1
|
Eiras M, Aragonés V, Marqués J, Gómez MD, Daròs JA. Eggplant latent viroid is located in the chloroplasts and nuclei of eggplant infected cells. Virol J 2024; 21:254. [PMID: 39407314 PMCID: PMC11476940 DOI: 10.1186/s12985-024-02530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Viroids that belong to genera Avsunviroid and Pelamovirod (family Avsunviroidae) replicate and accumulate in the chloroplasts of infected cells. In this report, we confirmed by RNA in situ hybridization using digoxigenin-UTP-labelled riboprobes that the positive strands of eggplant latent viroid (ELVd), the only member of genus Elaviroid within the family Avsunviroidae, also accumulate in the chloroplasts of infected cells. However, comparison of ELVd in situ hybridization signals with those from bona fide chloroplastic and nuclear non-coding RNAs, such as chloroplast 5S rRNA and U1 small nuclear RNA, supports the notion that this viroid is also present in the nuclei of infected cells. These results suggest that the subcellular localization of viroids within the family Avsunviroidae may be more complex than previously assumed with dynamic presence in several compartments during the infectious cycle.
Collapse
Affiliation(s)
- Marcelo Eiras
- Lab. Fitovirologia e Fisiopatologia, Centro de Pesquisa de Sanidade Vegetal, Instituto Biológico, São Paulo, CEP 04014-002, SP, Brazil.
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
| | - Jorge Marqués
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
- Azzur Group, Hatboro, USA
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain.
| |
Collapse
|
2
|
Zhang Y, Tian X, Xu H, Zhan B, Zhou C, Li S, Zhang Z. Knockout of SlDCL2b attenuates the resistance of tomato to potato spindle tuber viroid infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13441. [PMID: 38462774 PMCID: PMC10925824 DOI: 10.1111/mpp.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
RNA interference, or RNA silencing, is an important defence mechanism against viroid infection in plants. Plants encode multiple DICER-LIKE (DCL) proteins that are key components of the RNA silencing pathway. However, the roles of different DCLs in defence responses against viroid infection remain unclear. Here, we determined the function of tomato DCL2b (SlDCL2b) in defence responses against potato spindle tuber viroid (PSTVd) infection using SlDCL2b loss-of-function tomato mutant plants. Compared with wild-type plants, mutant plants were more susceptible to PSTVd infection, developing more severe symptoms earlier and accumulating higher levels of PSTVd RNAs. Moreover, we verified the feedback mechanism for the regulation of SlDCL2b expression by miR6026. Functional blocking of tomato miR6026, by expressing its target mimics, can enhance resistance to PSTVd infection in tomato plants. These findings deepen the current understanding of RNAi-based resistance against viroid infection and provide a potentially new strategy for viroid control.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiaxia Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Citrus Research InstituteSouthwest UniversityChongqingChina
| | - Huiyuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Changyong Zhou
- Citrus Research InstituteSouthwest UniversityChongqingChina
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
3
|
Steger G, Riesner D, Prusiner SB. Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins. Viruses 2024; 16:360. [PMID: 38543726 PMCID: PMC10975798 DOI: 10.3390/v16030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Theodor ("Ted") Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory, Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids' important features like the infectivity of naked single-stranded RNA without protein-coding capacity. During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences together with other "subviral pathogens". This term includes what are now called satellite RNAs and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids, circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins that cause disease by misfolding, aggregation and transmission of their conformations into infectious prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Detlev Riesner
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Ma J, Dissanayaka Mudiyanselage SD, Hao J, Wang Y. Cellular roadmaps of viroid infection. Trends Microbiol 2023; 31:1179-1191. [PMID: 37349206 PMCID: PMC10592528 DOI: 10.1016/j.tim.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. According to the International Committee on Taxonomy of Viruses, there are 44 viroids known to date. Notably, more than 20 000 distinct viroid-like RNA sequences have recently been identified in existing sequencing datasets, suggesting an unprecedented complexity in biological roles of viroids and viroid-like RNAs. Interestingly, a human pathogen, hepatitis delta virus (HDV), also replicates via a rolling circle mechanism like viroids. Therefore, knowledge of viroid infection is informative for research on HDV and other viroid-like RNAs reported from various organisms. Here, we summarize recent advancements in understanding viroid shuttling among subcellular compartments for completing replication cycles, emphasizing regulatory roles of RNA motifs and structural dynamics in diverse biological processes. We also compare the knowledge of viroid intracellular trafficking with known pathways governing cellular RNA movement in cells. Future investigations on regulatory RNA structures and cognate factors in regulating viroid subcellular trafficking and replication will likely provide new insights into RNA structure-function relationships and facilitate the development of strategies controlling RNA localization and function in cells.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Jie Hao
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
6
|
Dong K, Xu C, Kotta‐Loizou I, Jiang J, Lv R, Kong L, Li S, Hong N, Wang G, Coutts RHA, Xu W. Novel Viroid-Like RNAs Naturally Infect a Filamentous Fungus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204308. [PMID: 36515275 PMCID: PMC9875651 DOI: 10.1002/advs.202204308] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroid-like RNAs naturally infect non-plant hosts remains unknown. Here the existence of a set of exogenous, single-stranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rolling-circle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.
Collapse
Affiliation(s)
- Kaili Dong
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuan Xu
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ioly Kotta‐Loizou
- Department of Life SciencesFaculty of Natural SciencesImperial College LondonLondonSW7 2AZUK
- Department of ClinicalPharmaceutical and Biological ScienceSchool of Life and Medical SciencesUniversity of HertfordshireHatfieldAL10 9ABUK
| | - Jingjing Jiang
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruiying Lv
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Linghong Kong
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shifang Li
- Environment and Plant Protection InstituteChinese Academy of Tropical Agricultural SciencesXueyuan Road, Longhua DistrictHaikouHainan571101P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Ni Hong
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guoping Wang
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Robert H. A. Coutts
- Department of ClinicalPharmaceutical and Biological ScienceSchool of Life and Medical SciencesUniversity of HertfordshireHatfieldAL10 9ABUK
| | - Wenxing Xu
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
7
|
Ma J, Mudiyanselage SDD, Wang Y. Emerging value of the viroid model in molecular biology and beyond. Virus Res 2022; 313:198730. [PMID: 35263622 PMCID: PMC8976779 DOI: 10.1016/j.virusres.2022.198730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. Research in the past five decades has deciphered the viroid genome structures, viroid replication cycles, numerous host factors for viroid infection, viroid motifs for intracellular and intercellular trafficking, interactions with host defense machinery, etc. In this review, we mainly focus on some significant questions that remain to be tackled, centered around (1) how the RNA polymerase II machinery performs transcription on RNA templates of nuclear-replicating viroids, (2) how viroid RNAs coordinate multiple structural elements for diverse functions, and (3) how viroid RNAs activate plant immunity. Research on viroids has led to seminal discoveries in biology, and we expect the research directions outlined in this review to continue providing key knowledge inspiring other areas of biology.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, MS 39762, USA
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, MS 39762, USA.
