1
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
2
|
Huang AHC. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances. PLANT PHYSIOLOGY 2018; 176:1894-1918. [PMID: 29269574 PMCID: PMC5841732 DOI: 10.1104/pp.17.01677] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 05/19/2023]
Abstract
Cytoplasmic lipid droplets (LDs) of neutral lipids (triacylglycerols [TAGs], sterylesters, etc.) are reserves of high-energy metabolites and other constituents for future needs. They are present in diverse cells of eukaryotes and prokaryotes. An LD has a core of neutral lipids enclosed with a monolayer of phospholipids and proteins, which play structural and/or metabolic roles. During the past 3 decades, studies of LDs in diverse organisms have blossomed after they were found to be involved in prevalent human diseases and industrial uses. LDs in plant seeds were studied before those in mammals and microbes, and the latter studies have since moved forward. Plant LDs carry a hallmark protein called oleosin, which has a long hydrophobic hairpin penetrating the TAG core and stabilizing the LD. The oleosin gene first appeared in green algae and has evolved in enhancing promoter strength, tandem repeats, and/or expression specificity, leading to the appearance of new LD organelles, such as tapetosomes in Brassicaceae. The synthesis of LDs occurs with TAG-synthesizing enzymes on the endoplasmic reticulum (ER), and nascent TAGs are sequestered in the acyl moiety region between the bilayers of phospholipids, which results in ER-LD swelling. Oleosin is synthesized on the cytosol side of the ER and extracts the LD from the ER-LD to cytosol. This extraction of LD to the cytosol is controlled solely by the innate properties of oleosin, and modified oleosin can redirect the LD to the ER lumen and then vacuoles. The breakdown of LDs requires lipase associating with core retromer and binding to peroxisomes, which then send the enzyme to LDs via tubular extensions. Two groups of LD-associated proteins, caleosin/dioxygenase/steroleosin and LD/oil body-associated proteins, participate in cellular stress defenses via enzymic activities and binding, respectively. The surface of LDs in all plant cells may be an inert refuge for these and other proteins, which exert functions on diverse cell components. Oleosin-LDs have been explored for commercial applications; successes in their uses will rely on overcoming conceptual and technical difficulties.
Collapse
Affiliation(s)
- Anthony H C Huang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
3
|
Kim S, Lee SB, Han CS, Lim MN, Lee SE, Yoon IS, Hwang YS. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:20-29. [PMID: 28527335 DOI: 10.1016/j.jplph.2017.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes.
Collapse
Affiliation(s)
- Sol Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Soo-Bin Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Chae-Seong Han
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Mi-Na Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sung-Eun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - In Sun Yoon
- Molecular Breeding Division, Natural Academy of Agricultural Science, Rural, Development Adminstration, Suwon 441-857, Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
4
|
Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, Froissard M, Chardot T, D'Andrea S. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1374-87. [PMID: 25907570 DOI: 10.1093/pcp/pcv056] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/02/2015] [Indexed: 05/04/2023]
Abstract
In oleaginous seeds, lipids--stored in organelles called oil bodies (OBs)--are degraded post-germinatively to provide carbon and energy for seedling growth. To date, little is known about how OB coat proteins, known as oleosins, control OB dynamics during seed germination. Here, we demonstrated that the sequential proteolysis of the five Arabidopsis thaliana oleosins OLE1-OLE5 begins just prior to lipid degradation. Several post-translational modifications (e.g. phosphorylation and ubiquination) of oleosins were concomitant with oleosin degradation. Phosphorylation occurred only on the minor OLE5 and on an 8 kDa proteolytic fragment of OLE2. A combination of immunochemical and proteomic approaches revealed ubiquitination of the four oleosins OLE1-OLE4 at the onset of OB mobilization. Ubiquitination topology was surprisingly complex. OLE1 and OLE2 were modified by three distinct and predominantly exclusive motifs: monoubiquitin, K48-linked diubiquitin (K48Ub(2)) and K63-linked diubiquitin. Ubiquitinated oleosins may be channeled towards specific degradation pathways according to ubiquitination type. One of these pathways was identified as the ubiquitin-proteasome pathway. A proteasome inhibitor (MG132) reduced oleosin degradation and induced cytosolic accumulation of K48Ub(2)-oleosin aggregates. These results indicate that K48Ub(2)-modified oleosins are selectively extracted from OB coat and degraded by the proteasome. Proteasome inhibition also reduced lipid hydrolysis, providing in vivo evidence that oleosin degradation is required for lipid mobilization.
