, the leghemoglobin (legume hemoglobin) apoprotein is a plant product, but the origin of the heme prosthetic group is not known. B. japonicum strain LO505 is a transposon Tn5-induced cytochrome-deficient mutant; it excreted the oxidized heme precursor coproporphyrin III into the growth medium. Mutant strain LO505 was specifically deficient in protoporphyrinogen oxidase (protoporphyrinogen-IX:oxygen oxidoreductase, EC 1.3.3.4) activity, and thus it could not catalyze the penultimate step in heme biosynthesis. Soybean root nodules formed from this mutant did not contain leghemoglobin, but the apoprotein was synthesized nevertheless. Data show that bacterial heme synthesis is required for leghemoglobin expression, but the heme moiety is not essential for apoleghemoglobin synthesis by the plant. Soybean leghemoglobin, therefore, is a product of both the plant and bacterial symbionts.
Collapse
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
38
|
May TB, Guikema JA, Henry RL, Schuler MK, Wong PP. Gabaculine Inhibition of Chlorophyll Biosynthesis and Nodulation in Phaseolus lunatus L. PLANT PHYSIOLOGY 1987; 84:1309-13. [PMID: 16665603 PMCID: PMC1056770 DOI: 10.1104/pp.84.4.1309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gabaculine (3-amino-2,3-dihydrobenzoic acid) was an inhibitor of in vivo chlorophyll biosynthesis in lima bean (Phaseolus lunatus L. cv Henderson). When applied to roots of 9-day-old plants, 10 micromolar gabaculine was sufficient to terminate biosynthesis of new chlorophyll. The trifoliolate leaves which emerged after gabaculine treatment were yellow. Gabaculine-treated plants had slightly lower dry weights; yet, overall plant size showed very little change. Chlorophyll fluorescence induction kinetics and CO(2) exchange measurements were used to monitor both immediate and long-term effects of gabaculine on photosynthesis. A lowered rate of the decline from the maximum level of fluorescence was observed after 10 hours for nitrate-supplemented plants, and all treated plants showed a slightly increased level of original fluorescence after 6 days. No change was observed in the rate of photosynthesis by unifoliolate leaves. The trifoliolate leaves, though not able to photosynthesize, were able to continue respiration. This suggested that heme biosynthesis for mitochondrial cytochromes was not abolished. In untreated lima bean, root nodules were induced by Rhizobium sp. 127E15. Following gabaculine treatment, root nodules formed, but were largely ineffective in nitrogen fixation. Nodule dry weight, nitrogen fixation activity, and leghemoglobin content were decreased by gabaculine.
Collapse
Affiliation(s)
- T B May
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | | | | | | | | |
Collapse
|
39
|
O'Brian MR, Kirshbom PM, Maier RJ. Tn5-induced cytochrome mutants of Bradyrhizobium japonicum: effects of the mutations on cells grown symbiotically and in culture. J Bacteriol 1987; 169:1089-94. [PMID: 3029019 PMCID: PMC211904 DOI: 10.1128/jb.169.3.1089-1094.1987] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two Bradyrhizobium japonicum cytochrome mutants were obtained by Tn5 mutagenesis of strain LO and were characterized in free-living cultures and in symbiosis in soybean root nodules. One mutant strain, LO501, expressed no cytochrome aa3 in culture; it had wild-type levels of succinate oxidase activity but could not oxidize NADH or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The cytochrome content of LO501 root nodule bacteroids was nearly identical to that of the wild type, but the mutant expressed over fourfold more bacteroid cytochrome c oxidase activity than was found in strain LO. The Tn5 insertion of the second mutant, LO505, had a pleiotropic effect; this strain was missing cytochromes c and aa3 in culture and had a diminished amount of cytochrome b as well. The oxidations of TMPD, NADH, and succinate by cultured LO505 cells were very similar to those by the cytochrome aa3 mutant LO501, supporting the conclusion that cytochromes c and aa3 are part of the same branch of the electron transport system. Nodules formed from the symbiosis of strain LO505 with soybean contained no detectable amount of leghemoglobin and had no N2 fixation activity. LO505 bacteroids were cytochrome deficient but contained nearly wild-type levels of bacteroid cytochrome c oxidase activity. The absence of leghemoglobin and the diminished bacterial cytochrome content in nodules from strain LO505 suggest that this mutant may be deficient in some aspect of heme biosynthesis.
Collapse
|
40
|
Jensen EO, Marcker KA, Villadsen IS. Heme regulates the expression in Saccharomyces cerevisiae of chimaeric genes containing 5'-flanking soybean leghemoglobin sequences. EMBO J 1986; 5:843-7. [PMID: 3013619 PMCID: PMC1166872 DOI: 10.1002/j.1460-2075.1986.tb04293.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TM1 yeast mutant was transformed with a 2 micron-derived plasmid (YEp24) which carries a chimaeric gene containing the Escherichia coli chloramphenicol acetyl transferase (CAT) gene fused to the 5'- and 3'-flanking regions of the soybean leghemoglobin (Lb) c3 gene. Expression of the chimaeric CAT gene is controlled specifically by heme at a post-transcriptional level, most likely by regulating the efficiencies of translation. Expression of another chimaeric gene consisting of the neomycin phosphotransferase (NPTII) gene fused to only the 5'-flanking region of the Lbc3 gene is regulated by heme in a similar way. Thus, in yeast, heme modulates the translation of the chimaeric mRNAs through interactions with the 5' Lbc3 non-coding region.