| |
Collapse
|
8
|
Conserved Motifs and Domains in Members of Pospiviroidae. Cells 2022; 11:cells11020230. [PMID: 35053346 PMCID: PMC8774013 DOI: 10.3390/cells11020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
In 1985, Keese and Symons proposed a hypothesis on the sequence and secondary structure of viroids from the family Pospiviroidae: their secondary structure can be subdivided into five structural and functional domains and “viroids have evolved by rearrangement of domains between different viroids infecting the same cell and subsequent mutations within each domain”; this article is one of the most cited in the field of viroids. Employing the pairwise alignment method used by Keese and Symons and in addition to more recent methods, we tried to reproduce the original results and extent them to further members of Pospiviroidae which were unknown in 1985. Indeed, individual members of Pospiviroidae consist of a patchwork of sequence fragments from the family but the lengths of fragments do not point to consistent points of rearrangement, which is in conflict with the original hypothesis of fixed domain borders.
Collapse
|
9
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
10
|
Marquez‐Molins J, Gomez G, Pallas V. Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid-host interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:153-162. [PMID: 33305492 PMCID: PMC7814962 DOI: 10.1111/mpp.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
TAXONOMY Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION HSVd is transmitted mechanically and by seed.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
11
|
Seo H, Kim K, Park WJ. Effect of VIRP1 Protein on Nuclear Import of Citrus Exocortis Viroid (CEVd). Biomolecules 2021; 11:biom11010095. [PMID: 33450991 PMCID: PMC7828392 DOI: 10.3390/biom11010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Before replicating, Pospiviroidae viroids must move into the plant nucleus. However, the mechanisms of viroid nuclear import are not entirely understood. To study the nuclear import of viroids, we established a nuclear import assay system using onion cell strips and observed the import of Alexa Fluor-594-labeled citrus exocortis viroid (CEVd). To identify the plant factors involved in the nuclear import of viroids, we cloned the Viroid RNA-binding Protein 1 (VIRP1) gene from a tomato cultivar, Seokwang, and heterologously expressed and purified the VIRP1 protein. The newly prepared VIRP1 protein had alterations of amino acid residues at two points (H52R, A277G) compared with a reference VIRP1 protein (AJ249595). VIRP1 specifically bound to CEVd and promoted its nuclear import. However, it is still uncertain whether VIRP1 is the only factor required for the nuclear import of CEVd because CEVd entered the plant nuclei without VIRP1 in our assay system. The cause of the observed nuclear accumulation of CEVd in the absence of VIRP1 needs to be further clarified.
Collapse
|
12
|
Wu J, Bisaro DM. Biased Pol II fidelity contributes to conservation of functional domains in the Potato spindle tuber viroid genome. PLoS Pathog 2020; 16:e1009144. [PMID: 33351860 PMCID: PMC7787683 DOI: 10.1371/journal.ppat.1009144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Accurate calculation of mutation rates for viruses and viroids is necessary for evolutionary studies and to evaluate adaptation potential. However, estimation of in vivo mutation rates is complicated by selection, which leads to loss or proliferation of certain mutations. To minimize this concern, lethal mutations, including nonsense and non-synonymous mutations, have been used to determine mutation rates for several viruses and viroids, including Potato spindle tuber viroid (PSTVd). However, this approach has limitations, including focus on a relatively small number of genome sites and the possibility that mutations may not actually be lethal or may be maintained by wild type individuals. To avoid selection bias altogether, we sequenced minus-strand PSTVd dimers from concatemeric replication intermediates. The underlying rationale is that mutations found in only one of the monomers were likely generated de novo during RNA polymerase II (Pol II) transcription of the circular plus-strand RNA genome. This approach yielded an apparent Pol II error rate of ~1/1837 nucleotides per transcription cycle, and an estimated mutation rate of ~1/919 nucleotides for a single replication cycle. Remarkably, de novo mutations were nearly absent from the most conserved, replication-critical regions of the PSTVd genome, suggesting that sequence conservation is a consequence of both essential function and template optimization for greater Pol II fidelity. Such biased fidelity may constitute a novel strategy to ensure population success while allowing abundant sampling of sequence space in other genome regions. Comparison with variants in progeny populations derived from a cloned, wild type PSTVd master sequence revealed that most de novo mutations were lost through selection. Polymerase errors are the major source of variation in virus and viroid genomes, and as a consequence polymerase error rates are major determinants of adaptation potential. Accurate calculation of in vivo mutation rates is complicated by selection. To circumvent this issue, dimeric PSTVd minus-strand replication intermediates generated in vivo by host RNA polymerase II (Pol II) were sequenced to identify de novo mutations. This analysis revealed a very high error rate for Pol II transcribing genomic PSTVd RNA, leading to an extremely high mutation rate. Remarkably, however, de novo mutations were rare in the most highly conserved, replication-critical genome regions, suggesting these sequences are selected for both function and enhanced transcription fidelity. This biased fidelity may reveal a novel strategy to ensure population survival while maximizing adaptation potential. Further, comparison of mutations identified by minus-strand dimer sequencing with mutations observed in progeny variants derived from wild type PSTVd showed that most de novo mutations were lost through selection.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Seo H, Wang Y, Park WJ. Time-Resolved Observation of the Destination of Microinjected Potato Spindle Tuber Viroid (PSTVd) in the Abaxial Leaf Epidermal Cells of Nicotiana benthamiana. Microorganisms 2020; 8:microorganisms8122044. [PMID: 33419377 PMCID: PMC7765792 DOI: 10.3390/microorganisms8122044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
Viroids are single-stranded noncoding RNA molecules of 250–400 nucleotides that cause plant diseases. One of the two families of viroids is Pospiviroidae, the members of which replicate in the nuclei of host cells. To replicate in plants, viroids of Pospiviroidae must enter the nucleus. However, the nuclear import of viroids remains understudied. In this work, we documented the time-dependent characteristics of the changes in microinjected fluorescently labeled potato spindle tuber viroid (PSTVd). The cytoplasmic fluorescence disappeared gradually, with only nuclear fluorescence remaining as the PSTVd injected in the cytoplasm was imported into the nucleus. Through this work, we determined that the time for half-maximal nuclear accumulation of the viroid was about 23 min. Interestingly, we found some cells where the nuclear import did not occur, despite the high level of cytosolic viroid injected. In some cells, the injected viroids disappeared within 10–20 min. The nuclear import of PSTVd is not a simple concentration-dependent process but was probably under the regulation of diverse factors that may be missing from some cells used for our observation.