Collapse
Affiliation(s)
- Carine Deruyffelaere
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Isabelle Bouchez
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Halima Morin
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Alain Guillot
- INRA, UMR 1319, PAPPSO, F-78350 Jouy-en-Josas, France
| | - Martine Miquel
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Marine Froissard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Thierry Chardot
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Sabine D'Andrea
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
5
|
Chen Y, Zhao L, Cao Y, Kong X, Hua Y. Oleosins (24 and 18 kDa) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:956-65. [PMID: 24447363 DOI: 10.1021/jf405382w] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
After oil bodies (OBs) were extracted from ungerminated soybean by pH 6.8 extraction, it was found that 24 and 18 kDa oleosins were hydrolyzed in the extracted OBs, which contained many OB extrinsic proteins (i.e., lipoxygenase, β-conglycinin, γ-conglycinin, β-amylase, glycinin, Gly m Bd 30K (Bd 30K), and P34 probable thiol protease (P34)) as well as OB intrinsic proteins. In this study, some properties (specificity, optimal pH and temperature) of the proteases of 24 and 18 kDa oleosins and the oleosin hydrolysis in soybean germination were examined, and the high relationship between Bd 30K/P34 and the proteases was also discussed. The results showed (1) the proteases were OB extrinsic proteins, which had high specificity to hydrolyze 24 and 18 kDa oleosins, and cleaved the specific peptide bonds to form limited hydrolyzed products; (2) 24 and 18 kDa oleosins were not hydrolyzed in the absence of Bd 30K and P34 (or some Tricine-SDS-PAGE undetectable proteins); (3) the protease of 24 kDa oleosin had strong resistance to alkaline pH while that of 18 kDa oleosin had weak resistance to alkaline pH, and Bd 30K and P34, resolved into two spots on two-dimensional electrophoresis gel, also showed the same trend; (4) 16 kDa oleosin as well as 24 and 18 kDa oleosins were hydrolyzed in soybean germination, and Bd 30K and P34 were always contained in the extracted OBs from germinated soybean even when all oleosins were hydrolyzed; (5) the optimal temperature and pH of the proteases were respectively determined as in the ranges of 35-50 °C and pH 6.0-6.5, while 60 °C or pH 11.0 could denature them.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | | | | | | | | |
Collapse
|
6
|
Uvere PO, Orji GS. Lipase Activities During Malting and Fermentation of Sorghum for Burukutu Production. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2002.tb00549.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Tnani H, López I, Jouenne T, Vicient CM. Quantitative subproteomic analysis of germinating related changes in the scutellum oil bodies of Zea mays. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:1-7. [PMID: 22682559 DOI: 10.1016/j.plantsci.2012.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/15/2023]
Abstract
Oil bodies (OBs) were purified from the scutellum of mature maize embryos and from embryos 2 days after imbibition and their associated proteins were extracted and separated by 2-DE. Eighteen proteins were shown to be differentially accumulated, thirteen showed a higher accumulation in mature scutellum and five were highly accumulated in the germinating scutellum. Proteins were identified using LC-MS/MS. Besides previously known oil body protein oleosin, other proteins were identified in this study. Among accumulated proteins during imbibition are prohibitin 2, stress-inducible membrane pore protein Tim17 and manganese superoxide dismutase. Among the proteins whose amount decreases during imbibition are cupin 2, two different protein disulfide isomerases, a triosephosphate isomerase, a class IV heat shock protein, the embryonic protein DC-8, the 60S ribosomal protein P0, a nucleoside-diphosphate kinase, and a rubber elongation factor protein. Some of the identified proteins were previously located in organelles other than oil bodies, suggesting that OBs may interact with these organelles. We also suggest that OBs may act as transient storage depots for proteins that are temporally in excess.
