1
|
Meng X, Lu M, Xia Z, Li H, Liu D, Li K, Yin P, Wang G, Zhou C. Wheat VQ Motif-Containing Protein VQ25-A Facilitates Leaf Senescence via the Abscisic Acid Pathway. Int J Mol Sci 2023; 24:13839. [PMID: 37762142 PMCID: PMC10531066 DOI: 10.3390/ijms241813839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Leaf senescence is an important factor affecting the functional transition from nutrient assimilation to nutrient remobilization in crops. The senescence of wheat leaves is of great significance for its yield and quality. In the leaf senescence process, transcriptional regulation is a committed step in integrating various senescence-related signals. Although the plant-specific transcriptional regulation factor valine-glutamine (VQ) gene family is known to participate in different physiological processes, its role in leaf senescence is poorly understood. We isolated TaVQ25-A and studied its function in leaf senescence regulation. TaVQ25-A was mainly expressed in the roots and leaves of wheat. The TaVQ25-A-GFP fusion protein was localized in the nuclei and cytoplasm of wheat protoplasts. A delayed senescence phenotype was observed after dark and abscisic acid (ABA) treatment in TaVQ25-A-silenced wheat plants. Conversely, overexpression of TaVQ25-A accelerated leaf senescence and led to hypersensitivity in ABA-induced leaf senescence in Arabidopsis. A WRKY type transcription factor, TaWRKY133, which is tightly related to the ABA pathway and affects the expression of some ABA-related genes, was found to interact with TaVQ25-A both in vitro and in vivo. Results of this study indicate that TaVQ25-A is a positive regulator of ABA-related leaf senescence and can be used as a candidate gene for wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.M.); (M.L.); (Z.X.); (H.L.); (D.L.); (K.L.); (P.Y.)
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.M.); (M.L.); (Z.X.); (H.L.); (D.L.); (K.L.); (P.Y.)
| |
Collapse
|
2
|
Li J, Qiao H, Yin P, Liu M, Yang Y, Li K, Yang L, Yang C, Zhao L, Zhou S, Liu Y, Zhou C, Wang G. Increasingly amplified stimulation mediated by TaNAC69-B is crucial for the leaf senescence in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:570-590. [PMID: 36815286 DOI: 10.1111/tpj.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Leaf senescence involves massive multidimensional alterations, such as nutrient redistribution, and is closely related to crop yield and quality. No apical meristem, Arabidopsis transcription activation factor, and Cup-shaped cotyledon (NAC)-type transcription factors integrate various signals and modulate an enormous number of target genes to ensure the appropriate progression of leaf senescence. However, few leaf senescence-related NACs have been functionally characterized in wheat. Based on our previous RNA-sequencing (RNA-seq) data, we focused on a NAC family member, TaNAC69-B, which is increasingly expressed during leaf senescence in wheat. Overexpression of TaNAC69-B led to precocious leaf senescence in wheat and Arabidopsis, and affected several agricultural traits in transgenic wheat. Moreover, impaired expression of TaNAC69-B by virus-induced gene silencing retarded the leaf senescence in wheat. By RNA-seq and quantitative real-time polymerase chain reaction analysis, we confirmed that some abscisic acid (ABA) biosynthesis genes, including AAO3 and its ortholog in wheat, TraesCS2B02G270600 (TaAO3-B), were elevated by the overexpression of TaNAC69-B. Consistently, we observed more severe ABA-induced leaf senescence in TaNAC69-B-OE wheat and Arabidopsis plants. Furthermore, we determined that TaNAC69-B bound to the NAC binding site core (CGT) on the promoter regions of AAO3 and TaAO3-B. Moreover, we confirmed elevated ABA levels in TaNAC69-B-OE wheat lines. Although TaNAC69-B shares 39.83% identity (amino acid) with AtNAP, TaNAC69-B did not completely restore the delayed leaf senescence in the atnap mutant. Collectively, our results revealed a positive feedback loop, consisting of TaNAC69-B, ABA biosynthesis and leaf senescence, that is essential for the regulation of leaf senescence in wheat.
Collapse
Affiliation(s)
- Jingkun Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hualiang Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Liu
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yifan Yang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Le Yang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chaosha Yang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lifeng Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Yongwei Liu
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
3
|
Sriskantharajah K, El Kayal W, Torkamaneh D, Ayyanath MM, Saxena PK, Sullivan AJ, Paliyath G, Subramanian J. Transcriptomics of Improved Fruit Retention by Hexanal in 'Honeycrisp' Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone. Int J Mol Sci 2021; 22:ijms22168830. [PMID: 34445535 PMCID: PMC8396267 DOI: 10.3390/ijms22168830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in 'Honeycrisp'. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of 'Honeycrisp' apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.
Collapse
Affiliation(s)
- Karthika Sriskantharajah
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Walid El Kayal
- Department of Plant Agriculture, University of Guelph-Vineland Station, 4890 Victoria Ave N, Vineland, ON L0R2E0, Canada;
- Faculty of Agricultural and Food Science, American University of Beirut, Riad El Solh, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
- Faculté des Sciences de l’Agriculture et de l’alimentation, Universite Laval, Pavillon Paul-Comtois, 2425, rue de l’Agriculture, Local 1122, Québec City, QC G1V 0A6, Canada
| | - Murali M. Ayyanath
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Alan J. Sullivan
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Gopinadhan Paliyath
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada; (K.S.); (D.T.); (M.M.A.); (P.K.S.); (A.J.S.); (G.P.)