Collapse
Affiliation(s)
- Hyesu Seo
- Department of Molecular Biology, Dankook University, Chonan-si, Chungnam 31116, Korea;
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Woong June Park
- Department of Molecular Biology, Dankook University, Chonan-si, Chungnam 31116, Korea;
- Correspondence: ; Tel.: +82-41-550-3481
| |
Collapse
|
14
|
Shrestha A, Mishra AK, Matoušek J, Steinbachová L, Potěšil D, Nath VS, Awasthi P, Kocábek T, Jakse J, Drábková LZ, Zdráhal Z, Honys D, Steger G. Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. Int J Mol Sci 2020; 21:E8700. [PMID: 33218043 PMCID: PMC7698868 DOI: 10.3390/ijms21228700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Collapse
Affiliation(s)
- Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany;
| |
Collapse
|
15
|
Cottilli P, Belda-Palazón B, Adkar-Purushothama CR, Perreault JP, Schleiff E, Rodrigo I, Ferrando A, Lisón P. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Res 2019; 47:8649-8661. [PMID: 31392997 PMCID: PMC6895259 DOI: 10.1093/nar/gkz679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Viroids are naked RNAs that do not code for any known protein and yet are able to infect plants causing severe diseases. Because of their RNA nature, many studies have focused on the involvement of viroids in RNA-mediated gene silencing as being their pathogenesis mechanism. Here, the alterations caused by the Citrus exocortis viroid (CEVd) on the tomato translation machinery were studied as a new aspect of viroid pathogenesis. The presence of viroids in the ribosomal fractions of infected tomato plants was detected. More precisely, CEVd and its derived viroid small RNAs were found to co-sediment with tomato ribosomes in vivo, and to provoke changes in the global polysome profiles, particularly in the 40S ribosomal subunit accumulation. Additionally, the viroid caused alterations in ribosome biogenesis in the infected tomato plants, affecting the 18S rRNA maturation process. A higher expression level of the ribosomal stress mediator NAC082 was also detected in the CEVd-infected tomato leaves. Both the alterations in the rRNA processing and the induction of NAC082 correlate with the degree of viroid symptomatology. Taken together, these results suggest that CEVd is responsible for defective ribosome biogenesis in tomato, thereby interfering with the translation machinery and, therefore, causing ribosomal stress.
Collapse
Affiliation(s)
- Patrick Cottilli
- Instituto de Biología Molecular y Celular de Plantas. Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas. Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| | - Charith Raj Adkar-Purushothama
- RNA Group, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants & Buchmann Institute for Molecular Life Science, Goethe University; Frankfurt Institute for Advanced Studies; Frankfurt/Main 60438, Germany
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas. Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas. Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas. Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| |
Collapse
|
16
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
López-Carrasco A, Flores R. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro. RNA Biol 2017; 14:1046-1054. [PMID: 27574720 PMCID: PMC5680722 DOI: 10.1080/15476286.2016.1223005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/04/2023] Open
Abstract
With a minimal (250-400 nt), non-protein-coding, circular RNA genome, viroids rely on sequence/structural motifs for replication and colonization of their host plants. These motifs are embedded in a compact secondary structure whose elucidation is crucial to understand how they function. Viroid RNA structure has been tackled in silico with algorithms searching for the conformation of minimal free energy, and in vitro by probing in solution with RNases, dimethyl sulphate and bisulphite, and with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), which interrogates the RNA backbone at single-nucleotide resolution. However, in vivo approaches at that resolution have not been assayed. Here, after confirming by 3 termodynamics-based predictions and by in vitro SHAPE that the secondary structure adopted by the infectious monomeric circular (+) RNA of potato spindle tuber viroid (PSTVd) is a rod-like conformation with double-stranded segments flanked by loops, we have probed it in vivo with a SHAPE modification. We provide direct evidence that a similar, but not identical, rod-like conformation exists in PSTVd-infected leaves of Nicotiana benthamiana, verifying the long-standing view that this RNA accumulates in planta as a "naked" form rather than tightly associated with protecting host proteins. However, certain nucleotides of the central conserved region, including some of the loop E involved in key functions such as replication, are more SHAPE-reactive in vitro than in vivo. This difference is most likely due to interactions with proteins mediating some of these functions, or to structural changes promoted by other factors of the in vivo habitat.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
18
|
Brass JRJ, Owens RA, Matoušek J, Steger G. Viroid quasispecies revealed by deep sequencing. RNA Biol 2017; 14:317-325. [PMID: 28027000 PMCID: PMC5367258 DOI: 10.1080/15476286.2016.1272745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022] Open
Abstract
Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.