Collapse
|
41
|
Gresshoff PM, Delves AC. Plant Genetic Approaches to Symbiotic Nodulation and Nitrogen Fixation in Legumes. A GENETIC APPROACH TO PLANT BIOCHEMISTRY 1986. [DOI: 10.1007/978-3-7091-6989-6_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Lang-Unnasch N, Ausubel FM. Nodule-specific polypeptides from effective alfalfa root nodules and from ineffective nodules lacking nitrogenase. PLANT PHYSIOLOGY 1985; 77:833-9. [PMID: 16664146 PMCID: PMC1064615 DOI: 10.1104/pp.77.4.833] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In addition to leghemoglobin, at least nine nodule-specific polypeptides from the alfalfa (Medicago sativa L.)-Rhizobium meliloti symbiosis were identified by immune assay. Some of these polypeptides may be subunits of larger proteins but none appeared to be subunits of the same multimeric protein. All nine of the nodule-specific polypeptides were localized to within the plant cytosol; they were not found in extracts of bacteroids or in the peribacteroid space. At least one of these nodule-specific polypeptides was found to be antigenically related to nodule-specific polypeptides in pea and/or soybean. Ineffective nodules elicited by R. meliloti strains containing mutations in four different genes required for nitrogenase synthesis contained reduced concentrations of leghemoglobin and of several of the nodule-specific polypeptides. Other nodule-specific polypeptides were unaltered or actually enriched in the ineffective nodules. Many of the differences between the ineffective and effective nodules were apparent in nodules harvested shortly after the nodules became visible. These differences were greatly amplified in older nodules. When the four ineffective nodule types were compared to one another, there were clear quantitative differences in the concentrations of several of the nodule-specific polypeptides. These differences suggest that lack of a functional nitrogenase does not have a single direct effect on nodule development.
Collapse
Affiliation(s)
- N Lang-Unnasch
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
43
|
|
44
|
Control of the initial steps in heme biosynthesis in free-livingRhizobium sp. by culture conditions. Curr Microbiol 1984. [DOI: 10.1007/bf01567711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Finan TM, Wood JM, Jordan DC. Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 1983; 154:1403-13. [PMID: 6853448 PMCID: PMC217617 DOI: 10.1128/jb.154.3.1403-1413.1983] [Citation(s) in RCA: 160] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The transport of succinate was studied in bacteroids of an effective, streptomycin-resistant strain (GF160) of Rhizobium leguminosarum. High levels of succinate transport occurred, and the kinetics, specificity, and sensitivity to metabolic inhibitors were similar to those previously described for free-living cells. The symbiotic properties of two transposon (Tn5)-mediated C4-dicarboxylate transport mutants (strains GF31 and GF252) were determined. Strain GF31 formed ineffective nodules, and bacteroids from these nodules showed no succinate transport activity. Strain GF252 formed partially effective nodules, and bacteroids from these nodules showed about 50% of the succinate transport activity of the parent bacteroids. Another dicarboxylic acid transport mutant (Dct-), strain GFS5, isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, formed ineffective nodules. The ability to form ineffective nodules in strains GF31 and GFS5 was shown to correlate with the Dct- phenotype. The data indicate that the presence of a functional C4-dicarboxylic acid transport system is essential for N2 fixation to occur in pea nodules.
Collapse
|
46
|
Abstract
The obligately aerobic soybean root nodule bacterium Rhizobium japonicum produces large amounts of heme (iron protoporphyrin) only under low oxygen tensions, such as exist in the symbiotic root nodule. Aerobically incubated suspensions of both laboratory-cultured and symbiotic bacteria (bacteroids) metabolize delta-aminolevulinic acid to uroporphyrin, coproporphyrin, and protoporphyrin. Under anaerobic conditions, suspensions of laboratory-cultured bacteria form greatly reduced amounts of protoporphyrin from delta-aminolevulinic acid, whereas protoporphyrin formation by bacteroid suspensions is unaffected by anaerobiosis, suggesting that bacteroids form protoporphyrin under anaerobic conditions more readily than do free-living bacteria. Oxygen is the major terminal electron acceptor for coproporphyrinogen oxidation in cell-free extracts of both bacteroids and free-living bacteria. In the absence of oxygen, ATP, NADP, Mg2+, and L-methionine are required for protoporphyrin formation in vitro. In the presence of these supplements, coproporphyrinogenase activity under anaerobic conditions is 5 to 10% of that observed under aerobic conditions. Two mechanisms for coproporphyrinogen oxidation exist in R. japonicum: an oxygen-dependent process and an anaerobic oxidation in which electrons are transferred to NADP. The significance of these findings with regard to heme biosynthesis in the microaerophilic soybean root nodule is discussed.
Collapse
|
47
|
Dixon ROD, Wheeler CT. Biochemical, physiological and environmental aspects of symbiotic nitrogen fixation. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/978-94-009-6878-3_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
48
|
Leong SA, Ditta GS, Helinski DR. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34188-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Abstract
The effects of iron deficiency on heme biosynthesis in Rhizobium japonicum were examined. Iron-deficient cells had a decreased maximum cell yield and a decreased cytochrome content and excreted protoporphyrin into the growth medium. The activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase (EC 2.3.1.37) and delta-aminolevulinic acid dehydrase (EC 4.2.1.24), were diminished in iron-deficient cells, but were returned to normal levels upon addition of iron to the cultures. The addition of iron salts, iron chelators, hemin, or protoporphyrin to cell-free extracts did not affect the activity of these enzymes. The addition of levulinic acid to iron-deficient cultures blocked protoporphyrin excretion and also resulted in high delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase activities. These results suggest the possibility that rhizobial heme biosynthesis in the legume root nodule may be affected by the release of iron from the host plant to the bacteroids.
Collapse
|
50
|
|