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph-Vineland Station, 4890 Victoria Ave N, Vineland, ON L0R2E0, Canada;
- Correspondence: ; Tel.: +1-905-562-4141 (ext. 134)
| |
Collapse
|
4
|
Nehela Y, Killiny N. Revisiting the Complex Pathosystem of Huanglongbing: Deciphering the Role of Citrus Metabolites in Symptom Development. Metabolites 2020; 10:E409. [PMID: 33066072 PMCID: PMC7600524 DOI: 10.3390/metabo10100409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Huanglongbing (HLB), formerly known as citrus greening disease, is one of the most devastating bacterial diseases in citrus worldwide. HLB is caused by 'Candidatus Liberibacter asiaticus' bacterium and transmitted by Diaphorina citri. Both 'Ca. L. asiaticus' and its vector manipulate the host metabolism to fulfill their nutritional needs and/or to neutralize the host defense responses. Herein, we discuss the history of HLB and the complexity of its pathosystem as well as the geographical distribution of its pathogens and vectors. Recently, our recognition of physiological events associated with 'Ca. L. asiaticus' infection and/or D. citri-infestation has greatly improved. However, the roles of citrus metabolites in the development of HLB symptoms are still unclear. We believe that symptom development of HLB disease is a complicated process and relies on a multilayered metabolic network which is mainly regulated by phytohormones. Citrus metabolites play vital roles in the development of HLB symptoms through the modulation of carbohydrate metabolism, phytohormone homeostasis, antioxidant pathways, or via the interaction with other metabolic pathways, particularly involving amino acids, leaf pigments, and polyamines. Understanding how 'Ca. L. asiaticus' and its vector, D. citri, affect the metabolic pathways of their host is critical for developing novel, sustainable strategies for HLB management.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
5
|
N'Gaza ALF, Kouassi KI, Koffi KK, Kouakou KL, Baudoin JP, Zoro BIA. Prevalence and variation of viviparous germination with respect to fruit maturation in the bottle gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Heliyon 2019; 5:e02584. [PMID: 31720446 PMCID: PMC6838920 DOI: 10.1016/j.heliyon.2019.e02584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/24/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Researches documenting comprehensively the prevalence of seed vivipary in relation to phenology, as well as its impact on production are scant. This article reports the results of investigations carried out during four cropping seasons to quantitatively document seed vivipary in the oleaginous bottle gourd (Lagenaria siceraria). Field experiments were conducted during the first and second cropping season of 2014 and 2015 at the experimental station of Nangui Abrogoua University (Abidjan, Côte d’Ivoire). The assessment of the prevalence of seed vivipary was carried out using 185 L. siceraria accessions collected in different ecological zones of Côte d'Ivoire. To examine the influence of fruit maturation time on seed vivipary, four accessions (two viviparous and two non-viviparous) were cropped and harvested at 30 and 50 days after fertilization (DAF), complete whiteness of plants (CPW) and after 60 days of storage of fruits harvested on plants completely withered (CPWS). Finally, a comparative analysis of seed yield and its main components was conducted using four accessions including two highly viviparous and two non-viviparous. The results on seed vivipary prevalence showed that the oleaginous form of L. siceraria is highly susceptible and allowed the classification of the 185 accessions analyzed into three groups: non-viviparous (2.16%), viviparous (89.19%) and highly viviparous accessions (8.65%). No precocious seed germination was observed in non-viviparous accessions during fruit maturation stage. The fruits of highly viviparous accessions harvested at 30 DAF showed no precocious seed germination while 3.35–17.89% of fruits bearing viviparous seed were observed at 50 DAF. Plants from highly viviparous fruits showed significantly low yields compared those from non-viviparous fruits. These results suggested that an efficient control of seed vivipary allowing a quantitative and qualitative improvement of yield in the oilseed bottle gourd can be ensured by the selection of vivipary-tolerant genotypes and appropriate planning of the harvest time.