Collapse
Affiliation(s)
- Joseph R. J. Brass
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert A. Owens
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Jaroslav Matoušek
- Biology Centre, CAS, v. v. i., Institute of Plant Molecular Biology, Branišovská, České Budějovice, Czech Republic
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K. Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLoS Pathog 2016; 12:e1005936. [PMID: 27732664 PMCID: PMC5061435 DOI: 10.1371/journal.ppat.1005936] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Viroids are self replicating non-coding RNAs capable of infecting a wide range of plant hosts. They do not encode any proteins, thus the mechanism by which they escape plant defenses remains unclear. RNAi silencing is a major defense mechanism against virus infections, with the four DCL proteins being principal components of the pathway. We have used Nicotiana benthamiana as a model to study Potato spindle tuber viroid infection. This viroid is a member of the Pospiviroidae family and replicates in the nucleus via an asymmetric rolling circle mechanism. We have created knock-down plants for all four DCL genes and their combinations. Previously, we showed that DCL4 has a positive effect on PSTVd infectivity since viroid levels drop when DCL4 is suppressed. Here, we show that PSTVd levels remain decreased throughout infection in DCL4 knockdown plants, and that simultaneous knockdown of DCL1, DCL2 or DCL3 together with DCL4 cannot reverse this effect. Through infection of plants suppressed for multiple DCLs we further show that a combined suppression of DCL2 and DCL3 has a major effect in succumbing plant antiviral defense. Based on our results, we further suggest that Pospoviroids may have evolved to be primarily processed by DCL4 as it seems to be a DCL protein with less detrimental effects on viroid infectivity. These findings pave the way to delineate the complexity of the relationship between viroids and plant RNA silencing response.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
20
|
Wang Y, Qu J, Ji S, Wallace AJ, Wu J, Li Y, Gopalan V, Ding B. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II. THE PLANT CELL 2016; 28:1094-107. [PMID: 27113774 PMCID: PMC4904678 DOI: 10.1105/tpc.16.00100] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 05/05/2023]
Abstract
Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP PSTVd replication in the nucleoplasm generates (-)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (-)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Jie Qu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Shaoyi Ji
- College of Life Sciences, Peking University, Beijing, China
| | - Andrew J Wallace
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Jian Wu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Yi Li
- College of Life Sciences, Peking University, Beijing, China
| | - Venkat Gopalan
- The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Biao Ding
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
21
|
Dalakouras A, Dadami E, Wassenegger M. Viroid-induced DNA methylation in plants. Biomol Concepts 2015; 4:557-65. [PMID: 25436756 DOI: 10.1515/bmc-2013-0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, DNA methylation refers to the addition of a methyl group to the fifth atom in the six-atom ring of cytosine residues. At least in plants, DNA regions that become de novo methylated can be defined by homologous RNA molecules in a process termed RNA-directed DNA methylation (RdDM). RdDM was first discovered in viroid-infected plants. Viroids are pathogenic circular, non-coding, single-stranded RNA molecules. Members of the Pospiviroidae family replicate in the nucleus through double-stranded RNA intermediates, attracting the host RNA silencing machinery. The recruitment of this machinery results in the production of viroid-derived small RNAs (vd-sRNAs) that mediate RNA degradation and DNA methylation of cognate sequences. Here, we provide an overview of the cumulative data on the field of viroid-induced RdDM and discuss three possible scenarios concerning the mechanistic details of its establishment.
Collapse
|
22
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
23
|
Minoia S, Navarro B, Delgado S, Di Serio F, Flores R. Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Res 2015; 43:2313-25. [PMID: 25662219 PMCID: PMC4344493 DOI: 10.1093/nar/gkv034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While biogenesis of viroid RNAs is well-known, how they decay is restricted to data involving host RNA silencing. Here we report an alternative degradation pathway operating on potato spindle tuber viroid (PSTVd), the type species of nuclear-replicating viroids (family Pospiviroidae). Northern-blot hybridizations with full- and partial-length probes revealed a set of PSTVd (+) subgenomic (sg)RNAs in early-infected eggplant, some partially overlapping and reaching levels comparable to those of the genomic circular and linear forms. Part of the PSTVd (+) sgRNAs were also observed in Nicotiana benthamiana (specifically in the nuclei) and tomato, wherein they have been overlooked due to their low accumulation. Primer extensions of representative (+) sgRNAs failed to detect a common 5′ terminus, excluding that they could result from aborted transcription initiated at one specific site. Supporting this view, 5′- and 3′-RACE indicated that the (+) sgRNAs have 5′-OH and 3′-P termini most likely generated by RNase-mediated endonucleolytic cleavage of longer precursors. These approaches also unveiled PSTVd (−) sgRNAs with features similar to their (+) counterparts. Our results provide a mechanistic insight on how viroid decay may proceed in vivo during replication, and suggest that synthesis and decay of PSTVd strands might be coupled as in mRNA.
Collapse
Affiliation(s)
- Sofia Minoia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
24
|
Kovalskaya N, Hammond RW. Molecular biology of viroid-host interactions and disease control strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:48-60. [PMID: 25438785 DOI: 10.1016/j.plantsci.2014.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 06/04/2023]
Abstract
Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- USDA ARS BARC Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA
| | - Rosemarie W Hammond
- USDA ARS BARC Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
25
|
Abstract
Viroids are the smallest autonomous infectious nucleic acids known today. They are non-coding, unencapsidated, circular RNAs with sizes ranging from 250 to 400 nucleotides and infect certain plants. These RNAs are transcribed by rolling-circle mechanisms in the plant host's nuclei (Pospiviroidae) or chloroplasts (Avsunviroidae). Since viroids lack any open reading frame, their pathogenicity has for a long time been a conundrum. Recent findings, however, show that viroid infection is associated with the appearance of viroid-specific small RNA (vsRNA). These have sizes similar to endogenous small interfering RNA and microRNA and thus might alter the normal gene expression in the host plant. In this review we will summarize the current knowledge on vsRNA and discuss the current hypotheses how they connect to the induced symptoms, which vary dramatically, depending on both the plant cultivar and the viroid strain.
Collapse
Affiliation(s)
- Christian Hammann
- Heisenberg Research Group Ribogenetics, Technical University of Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
26
|
Bojić T, Beeharry Y, Zhang DJ, Pelchat M. Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J Gen Virol 2012; 93:1591-1600. [PMID: 22422064 DOI: 10.1099/vir.0.041574-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.e. YSPTSPS) located at the carboxy-terminal domain of the largest subunit of RNAP II, we established the interaction of tomato RNAP II with PSTVd RNA and showed that RNAP II associates with the left terminal domain of PSTVd (+) RNA. RNAP II did not interact with any of several PSTVd (-) RNAs tested. Deletion and site-directed mutagenesis of a shortened model PSTVd (+) RNA fragment were used to identify the role of specific nucleotides and structural motifs in this interaction. Our results provide evidence for the interaction of a RNAP II complex from a natural host with the rod-like conformation of the left terminal domain of PSTVd (+) RNA.