Collapse
Affiliation(s)
- H Tnani
- CRAG-Center for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Cerdanyola del Vallés, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Abstract
The mechanisms that regulate plant lipid metabolism determine the dietary and industrial value of storage oils found in economically important species and may control the ability of many plants to survive exposure to temperature extremes. Many of the problems researchers have in defining the pathways, enzymes, and genes involved in plant lipid metabolism appear to be amenable to analysis by genetic approaches. Mutants with alterations in membrane lipid composition have also been used to study the structural and adaptive roles of lipids. The application of genetic engineering methods affords opportunities for researchers to apply knowledge gained about plant lipid metabolism toward enhanced use of plant oils as abundant and renewable sources of reduced carbon.
Collapse
|
9
|
Volk GM, Crane J, Caspersen AM, Hill LM, Gardner C, Walters C. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. PLANTA 2006; 224:1415-26. [PMID: 16779553 DOI: 10.1007/s00425-006-0310-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 04/18/2006] [Indexed: 05/10/2023]
Abstract
The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.
Collapse
Affiliation(s)
- Gayle M Volk
- USDA-ARS National Center for Genetic Resources Preservation, 1111 S. Mason Street, Fort Collins, CO 80521, USA
| | | | | | | | | | | |
Collapse
|
10
|
Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. THE PLANT CELL 2006; 18:1693-703. [PMID: 16731586 PMCID: PMC1488921 DOI: 10.1105/tpc.105.039859] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/21/2006] [Accepted: 05/02/2006] [Indexed: 05/09/2023]
Abstract
Plastoglobules are lipoprotein particles inside chloroplasts. Their numbers have been shown to increase during the upregulation of plastid lipid metabolism in response to oxidative stress and during senescence. In this study, we used state-of-the-art high-pressure freezing/freeze-substitution methods combined with electron tomography as well as freeze-etch electron microscopy to characterize the structure and spatial relationship of plastoglobules to thylakoid membranes in developing, mature, and senescing chloroplasts. We demonstrate that plastoglobules are attached to thylakoids through a half-lipid bilayer that surrounds the globule contents and is continuous with the stroma-side leaflet of the thylakoid membrane. During oxidative stress and senescence, plastoglobules form linkage groups that are attached to each other and remain continuous with the thylakoid membrane by extensions of the half-lipid bilayer. Using three-dimensional tomography combined with immunolabeling techniques, we show that the plastoglobules contain the enzyme tocopherol cyclase (VTE1) and that this enzyme extends across the surface monolayer into the interior of the plastoglobules. These findings demonstrate that plastoglobules function as both lipid biosynthesis and storage subcompartments of thylakoid membranes. The permanent structural coupling between plastoglobules and thylakoid membranes suggests that the lipid molecules contained in the plastoglobule cores (carotenoids, plastoquinone, and tocopherol [vitamin E]) are in a dynamic equilibrium with those located in the thylakoid membranes.