Collapse
Affiliation(s)
- Aya L F N'Gaza
- Unité de Phytotechnie et Amélioration Génétique, Université Nangui Abrogoua, UFR des Sciences de la Nature, 02 BP 801, Abidjan 02, Cote d'Ivoire
| | - Kouadio I Kouassi
- Unité de Phytotechnie et Amélioration Génétique, Université Nangui Abrogoua, UFR des Sciences de la Nature, 02 BP 801, Abidjan 02, Cote d'Ivoire
| | - Kouamé K Koffi
- Unité de Phytotechnie et Amélioration Génétique, Université Nangui Abrogoua, UFR des Sciences de la Nature, 02 BP 801, Abidjan 02, Cote d'Ivoire
| | - Kouakou L Kouakou
- Unité de Phytotechnie et Amélioration Génétique, Université Nangui Abrogoua, UFR des Sciences de la Nature, 02 BP 801, Abidjan 02, Cote d'Ivoire
| | - Jean-Pierre Baudoin
- Unité de Phytotechnie Tropicale et Horticulture, Gembloux Agro-Bio Tech (GxABT), Université de Liège, passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Bi Irié A Zoro
- Unité de Phytotechnie et Amélioration Génétique, Université Nangui Abrogoua, UFR des Sciences de la Nature, 02 BP 801, Abidjan 02, Cote d'Ivoire
| |
Collapse
|
6
|
Reisig DD, Huseth AS, Bacheler JS, Aghaee MA, Braswell L, Burrack HJ, Flanders K, Greene JK, Herbert DA, Jacobson A, Paula-Moraes SV, Roberts P, Taylor SV. Long-Term Empirical and Observational Evidence of Practical Helicoverpa zea Resistance to Cotton With Pyramided Bt Toxins. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1824-1833. [PMID: 29668958 DOI: 10.1093/jee/toy106] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 06/08/2023]
Abstract
Evidence of practical resistance of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to Bt cotton in the United States is debatable, supported with occasional reports of boll damage in the field. Our objective was to provide both empirical and long-term observational evidence of practical resistance by linking both in-season and end-of-season measurements of H. zea damage to pyramided Bt cotton bolls and to provide Cry1Ac diet-based bioassay data in support of these damage estimates. In-season boll damage from H. zea was highly correlated to end-of-season damaged bolls. Across North Carolina, Bt cotton fields with end-of-season bolls damaged by H. zea increased during 2016 compared to previous years. Elevated damage was coupled with an increase in field sprays targeting H. zea during 2016, but not related to an increase in H. zea abundance. Bioassay data indicated that there was a range of Cry1Ac susceptibility across the southeastern United States. Given the range of susceptibility to Cry1Ac across the southeastern United States, it is probable that resistant populations are common. Since H. zea is resistant to cotton expressing pyramided Cry toxins, the adoption of new cotton varieties expressing Vip3Aa will be rapid. Efforts should be made to delay resistance of H. zea to the Vip3Aa toxin to avoid foliar insecticide use.
Collapse
Affiliation(s)
- Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Jack S Bacheler
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Mohammad-Amir Aghaee
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC
| | - Lewis Braswell
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC
| | - Hannah J Burrack
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Kathy Flanders
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Jeremy K Greene
- Department of Agricultural and Environmental Sciences, Edisto Research & Education Center, Clemson University, Blackville, SC
| | - D Ames Herbert
- Department of Entomology, Tidewater Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Suffolk, VA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | | | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton Campus, Tifton, GA
| | - Sally V Taylor
- Department of Entomology, Tidewater Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Suffolk, VA
| |
Collapse
|
7
|
Gu S, Zhang L, Yan Z, van der Werf W, Evers JB. Quantifying within-plant spatial heterogeneity in carbohydrate availability in cotton using a local-pool model. ANNALS OF BOTANY 2018; 121:1005-1017. [PMID: 29373640 PMCID: PMC5906919 DOI: 10.1093/aob/mcx210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/25/2017] [Indexed: 05/24/2023]
Abstract
Background and Aims Within-plant spatial heterogeneity in the production of and demand for assimilates may have major implications for the formation of fruits. Spatial heterogeneity is related to organ age, but also to position on the plant. This study quantifies the variation in local carbohydrate availability for the phytomers in the same cohort using a cotton growth model that captures carbohydrate production in phytomers and carbohydrate movement between phytomers. Methods Based on field observations, we developed a functional-structural plant model of cotton that simulates production and storage of carbohydrates in individual phytomers and transport of surplus to other phytomers. Simulated total leaf area, total above-ground dry mass, dry mass distribution along the stem, and dry mass allocation fractions to each organ at the plant level were compared with field observations for plants grown at different densities. The distribution of local carbohydrate availability throughout the plant was characterized and a sensitivity analysis was conducted regarding the value of the carbohydrate transport coefficient. Key Results The model reproduced cotton leaf expansion and dry mass allocation across plant densities adequately. Individual leaf area was underestimated at very high plant densities. Best correspondence with measured plant traits was obtained for a value of the transport coefficient of 0.1 d-1. The simulated translocation of carbohydrates agreed well with results from C-labelling studies. Moreover, simulation results revealed the heterogeneous pattern of local carbohydrate availability over the plant as an emergent model property. Conclusions This modelling study shows how heterogeneity in local carbohydrate production within the plant structure in combination with limitations in transport result in heterogeneous satisfaction of demand over the plant. This model provides a tool to explore phenomena in cotton that are thought to be determined by local carbohydrate availability, such as branching pattern and fruit abortion in relation to climate and crop management.