Collapse
Affiliation(s)
- Teodora Bojić
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Yasnee Beeharry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Da Jiang Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
27
|
Ding B. Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:362-75. [PMID: 21956936 DOI: 10.1002/wrna.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viroids are small, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic from cell to cell and from organ to organ to establish systemic infection. Viroids achieve nearly all of the biological functions by directly interacting with host cellular factors. Viroid replication, together with replication of human hepatitis delta virus, demonstrates the biological novelty and significance of RNA-dependent RNA polymerase activities of DNA-dependent RNA polymerases. Viroid systemic infection uncovers a new biological principle--the role of three-dimensional RNA structural motifs mediating RNA trafficking between specific cells. Viroid diseases are virtually the consequences of host gene regulation by noncoding RNAs. A viroid RNA has the highest in vivo mutation rate among all known nucleic acid replicons. The host range of many viroids is expanding, essentially as a result of continuing and fast evolution of noncoding sequences/structures to gain new biological functions. Here, I discuss recent progress in these areas, emphasizing the broad significance of viroid research to the discovery of fundamental biological principles.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Center for RNA Biology, and Molecular, Cellular and Developmental Biology Program, The Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Viroids: how to infect a host and cause disease without encoding proteins. Biochimie 2012; 94:1474-80. [PMID: 22738729 DOI: 10.1016/j.biochi.2012.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Despite being composed by a single-stranded, circular, non-protein-coding RNA of just 246-401 nucleotides (nt), viroids can incite in their host plants symptoms similar to those caused by DNA and RNA viruses, which have genomes at least 20-fold bigger and encode proteins. On the other hand, certain non-protein-coding plant satellite RNAs display structural similarities with viroids but for replication and transmission they need to parasitize specific helper viruses (modifying concomitantly the symptoms they induce). While phenotypic alterations accompanying infection by viruses may partly result from expressing the proteins they code for, how the non-protein-coding viroids (and satellite RNAs) cause disease remains a conundrum. Initial ideas on viroid pathogenesis focused on a direct interaction of the genomic RNA with host proteins resulting in their malfunction. With the advent of RNA silencing, it was alternatively proposed that symptoms could be produced by viroid-derived small RNAs (vd-sRNAs) -generated by the host defensive machinery- targeting specific host mRNA or DNA sequences for post-transcriptional or transcriptional gene silencing, respectively, a hypothesis that could also explain pathogenesis of non-protein-coding satellite RNAs. Evidence sustaining this view has been circumstantial, but recent data provide support for it in two cases: i) the yellow symptoms associated with a specific satellite RNA result from a 22-nt small RNA (derived from the 24-nt fragment of the satellite genome harboring the pathogenic determinant), which is complementary to a segment of the mRNA of the chlorophyll biosynthetic gene CHLI and targets it for cleavage by the RNA silencing machinery, and ii) two 21-nt vd-sRNAS containing the pathogenic determinant of the albino phenotype induced by a chloroplast-replicating viroid target for cleavage the mRNA coding for the chloroplastic heat-shock protein 90 via RNA silencing too. This evidence, which is compelling for the satellite RNA, does not exclude alternative mechanisms.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Eiras M, Nohales MA, Kitajima EW, Flores R, Daròs JA. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch Virol 2010; 156:529-33. [PMID: 21153748 DOI: 10.1007/s00705-010-0867-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022]
Abstract
Potato spindle tuber viroid (PSTVd) contains an element of tertiary structure -loop E- also present in eukaryotic 5S rRNA. The ribosomal protein L5 and transcription factor IIIA (TFIIIA) from Arabidopsis thaliana bind 5S rRNA in vitro and in vivo, mediating different functions that include nucleocytoplasmic transport and transcription activation, respectively. We show that A. thaliana L5 and TFIIIA also bind PSTVd (+) RNA in vitro with the same affinity as they bind 5S rRNA, whereas the affinity for a chloroplastic viroid is significantly lower. These two proteins might participate in the synthesis and delivery of PSTVd RNA in vivo.
Collapse
Affiliation(s)
- Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de Naranjos, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
30
|
Carbonell A, Flores R, Gago S. Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA. Nucleic Acids Res 2010; 39:2432-44. [PMID: 21097888 PMCID: PMC3064770 DOI: 10.1093/nar/gkq1051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg(2+) concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg(2+). Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.
Collapse
Affiliation(s)
- Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, Campus Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022 Valencia, Spain
| | | | | |
Collapse
|
31
|
Vachev T, Ivanova D, Minkov I, Tsagris M, Gozmanova M. Trafficking of the Potato spindle tuber viroid between tomato and Orobanche ramosa. Virology 2010; 399:187-93. [DOI: 10.1016/j.virol.2009.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/11/2009] [Accepted: 12/12/2009] [Indexed: 10/19/2022]
|
32
|
Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 2010; 84:2477-89. [PMID: 20015979 PMCID: PMC2820905 DOI: 10.1128/jvi.02336-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/08/2009] [Indexed: 12/23/2022] Open
Abstract
The detection of viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs (siRNAs, 21 to 24 nucleotides [nt]) in plants infected by nuclear-replicating members of the family Pospiviroidae (type species, Potato spindle tuber viroid [PSTVd]) indicates that they are inducers and targets of the RNA-silencing machinery of their hosts. RNA-dependent RNA polymerase 6 (RDR6) catalyzes an amplification circuit producing the double-stranded precursors of secondary siRNAs. Recently, the role of RDR6 in restricting systemic spread of certain RNA viruses and precluding their invasion of the apical growing tip has been documented using RDR6-silenced Nicotiana benthamiana (NbRDR6i) plants. Here we show that RDR6 is also engaged in regulating PSTVd levels: accumulation of PSTVd genomic RNA was increased in NbRDR6i plants with respect to the wild-type controls (Nbwt) early in infection, whereas this difference decreased or disappeared in later infection stages. Moreover, in situ hybridization revealed that RDR6 is involved in restricting PSTVd access in floral and vegetative meristems, thus providing firm genetic evidence for an antiviroid RNA silencing mechanism. RNA gel blot hybridization and deep sequencing showed in wt and RDR6i backgrounds that PSTVd sRNAs (i) accumulate to levels paralleling their genomic RNA, (ii) display similar patterns with prevailing 22- or 21-nt plus-strand species, and (iii) adopt strand-specific hot spot profiles along the genomic RNA. Therefore, the surveillance mechanism restraining entry of some RNA viruses into meristems likely also controls PSTVd access in N. benthamiana. Unexpectedly, deep sequencing also disclosed in NbRDR6i plants a profile of RDR6-derived siRNA dominated by 21-nt plus-strand species mapping within a narrow window of the hairpin RNA stem expressed transgenically for silencing RDR6, indicating that minus-strand siRNAs silencing the NbRDR6 mRNA represent a minor fraction of the total siRNA population.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Angel-Emilio Martínez de Alba
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Beatriz Navarro
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Andreas Gisel
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Ricardo Flores
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
33
|
Taliansky ME, Brown JWS, Rajamäki ML, Valkonen JPT, Kalinina NO. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 2010; 77:119-58. [PMID: 20951872 PMCID: PMC7149663 DOI: 10.1016/b978-0-12-385034-8.00005-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleolus is a dynamic subnuclear body with roles in ribosome subunit biogenesis, mediation of cell-stress responses, and regulation of cell growth. An increasing number of reports reveal that similar to the proteins of animal viruses, many plant virus proteins localize in the nucleolus to divert host nucleolar proteins from their natural functions in order to exert novel role(s) in the virus infection cycle. This chapter will highlight studies showing how plant viruses recruit nucleolar functions to facilitate virus translation and replication, virus movement and assembly of virus-specific ribonucleoprotein (RNP) particles, and to counteract plant host defense responses. Plant viruses also provide a valuable tool to gain new insights into novel nucleolar functions and processes. Investigating the interactions between plant viruses and the nucleolus will facilitate the design of novel strategies to control plant virus infections.