Collapse
Affiliation(s)
- Jotham R Austin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | |
Collapse
|
11
|
Wahlroos T, Soukka J, Denesyuk A, Wahlroos R, Korpela T, Kilby NJ. Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genesis 2003; 35:125-32. [PMID: 12533795 DOI: 10.1002/gene.10172] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have established a versatile method for studying the interaction of the oleosin gene product with oil bodies during oil body biogenesis in plants. Our approach has been to transiently express a green fluorescent protein (GFP)-tagged Arabidopsis oleosin gene fusion in tobacco leaf cells containing bona fide oil bodies and then to monitor oleosin-GFP expression using real-time confocal laser scanning microscopy. We show that normally non-oil-storing tobacco leaf cells are able to synthesize and then transport oleosin-GFP fusion protein to leaf oil bodies. Synthesis and transport of oleosin-GFP fusion protein to oil bodies occurred within the first 6 h posttransformation. Oleosin-GFP fusion protein exclusively associated with the endoplasmic reticulum and was trafficked in a Golgi-independent manner at speeds approaching 0.5 microm sec(-1) along highly dynamic endoplasmic reticulum positioned over essentially static polygonal cortical endoplasmic reticulum. Our data indicate that oil body biogenesis can occur outside of the embryo and that oleosin-GFP can be used to monitor early events in oil body biogenesis in real-time.
Collapse
Affiliation(s)
- Tony Wahlroos
- University of Turku, Joint Biotechnology Laboratory, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Sadeghipour HR, Bhatla SC. Differential sensitivity of oleosins to proteolysis during oil body mobilization in sunflower seedlings. PLANT & CELL PHYSIOLOGY 2002; 43:1117-26. [PMID: 12407191 DOI: 10.1093/pcp/pcf142] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.
Collapse
|
13
|
Beisson F, Ferté N, Bruley S, Voultoury R, Verger R, Arondel V. Oil-bodies as substrates for lipolytic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:47-58. [PMID: 11278171 DOI: 10.1016/s1388-1981(01)00086-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plant seeds store triacylglycerols (TAGs) in intracellular organelles called oil-bodies or oleosomes, which consist of oil droplets covered by a coat of phospholipids and proteins. During seed germination, the TAGs of oil-bodies hydrolysed by lipases sustain the growth of the seedlings. The mechanism whereby lipases gain access to their substrate in these organelles is largely unknown. One of the questions that arises is whether the protein/phospholipid coat of oil-bodies prevents the access of lipase to the oil core. We have investigated the susceptibility of almond oil-bodies to in vitro lipolysis by various purified lipases with a broad range of biochemical properties. We have found that all the enzymes assayed were capable of releasing on their own free fatty acids from the TAG of oil-bodies. Depending on the lipase, the specific activity measured on oil-bodies using the pH-stat technique was found to range from 18 to 38% of the specific activity measured on almond oil emulsified by gum arabic. Some of these lipases are known to have a dual lipase/phospholipase activity. However, no correlation was found to exist between the ability of a lipase to readily and efficiently hydrolyse the TAG content of oil-bodies and the presence of a phospholipase activity. Kinetic studies indicate that oil-bodies behave as a substrate as other proteolipid organelles such as milk fat globules. Finally we have shown that a purified water-soluble plant lipase on its own can easily hydrolyse oil-bodies in vitro. Our results suggest that the lipolysis of oil-bodies in seedlings might occur without any pre-hydrolysis of the protein coat.
Collapse
Affiliation(s)
- F Beisson
- Laboratoire de Lipolyse Enzymatique, Institut de Biologie Structurale et Microbiologie, Marseille, France
| | | | | | | | | | | |
Collapse
|
14
|
Hills MJ, Watson MD, Murphy DJ. Targeting of oleosins to the oil bodies of oilseed rape (Brassica napus L.). PLANTA 1993; 189:24-29. [PMID: 7763356 DOI: 10.1007/bf00201339] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oleosins of Brassica napus L. (oilseed rape) synthesized by in-vitro translation were found to be very efficiently targeted to microsomal membranes but only poorly translocated to oil bodies or emulsified oil. The use of other bilayer membranes as controls showed that this interaction was specific. The rate of oleosin synthesis in the presence of microsomes was enhanced about threefold, indicative of the involvement of the signal-recognition particle in the targeting process. There is no evidence for the cleavage of the protein during targeting and the protein sequence reveals no consensus cleavage site for the signal peptide. Protection experiments using Proteinase K revealed that about 6 kDa of the protein is exposed on the cytoplasmic side of the ER but the remainder is protected. Carbonate (pH 11) washing of microsomal membranes after in-vitro translation confirmed that oleosins have a domain which remains inserted in the ER rather than the protein being transported completely into the lumen of the ER. These results indicate that oleosins are transported via the ER prior to their accumulation on oil bodies.