Collapse
Affiliation(s)
- Shenghao Gu
- China Agricultural University, College of Resources and Environmental Sciences, Beijing, China
- Wageningen University, Centre for Crop Systems Analysis, Droevendaalsesteeg, the Netherlands
| | - Lizhen Zhang
- China Agricultural University, College of Resources and Environmental Sciences, Beijing, China
| | - Zhenzhen Yan
- China Agricultural University, College of Resources and Environmental Sciences, Beijing, China
| | - Wopke van der Werf
- Wageningen University, Centre for Crop Systems Analysis, Droevendaalsesteeg, the Netherlands
| | - Jochem B Evers
- Wageningen University, Centre for Crop Systems Analysis, Droevendaalsesteeg, the Netherlands
| |
Collapse
|
8
|
Ren T, Wang J, Zhao M, Gong X, Wang S, Wang G, Zhou C. Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. PLANTA 2018; 247:53-68. [PMID: 28871431 DOI: 10.1007/s00425-017-2770-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 05/18/2023]
Abstract
The foxtail millet NAC transcription factor NAC1, an ortholog of Arabidopsis NAP, is induced by ABA and senescence and accelerates leaf senescence by promoting ABA biosynthesis. Leaf senescence, a unique developmental stage involving macromolecule degradation and nutrient remobilization, is finely tuned and tightly controlled by different gene families. NO APICAL MERISTEM, ARABIDOPSIS ATAF1, and CUP-SHAPED COTYLEDON (NAC) transcription factors have been demonstrated to be involved in the modulation of leaf senescence in many land plant species. Foxtail millet (Setaria italica L.), an important food and fodder crop, has been studied for its strong stress tolerance and potential to be a biofuel model plant. However, the functional roles of senescence-associated NACs in foxtail millet are still unknown. In this study, we characterized a nuclear localized NAC transcription factor, SiNAC1, which is induced by senescence and concentrated in senescent leaves in foxtail millet. SiNAC1 also positively responds to abscisic acid (ABA) treatment in foxtail millet. Moreover, SiNAC1 promotes the natural and dark-induced leaf senescence by an ABA-dependent manner in Arabidopsis thaliana. NCED2 and NCED3 are elevated by SiNAC1 overexpression, which subsequently promotes ABA biosynthesis in Arabidopsis. Finally, as a homolog of AtNAP, SiNAC1 can partially rescue the delayed leaf senescence phenotype in atnap mutants. Overall, our results demonstrate that SiNAC1 functions as a positive regulator of leaf senescence and is involved in a positive feedback loop via ABA biosynthesis and leaf senescence.
Collapse
Affiliation(s)
- Tingting Ren
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiawei Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mingming Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoming Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuxia Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chunjiang Zhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
9
|
Li PT, Wang M, Lu QW, Ge Q, Rashid MHO, Liu AY, Gong JW, Shang HH, Gong WK, Li JW, Song WW, Guo LX, Su W, Li SQ, Guo XP, Shi YZ, Yuan YL. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics 2017; 18:705. [PMID: 28886694 PMCID: PMC5591532 DOI: 10.1186/s12864-017-4077-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. Results In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the “oxidation-reduction process”, which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. Conclusions The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4077-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Quan-Wei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei-Wu Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Li-Xue Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei Su
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiao-Ping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| |
Collapse
|
10
|
Wilmowicz E, Frankowski K, Kućko A, Świdziński M, de Dios Alché J, Nowakowska A, Kopcewicz J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:49-58. [PMID: 27689739 DOI: 10.1016/j.jplph.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 05/03/2023]
Abstract
Flower abscission is a highly regulated developmental process activated in response to exogenous (e.g. changing environmental conditions) and endogenous stimuli (e.g. phytohormones). Ethylene (ET) and abscisic acid (ABA) are very effective stimulators of flower abortion in Lupinus luteus, which is a widely cultivated species in Poland, Australia and Mediterranean countries. In this paper, we show that artificial activation of abscission by flower removal caused an accumulation of ABA in the abscission zone (AZ). Moreover, the blocking of that phytohormone's biosynthesis by NDGA (nordihydroguaiaretic acid) decreased the number of abscised flowers. However, the application of NBD - an inhibitor of ET action - reversed the stimulatory effect of ABA on flower abscission, indicating that ABA itself is not sufficient to turn on the organ separation. Our analysis revealed that exogenous ABA significantly accelerated the transcriptional activity of the ET biosynthesis genes ACC synthase (LlACS) and oxidase (LlACO), and moreover, strongly increased the level of 1-aminocyclopropane-1-carboxylic acid (ACC) - ET precursor, which was specifically localized within AZ cells. We cannot exclude the possibility that ABA mediates flower abscission processes by enhancing the ET biosynthesis rate. The findings of our study will contribute to the overall basic knowledge on the phytohormone-regulated generative organs abscission in L. luteus.
Collapse
Affiliation(s)
- Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wileńska Street, 87-100 Toruń, Poland.
| | - Kamil Frankowski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Agata Kućko
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Michał Świdziński
- Department of Cell Biology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Juan de Dios Alché
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | - Anna Nowakowska
- Department of Animal Physiology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| | - Jan Kopcewicz
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland.