Collapse
Affiliation(s)
- M E Taliansky
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T, Bisztray G, Di Serio F, Burgyán J. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One 2009; 4:e7686. [PMID: 19890399 PMCID: PMC2767511 DOI: 10.1371/journal.pone.0007686] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/07/2009] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Viroids are circular, highly structured, non-protein-coding RNAs that, usurping cellular enzymes and escaping host defense mechanisms, are able to replicate and move through infected plants. Similarly to viruses, viroid infections are associated with the accumulation of viroid-derived 21-24 nt small RNAs (vd-sRNAs) with the typical features of the small interfering RNAs characteristic of RNA silencing, a sequence-specific mechanism involved in defense against invading nucleic acids and in regulation of gene expression in most eukaryotic organisms. METHODOLOGY/PRINCIPAL FINDINGS To gain further insights on the genesis and possible role of vd-sRNAs in plant-viroid interaction, sRNAs isolated from Vitis vinifera infected by Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1) were sequenced by the high-throughput platform Solexa-Illumina, and the vd-sRNAs were analyzed. The large majority of HSVd- and GYSVd1-sRNAs derived from a few specific regions (hotspots) of the genomic (+) and (-) viroid RNAs, with a prevalence of those from the (-) strands of both viroids. When grouped according to their sizes, vd-sRNAs always assumed a distribution with prominent 21-, 22- and 24-nt peaks, which, interestingly, mapped at the same hotspots. CONCLUSIONS/SIGNIFICANCE These findings show that different Dicer-like enzymes (DCLs) target viroid RNAs, preferentially accessing to the same viroid domains. Interestingly, our results also suggest that viroid RNAs may interact with host enzymes involved in the RNA-directed DNA methylation pathway, indicating more complex scenarios than previously thought for both vd-sRNAs genesis and possible interference with host gene expression.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino and Bari, Italy
| | - Vitantonio Pantaleo
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino and Bari, Italy
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Simon Moxon
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - Francesco Di Serio
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino and Bari, Italy
| | - József Burgyán
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino and Bari, Italy
| |
Collapse
|
35
|
Owens RA, Hammond RW. Viroid pathogenicity: one process, many faces. Viruses 2009; 1:298-316. [PMID: 21994551 PMCID: PMC3185495 DOI: 10.3390/v1020298] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 12/28/2022] Open
Abstract
Despite the non-coding nature of their small RNA genomes, the visible symptoms of viroid infection resemble those associated with many plant virus diseases. Recent evidence indicates that viroid-derived small RNAs acting through host RNA silencing pathways play a key role in viroid pathogenicity. Host responses to viroid infection are complex, involving signaling cascades containing host-encoded protein kinases and crosstalk between hormonal and defense-signaling pathways. Studies of viroid-host interaction in the context of entire biochemical or developmental pathways are just beginning, and many working hypotheses have yet to be critically tested.
Collapse
Affiliation(s)
- Robert A. Owens
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD 20705, USA; E-mail:
| | - Rosemarie W. Hammond
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD 20705, USA; E-mail:
| |
Collapse
|
36
|
Hammond RW, Zhao Y. Modification of tobacco plant development by sense and antisense expression of the tomato viroid-induced AGC VIIIa protein kinase PKV suggests involvement in gibberellin signaling. BMC PLANT BIOLOGY 2009; 9:108. [PMID: 19689802 PMCID: PMC2735738 DOI: 10.1186/1471-2229-9-108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/18/2009] [Indexed: 05/10/2023]
Abstract
BACKGROUND The serine-threonine protein kinase gene, designated pkv (protein kinase- viroid induced) was previously found to be transcriptionally activated in tomato plants infected with the plant pathogen Potato spindle tuber viroid (PSTVd). These plants exhibited symptoms of stunting, and abnormal development of leaf, root, and vascular tissues. The encoded protein, PKV, is a novel member of the AGC VIIIa group of signal-transducing protein kinases; however, the role of PKV in plant development is unknown. In this communication, we report the phenotypic results of over expression and silencing of pkv in transgenic tobacco. RESULTS Over expression of pkv in Nicotiana tabacum cv. Xanthi (tobacco) resulted in stunting, reduced root formation, and delay in flowering, phenotypes similar to symptoms of PSTVd infection of tomato. In addition, homozygous T2 tobacco plants over expressing PKV were male sterile. Antisense expression of pkv, on the other hand, resulted in plants that were taller than non-transformed plants, produced an increased number of flowers, and were fertile. Exogenous application of GA3 stimulated stem elongation in the stunted, sense-expressing plants. PKV sense and antisense expression altered transcript levels of GA biosynthetic genes and genes involved in developmental and signaling pathways, but not genes involved in salicylic acid- or jasmonic acid-dependent pathways. Our data provide evidence suggesting that PKV plays an important role in a GA signaling pathway that controls plant height and fertility. CONCLUSION We have found that the over expression of the tomato protein kinase PKV resulted in stunting, modified vascular tissue development, reduced root formation, and male sterility in tobacco, and we propose that PKV regulates plant development by functioning in critical signaling pathways involved in gibberellic acid metabolism.
Collapse
Affiliation(s)
- Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| |
Collapse
|
37
|
Gómez G, Martínez G, Pallás V. Interplay between viroid-induced pathogenesis and RNA silencing pathways. TRENDS IN PLANT SCIENCE 2009; 14:264-9. [PMID: 19375972 DOI: 10.1016/j.tplants.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/20/2009] [Accepted: 03/02/2009] [Indexed: 05/22/2023]
Abstract
Of all known plant pathogens, viroids have the lowest biological complexity. Their genome consists of a naked RNA without protein-encoding capacity. However, viroids contain sufficient genetic information to establish infection in susceptible hosts. The process by which this tiny RNA subverts the plant cell machinery by coercing the host to express symptoms of viroid infection is the 'Holy Grail' that has been searched for since the first viroid-induced disease was described. Recently, a large body of evidence has led to the emergent view that RNA silencing has a crucial role in viroid pathogenesis and evolution. Here, we chronologically analyse the relevant findings supporting this idea and propose a model to explain the possible interrelation between the trans-acting small interfering RNA (ta-siRNA) biogenesis pathway and viroid replication and pathogenesis.