Collapse
Affiliation(s)
- M J Hills
- Department of Brassica and Oilseeds Research, John Innes Centre, Norwich, UK
| | | | | |
Collapse
|
15
|
Mackinnon WB, May GL, Mountford CE. Esterified cholesterol and triglyceride are present in plasma membranes of Chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:827-39. [PMID: 1572374 DOI: 10.1111/j.1432-1033.1992.tb16847.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chemical composition of highly purified plasma membrane preparations from a series of malignant Chinese hamster ovary (CHO) cell lines were undertaken to ascertain if neutral lipid, including cholesteryl ester and triacylglycerol, were present. Triacylglycerols (33-41 nmol/mg total lipid) and cholesteryl ester (226-271 nmol/mg) were measured in the plasma membranes and differences in the chemical composition of these membranes recorded. The most significant difference was a gradual decrease in the level of free cholesterol from wild type (312 +/- 7 nmol/mg total plasma membrane lipid), Pod RII-6 (268 +/- 64 nmol/mg total plasma membrane lipid), Col R-22 (243 +/- 39 nmol/mg total plasma membrane lipid) to EOT (204 +/- 20 nmol/mg total plasma membrane lipid), with a concomitant increase in the degree of saturation of the cholesteryl ester fatty acids, particularly palmitic acid. No statistically significant differences were apparent in the chemical composition of the whole cells in this series. The one-dimensional (1D) 1H-NMR spectra of the four malignant cell lines showed a gradation in intensity of lipid resonances, in the order of wild type, Pod RII-6, Col R-22 and EOT, with EOT having the strongest lipid spectrum. Interestingly, the increase in acyl-chain signal intensities in the 1H-NMR spectra of this series of CHO cells and emergence of signals from cholesterol and/or cholesteryl ester, coincide with alterations in the amount of free cholesterol and the degree of saturation of the fatty-acyl chain of the esterified cholesterol in the plasma membranes. It is our hypothesis that, together, cholesteryl ester and triacylglycerol form domains in the plasma membrane and that when the cholesteryl ester has a largely saturated fatty acid content, the lipids are in isotropic liquid phase and hence visible by NMR.
Collapse
Affiliation(s)
- W B Mackinnon
- Cancer Medicine, Blackburn Building, University of Sydney, Australia
| | | | | |
Collapse
|
16
|
Isolation and physicochemical characterization of the half-unit membranes of oilseed lipid bodies. J AM OIL CHEM SOC 1990. [DOI: 10.1007/bf02539689] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Oleosin KD 18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39967-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Murphy DJ, Cummins I, Kang AS. Synthesis of the major oil-body membrane protein in developing rapeseed (Brassica napus) embryos. Integration with storage-lipid and storage-protein synthesis and implications for the mechanism of oil-body formation. Biochem J 1989; 258:285-93. [PMID: 2930514 PMCID: PMC1138353 DOI: 10.1042/bj2580285] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The synthesis of the major protein and lipid storage reserves during embryogenesis in oilseed rape (Brassica napus L., cv. Mikado) has been examined by biochemical, immunological and immunocytochemical techniques. The mature seeds contained about 45% (w/w) storage oil and 25% (w/w) protein. There were three major seed protein components, i.e. about 40-50% total protein was cruciferin, 20% was napin and 20% was a 18 kDa hydrophobic polypeptide associated with the proteinaceous membrane surrounding the storage oil bodies. Embryogenesis was divided into four overlapping stages with regard to the synthesis of these storage components: (1) for the first 3 weeks after flowering, little, if any, synthesis of storage components was observed; (2) storage-oil synthesis began at about week 3, and