| |
Collapse
|
11
|
Najeeb U, Bange MP, Tan DKY, Atwell BJ. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AOB PLANTS 2015; 7:plv080. [PMID: 26194168 PMCID: PMC4565423 DOI: 10.1093/aobpla/plv080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Climatic variability, typified by erratic heavy-rainfall events, causes waterlogging in intensively irrigated crops and is exacerbated under warm temperature regimes on soils with poor internal drainage. Irrigated cotton is often grown in precisely these conditions, exposing it to waterlogging-induced yield losses after substantial summer rainfall. This calls for a deeper understanding of mechanisms of waterlogging tolerance and its relevance to cotton. Hence this review suggests possible causes of waterlogging-induced yield loss in cotton and approaches to improvement of waterlogging tolerance, drawing upon the slight body of published data in cotton and principles from other species. The yield penalty depends on soil type, phenological stage and cumulative period of root exposure to air-filled porosities below 10 %. Events in the soil include O2 deficiency in the root zone that changes the redox state of nutrients, making them unavailable (e.g. nitrogen) or potentially toxic for plants. Furthermore, root-derived hormones that are transported in the xylem have long been associated with oxygen deficits. These belowground effects (impaired root growth, nutrient uptake and transport, hormonal signalling) affect the shoots, interfering with canopy development, photosynthesis and radiation-use efficiency. Compared with the more waterlogging-tolerant cereals, cotton does not have identified adaptations to waterlogging in the root zone, forming no conspicuous root aerenchyma and having low fermentative activity. We speculate that these factors contribute substantially to the sensitivity of cotton to sustained periods of waterlogging. We discuss the impact of these belowground factors on shoot performance, photosynthesis and yield components. Management practices, i.e. soil aeration, scheduling irrigation and fertilizer application, can reduce waterlogging-induced damage. Limiting ethylene biosynthesis using anti-ethylene agents and down-regulating expression of genes controlling ethylene biosynthesis are strong candidates to minimize yield losses in waterlogged cotton crops. Other key pathways of anoxia tolerance are also cited as potential tools towards waterlogging-tolerant cotton genotypes.
Collapse
Affiliation(s)
- Ullah Najeeb
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia
| | - Michael P Bange
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia CSIRO Agriculture Flagship, Australian Cotton Research Institute, Narrabri, NSW 2390, Australia
| | - Daniel K Y Tan
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia
| | - Brian J Atwell
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Sawicki M, Aït Barka E, Clément C, Vaillant-Gaveau N, Jacquard C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1707-19. [PMID: 25711702 PMCID: PMC4669552 DOI: 10.1093/jxb/eru533] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 05/06/2023]
Abstract
In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission.
Collapse
Affiliation(s)
- Mélodie Sawicki
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vignes et Vins de Champagne - EA 4707, Moulin de la Housse - Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France
| | - Essaïd Aït Barka
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vignes et Vins de Champagne - EA 4707, Moulin de la Housse - Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vignes et Vins de Champagne - EA 4707, Moulin de la Housse - Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France
| | - Nathalie Vaillant-Gaveau
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vignes et Vins de Champagne - EA 4707, Moulin de la Housse - Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vignes et Vins de Champagne - EA 4707, Moulin de la Housse - Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
13
|
Chen Y, Cothren JT, Chen D, Ibrahim AMH, Lombardini L. Effect of 1-MCP on Cotton Plants under Abiotic Stress Caused by Ethephon. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.520317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Cai S, Lashbrook CC. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. PLANT PHYSIOLOGY 2008; 146:1305-21. [PMID: 18192438 PMCID: PMC2259061 DOI: 10.1104/pp.107.110908] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/08/2008] [Indexed: 05/18/2023]
Abstract
Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P < or = 0.0001) over five floral stages linking prepollination to stamen shed. AZ(551) includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed.
Collapse
Affiliation(s)
- Suqin Cai
- Department of Horticulture, Iowa State University, Ames, IA 50011-1100, USA
| | | |
Collapse
|
15
|
Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fibre development. ANNALS OF BOTANY 2007; 100:1391-401. [PMID: 17905721 PMCID: PMC2759220 DOI: 10.1093/aob/mcm232] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/01/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cotton is the dominant source of natural textile fibre and a significant oil crop. Cotton fibres, produced by certain species in the genus Gossypium, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fibre development is delineated into four distinct and overlapping developmental stages: fibre initiation, elongation, secondary wall biosynthesis and maturation. SCOPE Recent advances in gene expression studies are beginning to provide new insights into a better understanding of early events in cotton fibre development. Fibre cell development is a complex process involving many pathways, including various signal transduction and transcriptional regulation components. Several analyses using expressed sequence tags and microarray have identified transcripts that preferentially accumulate during fibre development. These studies, as well as complementation and overexpression experiments using cotton genes in arabidopsis and tobacco, indicate some similar molecular events between trichome development from the leaf epidermis and fibre development from the ovule epidermis. Specifically, MYB transcription factors regulate leaf trichome development in arabidopsis and may regulate seed trichome development in cotton. In addition, transcript profiling and ovule culture experiments both indicate that several phytohormones and other signalling pathways mediate cotton fibre development. Auxin and gibberellins promote early stages of fibre initiation; ethylene- and brassinosteroid-related genes are up-regulated during the fibre elongation phase; and genes associated with calmodulin and calmodulin-binding proteins are up-regulated in fibre initials. Additional genomic data, mutant and functional analyses, and genome mapping studies promise to reveal the critical factors mediating cotton fibre cell development.