Collapse
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Edificio 8 E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
38
|
Abstract
Viroids are single-stranded, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic cell-to-cell through plasmodesmata and long distance through the phloem to establish systemic infection. They also cause diseases in certain hosts. All functions are mediated directly by the viroid RNA genome or genome-derived RNAs. I summarize recent advances in the understanding of viroid structures and cellular factors enabling these functions, emphasizing conceptual developments, major knowledge gaps, and future directions. Newly emerging experimental systems and research tools are discussed that are expected to enable significant progress in a number of key areas. I highlight examples of groundbreaking contributions of viroid research to the development of new biological principles and offer perspectives on using viroid models to continue advancing some frontiers of life science.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
39
|
Abraitiene A, Zhao Y, Hammond R. Nuclear targeting by fragmentation of the potato spindle tuber viroid genome. Biochem Biophys Res Commun 2008; 368:470-5. [PMID: 18211806 DOI: 10.1016/j.bbrc.2008.01.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus.
Collapse
Affiliation(s)
- Asta Abraitiene
- Eukaryote Genetic Engineering Laboratory, Institute of Biotechnology, Vilnius, Lithuania
| | | | | |
Collapse
|
40
|
Abstract
Viroids, as a consequence of not encoding any protein, are extremely dependent on their hosts. Replication of these minimal genomes, composed exclusively by a circular RNA of 246-401 nt, occurs in the nucleus (family Pospiviroidae) or in the chloroplast (family Avsunviroidae) by an RNA-based rolling-circle mechanism with three steps: (1) synthesis of longer-than-unit strands catalyzed by host DNA-dependent RNA polymerases recruited and redirected to transcribe RNA templates, (2) cleavage to unit-length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization through an RNA ligase or autocatalytically. This consistent but still fragmentary picture has emerged from a combination of studies with in vitro systems (analysis of RNA preparations from infected plants, transcription assays with nuclear and chloroplastic fractions, characterization of enzymes and ribozymes mediating cleavage and ligation of viroid strands, dissection of 5' terminal groups of viroid strands, and in situ hybridization and microscopy of subcellular fractions and tissues), and in vivo systems (tissue infiltration studies, protoplasts, studies in planta and use of transgenic plants expressing viroid RNAs).
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
41
|
Kalantidis K, Denti MA, Tzortzakaki S, Marinou E, Tabler M, Tsagris M. Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J Virol 2007; 81:12872-80. [PMID: 17898061 PMCID: PMC2169090 DOI: 10.1128/jvi.00974-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 09/16/2007] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, circular, single-stranded RNA molecules that, while not coding for any protein, cause several plant diseases. Viroids rely for their infectious cycle on host proteins, most of which are likely to be involved in endogenous RNA-mediated phenomena. Therefore, characterization of host factors interacting with the viroid may contribute to the elucidation of RNA-related pathways of the hosts. Potato spindle tuber viroid (PSTVd) infects several members of the Solanaceae family. In an RNA ligand screening we have previously isolated the tomato protein Virp1 by its ability to specifically interact with PSTVd positive-strand RNA. Virp1 is a bromodomain-containing protein with an atypical RNA binding domain and a nuclear localization signal. Here we investigate the role of Virp1 in the viroid infection cycle by the use of transgenic lines of Nicotiana tabacum and Nicotiana benthamiana that either overexpress the tomato Virp1 RNA or suppress the orthologous Nicotiana genes through RNA silencing. Plants of the Virp1-suppressed lines were not infected by PSTVd or Citrus exocortis viroid through mechanical inoculation, indicating a major role of Virp1 in viroid infection. On the other hand, overexpression of tomato Virp1 in N. tabacum and N. benthamiana plants did not affect PSTVd KF 440-2 infectivity or symptomatology in these species. Transfection experiments with isolated protoplasts revealed that Virp1-suppressed cells were unable to sustain viroid replication, suggesting that resistance to viroid infection in Virp1-suppressed plants is likely the result of cell-autonomous events.
Collapse
Affiliation(s)
- K Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
| | | | | | | | | | | |
Collapse
|
42
|
Nucleolar targeting of hepatitis delta antigen abolishes its ability to initiate viral antigenomic RNA replication. J Virol 2007; 82:692-9. [PMID: 17989182 DOI: 10.1128/jvi.01155-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.
Collapse
|
43
|
Rodio ME, Delgado S, De Stradis A, Gómez MD, Flores R, Di Serio F. A viroid RNA with a specific structural motif inhibits chloroplast development. THE PLANT CELL 2007; 19:3610-26. [PMID: 18055612 PMCID: PMC2174877 DOI: 10.1105/tpc.106.049775] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peach latent mosaic viroid (PLMVd) is a chloroplast-replicating RNA that propagates in its natural host, peach (Prunus persica), as a complex mixture of variants, some of which are endowed with specific structural and pathogenic properties. This is the case of variant PC-C40, with an insertion of 12 to 13 nucleotides that folds into a hairpin capped by a U-rich loop, which is responsible for an albino-variegated phenotype known as peach calico (PC). We have applied a combination of ultrastructural, biochemical, and molecular approaches to dissect the pathogenic effects of PC-C40. Albino sectors of leaves infected with variant PC-C40 presented palisade cells that did not completely differentiate into a columnar layer and altered plastids with irregular shape and size and with rudimentary thylakoids, resembling proplastids. Furthermore, impaired processing and accumulation of plastid rRNAs and, consequently, of the plastid translation machinery was observed in the albino sectors of leaves infected with variant PC-C40 but not in the adjacent green areas or in leaves infected by mosaic-inducing or latent variants (including PC-C40Delta, in which the 12- to 13-nucleotide insertion was deleted). Protein gel blot and RT-PCR analyses showed that the altered plastids support the import of nucleus-encoded proteins, including a chloroplast RNA polymerase, the transcripts of which were detected. RNA gel blot and in situ hybridizations revealed that PLMVd replicates in the albino leaf sectors and that it can invade the shoot apical meristem and induce alterations in proplastids, bypassing the RNA surveillance system that restricts the entry of a nucleus-replicating viroid and most RNA viruses. Therefore, a non-protein-coding RNA with a specific structural motif can interfere with an early step of the chloroplast developmental program, leading ultimately to an albino-variegated phenotype resembling that of certain variegated mutants in which plastid rRNA maturation is also impaired. Our results highlight the potential of viroids for further dissection of RNA trafficking and pathogenesis in plants.