maximal rates were from weeks 4 to 7; (3) synthesis of the soluble storage proteins cruciferin and napin started at week 6 and rates were maximal between weeks 8 and 11; (4) the final stage was the synthesis of the 19 kDa oil-body polypeptide, which started at weeks 8-10 and was at a maximal rate between weeks 10 and 12. The synthesis of the 19 kDa oil-body protein therefore occurred independently of the synthesis of the soluble seed storage proteins. This former synthesis did not occur until shortly before the insertion of the 19 kDa polypeptide into the oil-body membrane. No evidence was found, either from sucrose-density-gradient-centrifugation experiments or from immunogold-labelling studies, for its prior accumulation in the endoplasmic reticulum. Conventional and immunogold-electron-microscopic studies showed that oil bodies were synthesized in the early to middle stages of seed development without a strongly electron-dense membrane. Such a membrane was only found at later stages of seed development, concomitantly with the synthesis of the 19 kDa protein. It is proposed that, in rapeseed embryos, oil bodies are initially formed with no proteinaceous membrane. Such a membrane is formed later in development after insertion by ribosomes of the hydrophobic 19 kDa polypeptide directly into the oil bodies.
Collapse
Affiliation(s)
- D J Murphy
- Department of Biological Sciences, University of Durham, U.K
| | | | | |
Collapse
|
19
|
Chapman KD, Turley RB, Trelease RN. Relationship between Cottonseed Malate Synthase Aggregation Behavior and Suborganellar Location in Glyoxysomes and Endoplasmic Reticulum. PLANT PHYSIOLOGY 1989; 89:352-9. [PMID: 16666538 PMCID: PMC1055843 DOI: 10.1104/pp.89.1.352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Malate synthase (EC 4.1.3.2) (MS), an enzyme unique to the glyoxylate cycle, was studied in cotyledons of dark-grown cotton (Gossypium hirsutum, L.) seedlings. MS has generally been regarded as a peripheral membrane protein in glyoxysomes and believed by some to be synthesized on rough ER. Immunocyto-chemical localization of MS in both in situ and isolated cottonseed glyoxysomes, however, showed that MS was located throughout the matrix of glyoxysomes, not specifically associated with their membranes. Biochemical data also supported matrix localization. Isolated glyoxysomes were diluted in variously-buffered salt solutions (200 millimolar KCl or 100 millimolar K-phosphate) or detergents (0.1% Triton X-100, 10 millimolar deoxycholate, or 1.0% Triton X-114) and centrifuged to pellet membranes. Greater than 70% of the MS was recovered in supernatants after treatment with salt solutions, whereas generally less than 30% was released following detergent treatments. MS in pellets derived from glyoxysomes burst in low ionic strength buffer solutions was aggregated (observed on rate-zonal gradients). MS released following salt treatments was the 20S nonaggregated form indicating that salt solutions either disaggregated (or prevented aggregation of) glyoxysomal MS rather than releasing it from membranes. We confirmed reports by others that MS comigrated with ER (NADH: cytochrome c reductase) in sucrose (20-40% w/w) gradients buffered with 100 millimolar Tricine (pH 7.5) after 3 hours centrifugation. However, cottonseed MS did not comigrate with ER in gradients buffered with 10 millimolar Hepes (pH 7.0) or 20 millimolar K-phosphate (pH 7.2) after 3 hours centrifugation, or after 22 hours centrifugation in Tricine or Hepes. Collectively, our data with cotton seeds indicate that MS is not a peripheral membrane protein, and that the aggregation behavior of MS (in various buffers) very likely has led to misinterpretations of its putative associations with ER and glyoxysomal membranes.
Collapse
Affiliation(s)
- K D Chapman
- Department of Botany, Arizona State University, Tempe, Arizona 85287-1601
| | | | | |
Collapse
|