Collapse
Affiliation(s)
- Jinsuk J. Lee
- Sections of Molecular Cell and Developmental Biology
- Center for Computational Biology and Bioinformatics
| | - Andrew W. Woodward
- Sections of Molecular Cell and Developmental Biology
- Center for Computational Biology and Bioinformatics
| | - Z. Jeffrey Chen
- Sections of Molecular Cell and Developmental Biology
- Integrative Biology
- Center for Computational Biology and Bioinformatics
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
- For correspondence. E-mail
| |
Collapse
|
16
|
FANG XIANGWEN, WANG XIANZHI, LI HONG, CHEN KANG, WANG GANG. Responses of Caragana korshinskii to different aboveground shoot removal: combining defence and tolerance strategies. ANNALS OF BOTANY 2006; 98:203-11. [PMID: 16687428 PMCID: PMC2803539 DOI: 10.1093/aob/mcl088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS It is generally assumed that plants respond to natural enemies by either allocating resources to resistance traits or compensating for damage. This study evaluated how different methods of artificial shoot removal influence two alternative strategies (i.e. tolerance and defence) of Caragana korshinskii in the semi-arid area of China. METHODS Zero per cent (control), 30% (30%) and 60% (60%) of the main shoot length and 25% (25%), 50% (50%) and 100% (100%) of the numbers of main shoots were removed from shrubs. KEY RESULTS Moderate clipping treatments [30% removal of partial shoot length (RSL), 25% removal of shoot number (RSN) and 50% RSN] improved seed production, whereas the most intensive clipping treatments (60% RSL and 100% RSN) with most or total removal of potential flower buds reduced current reproduction fitness compared with controls. All treatments produced a similar leaf phenolic content, with the exception of 100% RSN which resulted in a low leaf phenolic content. In spite of a substantial investment in regrowth, clipped plants increased biomass allocation to physical defence. Control plants almost did not grow, had lower levels of physical defence and a lower photosynthetic rate, mobilized fewer carbohydrates from roots and produced more flowers. However, their current fitness was lower than that of plants undergoing clipping treatments (30% RSL, 25% RSN and 50% RSN) because of the high level of abortion of flowers and fruits. CONCLUSIONS Caragana korshinskii responded to aboveground shoot removal through combining defence and tolerance strategies.
Collapse
Affiliation(s)
- XIANGWEN FANG
- Key Laboratory of Arid and Grassland Agroecology at Lanzhou University, Ministry of Education, Lanzhou 730000, China and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - XIANZHI WANG
- Key Laboratory of Arid and Grassland Agroecology at Lanzhou University, Ministry of Education, Lanzhou 730000, China and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - HONG LI
- Key Laboratory of Arid and Grassland Agroecology at Lanzhou University, Ministry of Education, Lanzhou 730000, China and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - KANG CHEN
- Key Laboratory of Arid and Grassland Agroecology at Lanzhou University, Ministry of Education, Lanzhou 730000, China and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - GANG WANG
- Key Laboratory of Arid and Grassland Agroecology at Lanzhou University, Ministry of Education, Lanzhou 730000, China and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
- For correspondence. E-mail
| |
Collapse
|
17
|
Gore J, Leonard BR, Church GE, Russell JS, Hall TS. Cotton boll abscission and yield losses associated with first-instar bollworm (Lepidoptera: Noctuidae) injury to nontransgenic and transgenic Bt cotton. JOURNAL OF ECONOMIC ENTOMOLOGY 2000; 93:690-696. [PMID: 10902317 DOI: 10.1603/0022-0493-93.3.690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Field tests were conducted in northeastern Louisiana to determine the effects of infestations by Helicoverpa zea (Boddie) on cotton bolls of varying ages. First instars were caged on bolls of nontransgenic ('Deltapine 5415') or transgenic Bacillus thuringiensis Berliner variety kurstaki (Bt) ('NuCOTN 33B') cotton from 29 June to 11 August during 1997 and 1998. Deltapine 5415 bolls that accumulated 179 (7.2 d), 281 (11.2 d), and 253 (10.1 d) heat units beyond anthesis were safe from bollworm-induced abscission at 72 h after infestation, 7 d after infestation, and at the time of harvest, respectively. NuCOTN 33B bolls that accumulated 157 (6.3 d), 185 (7.4 d), and 180 (7.2 d) heat units beyond anthesis were safe from bollworm-induced abscission at 72 h after infestation, 7 d after infestation, and at the time of harvest, respectively. Bollworm larvae reduced seedcotton weights of Deltapine 5415 bolls that accumulated between 58.5 (2.3 d) and 350.5 (14.0 d) heat units beyond anthesis. Seedcotton weights of NuCOTN 33B bolls that accumulated between 0 and 281 (11.2 d) heat units beyond anthesis were reduced by bollworm injury. Deltapine 5415 and NuCOTN 33B bolls that accumulated 426.5 (17.1 d) and 299.5 (12.0 d) heat units beyond anthesis, respectively, before infestation were not injured by first-instar bollworm larvae. These data provide information about late-season insecticide termination strategies for bollworms on nontransgenic and transgenic Bt-cotton. This, in turn, will help pest managers determine when insecticides are no longer economical during the late season.