Collapse
Affiliation(s)
- Maria-Elena Rodio
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del Consiglio Nazionale delle Ricerche, Sezione di Bari, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Owens RA. Potato spindle tuber viroid: the simplicity paradox resolved? MOLECULAR PLANT PATHOLOGY 2007; 8:549-560. [PMID: 20507521 DOI: 10.1111/j.1364-3703.2007.00418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
TAXONOMY Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. PHYSICAL PROPERTIES Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro. Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt. HOSTS AND SYMPTOMS: The natural host range of PSTVd-cultivated potato, certain other Solanum spp., and avocado-appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.
Collapse
Affiliation(s)
- Robert A Owens
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture/Agricultural Research Service-Beltsville, MD 20705, USA.
| |
Collapse
|
45
|
Gómez G, Pallás V. A peptide derived from a single-modified viroid-RNA can be used as an "in vivo" nucleolar marker. J Virol Methods 2007; 144:169-71. [PMID: 17570537 DOI: 10.1016/j.jviromet.2007.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/04/2007] [Accepted: 04/25/2007] [Indexed: 11/19/2022]
Abstract
Viroids are small, single-stranded, circular, non-coding pathogenic RNAs. Hop stunt viroid (HSVd) is characterized by possesses rod-like structure and replicate in the host nuclei. Green fluorescent protein (GFP) fusions with transit sequences or entire proteins can be used for deliberate labelling of particular cell compartments. Different GFP-fusions have been obtained to selectively illuminate different organelles and membranes in many cell types. However, as far as we know, examples for established efficient markers for nucleoli are scarce. In this work, a viroid-RNA was made translatable by inserting an ATG at position 1 and fused to the GFP. The results showed that the resultant fusion can be used as an efficient "in vivo" nucleolar marker in "real time" cellular observations. Thus, this construct can be a very useful tool to study processes related with nucleolus functions.
Collapse
Affiliation(s)
- G Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | | |
Collapse
|
46
|
Eiras M, Kitajima EW, Flores R, Daròs JA. Existence in vivo of the loop E motif in potato spindle tuber viroid RNA. Arch Virol 2007; 152:1389-93. [PMID: 17370107 DOI: 10.1007/s00705-007-0952-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
In vitro experiments have previously identified in potato spindle tuber viroid (PSTVd), the type member of the nuclear viroids, an element of local tertiary structure termed loop E. Here, by direct UV irradiation of PSTVd-infected tomato tissue and subsequent RNA analysis by denaturing polyacrylamide gel electrophoresis, northern blot hybridization and primer extension, we report that PSTVd (+) RNA also forms the loop E in vivo. These results provide strong support for the physiological relevance of this structural motif, which is involved in a wide range of functions including replication, host specificity and pathogenesis.
Collapse
Affiliation(s)
- M Eiras
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
47
|
Abstract
The nucleolus is a dynamic subnuclear structure that is crucial to the successful functioning of a cell. Its functions include ribosomal RNA synthesis, cell growth and cell-cycle control as well as responding to cellular stress. Recent studies show that the nucleolus is not a steady-state structure but instead is made up of numerous protein–protein and protein–nucleic-acid interactions that are constantly changing in response to the metabolic conditions of the cell. Many different viruses target the nucleolus to disrupt host-cell function and to recruit cellular proteins to aid in virus replication. The study of viral-protein trafficking to the nucleolus and the interaction of viral proteins with nucleolar proteins is providing many insights into the cell biology of the nucleolus. Because the nucleolus is fundamental to the life cycle of many viruses, disrupting the interaction between the nucleolus and the virus could lead to the design of novel therapeutic strategies.
RNA viruses, particularly positive-strand RNA viruses, interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Here, Julian Hiscox reviews the latest data on RNA-virus interactions with this dynamic subnuclear structure. The nucleolus is a dynamic subnuclear structure with roles in ribosome subunit biogenesis, mediation of cell-stress responses and regulation of cell growth. The proteome and structure of the nucleolus are constantly changing in response to metabolic conditions. RNA viruses interact with the nucleolus to usurp host-cell functions and recruit nucleolar proteins to facilitate virus replication. Investigating the interactions between RNA viruses and the nucleolus will facilitate the design of novel anti-viral therapies, such as recombinant vaccines and therapeutic molecular interventions, and also contribute to a more detailed understanding of the cell biology of the nucleolus.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, Garstang Building, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
48
|
Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 2007; 81:2980-94. [PMID: 17202210 PMCID: PMC1865973 DOI: 10.1128/jvi.02339-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022] Open
Abstract
RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.
Collapse
Affiliation(s)
- Asuka Itaya
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ding B, Itaya A. Viroid: a useful model for studying the basic principles of infection and RNA biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:7-20. [PMID: 17249418 DOI: 10.1094/mpmi-20-0007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus 43210, USA.
| | | |
Collapse
|
50
|
Daròs JA, Elena SF, Flores R. Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Rep 2006; 7:593-8. [PMID: 16741503 PMCID: PMC1479586 DOI: 10.1038/sj.embor.7400706] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/05/2006] [Indexed: 11/09/2022] Open
Abstract
Viroids are structurally, functionally and evolutionarily different from viruses. Despite their small, non-protein-encoding, single-stranded circular RNA genome, viroids can infect higher plants and cause certain diseases. Members of the two viroid families, Pospiviroidae and Avsunviroidae, have evolved to usurp the transcriptional machinery of their host nuclei and chloroplasts, respectively, in which replication proceeds through a rolling-circle mechanism involving RNA polymerization, cleavage and ligation. Remarkably, viroids subvert certain DNA-dependent RNA polymerases to transcribe RNA templates, and, in the family Avsunviroidae, post-transcriptional cleavage is catalysed by hammerhead ribozymes. Viroids are models for studying RNA evolution and for analysing RNA transport in plants, because they can move intracellularly, intercellularly through plasmodesmata and to distal parts of the plant through the vascular system. Viroids elicit RNA-silencing phenomena, which might mediate some of their biological properties, including pathogenesis. As some viroids behave as catalytic RNAs, they are regarded as remnants of the RNA world.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Tel: +34 963 877 861; Fax: +34 963 877 859;
| |
Collapse
|