Collapse
Affiliation(s)
- J Gore
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge 78803, USA
| | | | | | | | | |
Collapse
|
18
|
Shiu OY, Oetiker JH, Yip WK, Yang SF. The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 1998; 95:10334-9. [PMID: 9707648 PMCID: PMC21509 DOI: 10.1073/pnas.95.17.10334] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial plants respond to flooding with enhanced ethylene production. The roots of flooded plants produce 1-aminocyclopropane-1-carboxylic acid (ACC), which is transported from the root to the shoot, where it is converted to ethylene. In the roots, ACC is synthesized by ACC synthase, which is encoded by a multigene family. Previously, we identified two ACC synthase genes of tomato that are involved in flooding-induced ethylene production. Here, we report the cloning of LE-ACS7, a new tomato ACC synthase with a role early during flooding but also in the early wound response of leaves. The promoter of LE-ACS7 is tagged by a Sol3 transposon. A Sol3 transposon is also present in the tomato polygalacturonase promoter to which it conferred regulatory elements. Thus, Sol3 transposons may affect the regulation of LE-ACS7 and may be involved in the communication between the root and the shoot of waterlogged tomato plants.
Collapse
Affiliation(s)
- O Y Shiu
- Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
19
|
Guinn G, Brummett DL. Changes in Amide-Linked and Ester Indole-3-Acetic Acid in Cotton Fruiting Forms during Their Development. PLANT PHYSIOLOGY 1989; 89:941-4. [PMID: 16666645 PMCID: PMC1055947 DOI: 10.1104/pp.89.3.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The concentration of free indoleacetic acid (IAA) is high in cotton (Gossypium hirsutum L.) fruiting forms before anthesis, but is low at and for a few days after anthesis. Amide-linked and ester IAA were measured in fruiting forms at 9, 6, and 3 days before anthesis; at anthesis; and at 2, 4, 7, and 9 days after anthesis to determine if free IAA decreased because it was converted to a conjugated form. That did not appear to be the case. While the major decrease in free IAA occurred during the 6 days before anthesis, ester IAA increased only a small amount and amide-linked IAA decreased even more than free IAA. During the 6 days before anthesis free IAA decreased from 0.62 to 0.12 micrograms per gram and amide-linked IAA decreased from 19.14 to 1.16 micrograms per gram dry weight. No evidence was found that a large amount of amide-linked IAA was converted to an insoluble form; flowers contained less than 1 microgram per gram of insoluble IAA. The free and amide-linked IAA must have been converted to other forms, perhaps by oxidation. Soluble amide-linked IAA remained low after anthesis. No ester IAA was detected 6 days before anthesis and only 0.08 microgram per gram dry weight was measured at anthesis. The concentration of ester IAA increased thereafter to 4.43 micrograms per gram at 9 days after anthesis. Therefore, amide-linked IAA was the major form of IAA in flower buds and ester IAA was the major form in young fruits (bolls). Minimum concentrations of free and total IAA occurred during the 4 days after anthesis, a stage when cotton fruiting forms are most likely to abscise. The large decreases in free and amide-linked IAA during the 6 days before anthesis may indicate a rapid turnover of IAA in flower buds. But, the decrease in free IAA was not accompanied by a comparable increase in ester or amide-linked IAA.
Collapse
Affiliation(s)
- G Guinn
- U.S. Department of Agriculture, Agricultural Research Service, Phoenix, Arizona 85040
| | | |
Collapse
|
20
|
Guinn G, Brummett DL. Changes in Abscisic Acid and Indoleacetic Acid before and after Anthesis Relative to Changes in Abscission Rates of Cotton Fruiting Forms. PLANT PHYSIOLOGY 1988; 87:629-31. [PMID: 16666197 PMCID: PMC1054810 DOI: 10.1104/pp.87.3.629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cotton (Gossypium hirsutum L.) fruiting forms exhibit pronounced changes, with age, in their probability of abscission. Large floral buds rarely abscise, but after anthesis the young fruits (bolls) have a high probability of abscising. Abscission rate reaches a peak about 5 to 6 days after anthesis and then gradually decreases. An experiment was conducted to try to determine the reason for the rapid and pronounced increase in probability of abscission just after anthesis. Cotton was grown in the field and fruiting forms of various ages from 9 days before to 9 days after anthesis were all harvested the same day and subsequently analyzed for ABA and IAA. The concentration of ABA decreased slightly at anthesis and increased gradually thereafter. In contrast, the concentration of IAA was high before anthesis and then decreased at anthesis to about one-fifth the previous concentration. IAA remained low for at least 4 days after anthesis and then increased rapidly between 7 and 9 days after anthesis. The high concentration of IAA in floral buds before anthesis is probably a major factor in their resistance to abscission. Likewise, the low concentration of IAA at anthesis and for about 4 days thereafter may promote fruit abscission during the young boll stage.
Collapse
Affiliation(s)
- G Guinn
- United States Department of Agriculture, Agricultural Research Service, Phoenix, Arizona 85040
| | | |
Collapse
|
21
|
Guinn G, Brummett DL. Concentrations of abscisic Acid and indoleacetic Acid in cotton fruits and their abscission zones in relation to fruit retention. PLANT PHYSIOLOGY 1987; 83:199-202. [PMID: 16665202 PMCID: PMC1056324 DOI: 10.1104/pp.83.1.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
An experiment was conducted with field-grown cotton (Gossypium hirsutum L.) to determine the effects of drought and an increase in available photosynthate on the abscisic acid (ABA) and indoleacetic acid (IAA) contents of 3-day-old bolls and their abscission zones. Photosynthate availability was manipulated by removing about two-thirds of the plants to permit increased irradiance, and thus photosynthesis, in the plant canopy. The demand for photosynthate was decreased by removing all bolls from the remaining plants. The thinning and defruiting operations were performed about 3 weeks after first flower. Control plants were neither thinned nor defruited. Effects of water deficit were observed by making three harvests at different times during a 2-week irrigation cycle. Increasing the availability of photosynthate increased boll retention, but had relatively little effect on the concentrations of ABA and IAA in bolls. However, it did increase the concentration of IAA in abscission zones. Water deficit increased the ABA content of bolls and abscission zones and decreased the IAA content of bolls and abscission zones. Across all treatments, the IAA content of abscission zones was positively correlated, and the ABA content of bolls was negatively correlated, with boll retention. The results indicate that stresses change the hormonal balance in ways that are consistent with observed increases in fruit abscission.
Collapse
Affiliation(s)
- G Guinn
- United States Department of Agriculture, Agricultural Research Service, Phoenix, Arizona 85040
| | | |
Collapse
|
22
|
|
23
|
Radin JW. Stomatal responses to water stress and to abscisic Acid in phosphorus-deficient cotton plants. PLANT PHYSIOLOGY 1984; 76:392-4. [PMID: 16663851 PMCID: PMC1064297 DOI: 10.1104/pp.76.2.392] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cotton (Gossypium hirsutum L.) plants were grown in sand culture on nutrient solution containing adequate or growth-limiting levels of P. When water was withheld from the pots, stomata of the most recently expanded leaf closed at leaf water potentials of approximately -16 and -12 bars in the normal and P-deficient plants, respectively. Pressure-volume curves showed that the stomata of P-deficient plants closed when there was still significant turgor in the leaf mesophyll. Leaves of P-deficient plants accumulated more abscisic acid (ABA) in response to water stress, but the difference was evident only at low water potentials, after initiation of stomatal closure. In leaves excised from unstressed plants, P deficiency greatly increased stomatal response to ABA applied through the transpiration stream. Kinetin blocked most of this increase in apparent sensitivity to ABA. The effect of P nutrition on stomatal behavior may be related to alterations of the balance between ABA and cytokinins.
Collapse
Affiliation(s)
- J W Radin
- United States Department of Agriculture, Agricultural Research Service, Phoenix, Arizona 85040
| |
Collapse
|
24
|
|
25
|
Ackerson RC, Radin JW. Abscisic Acid accumulation in cotton leaves in response to dehydration at high pressure. PLANT PHYSIOLOGY 1983; 71:432-3. [PMID: 16662842 PMCID: PMC1066049 DOI: 10.1104/pp.71.2.432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pressure-volume techniques were utilized to examine the control of abscisic acid (ABA) accumulation in dehydrated cotton (Gossypium hirsutum L. cv Tamcot SP 37) leaves. Leaves were rapidly dehydrated in a pressure chamber to a balance pressure coincident with the loss of cellular turgor, and then the pressure was either maintained at that level or released. Rapid accumulation of ABA began within two hours after the balance pressure was achieved, whether or not the high pressure potential of the cells was maintained by the externally imposed pressure. The results show that loss of pressure per se does not trigger ABA accumulation in dehydrated leaves. Rather, the stimulus may be related to cellular shrinkage and relaxation of the elastic wall.
Collapse
Affiliation(s)
- R C Ackerson
- Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898
| | | |
Collapse
|
26
|
Radin JW, Parker LL, Guinn G. Water Relations of Cotton Plants under Nitrogen Deficiency: V. Environmental Control of Abscisic Acid Accumulation and Stomatal Sensitivity to Abscisic Acid. PLANT PHYSIOLOGY 1982; 70:1066-70. [PMID: 16662614 PMCID: PMC1065826 DOI: 10.1104/pp.70.4.1066] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Suboptimal N nutrition increased the water potential for stomatal closure in water stressed cotton (Gossypium hirsutum L.) leaves. This increased sensitivity to water stress had two components, increased accumulation of abscisic acid (ABA) and increased apparent stomatal sensitivity to ABA. Low N increased the threshold water potentials for stomatal closure and ABA accumulation by about 4 bars and 2 bars, respectively. Low N also greatly increased stomatal response to low concentrations of exogenous ABA applied to excised leaves through the transpiration stream. In low N leaves, kinetin decreased stomatal response to ABA to the level observed with high N leaves. Kinetin by itself had little effect on stomata, nor did it alter stomatal response to ABA in high N leaves. The results suggest a cytokinin-ABA balance which is altered by suboptimal N nutrition to favor stomatal closure during stress.Ambient temperature and N nutrition interacted to alter stomatal response to water stress. Stress-induced ABA accumulation and apparent stomatal sensitivity to ABA were independently affected. The effects of each treatment, and their interaction, could be explained as the net result of changes in both accumulation and apparent sensitivity. Although the results document environmental control of stomatal response to ABA, either altered partitioning of ABA between active and inactive pools, or altered sensitivity of the guard cells, could account for the data.
Collapse
Affiliation(s)
- J W Radin
- United States Department of Agriculture, Agricultural Research Service, Phoenix, Arizona 85040
| | | | | |
Collapse
|