1
|
Liu X, Gao S, Cheng A, Lou H. Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii. PLANTA 2025; 261:28. [PMID: 39786623 DOI: 10.1007/s00425-024-04602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
MAIN CONCLUSION The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization. Although type III polyketide synthases (PKS) are widely studied in seed plants, the related enzymes in Selaginella remain poorly characterized. Here, eight type III PKSs were identified in the Selaginella moellendorffii genome and classified into three clusters. Two PKSs were selected for further research based on their phylogenetic relationships and protein sequence similarity. Functional studies revealed that they were chalcone synthase (SmCHS) and anther-specific CHS-like enzyme (SmASCL). These enzymes are involved in the biosynthesis of flavonoids and sporopollenin, respectively. Their sequence information and enzymatic activity are similar to the orthologs in other plants. Phylogenetic analysis revealed that the ASCL and CHS enzymes were separated into two clades from the Bryophyta. These results suggest that CHS and ASCL emerged in the first land plants and then remained conserved during plant evolution. To study the structural basis of the enzymatic function of SmASCL, a series of mutants were constructed. The number of condensation reactions catalyzed by the P210L/Y211D and I200V/G201T double mutants exceeds that of the wild-type enzyme. Our study provides insight into the characteristics and functions of type III PKSs in S. moellendorffii. It also offers clues for a deeper understanding of the relationship between active sites and the enzymatic function of ASCLs.
Collapse
Affiliation(s)
- Xinyan Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Aixia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| | - Hongxiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Yu S, Li P, Liu H, Zhang X, Gao Y, Liu J, Yuan C, Liu X, Yao Y, Song L, Zhao J. A CCA1-like MYB subfamily member CsMYB128 participates in chilling sensitivity and cold tolerance in tea plants (Camellia sinensis). Int J Biol Macromol 2025; 294:139473. [PMID: 39756759 DOI: 10.1016/j.ijbiomac.2025.139473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB subfamily in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress. Antisense knockdown of CsMYB128 in tea buds rendered cold tolerance in cold tolerance tests. Metabolite profiling, yeast hybrid and promoter trans-activation assays further demonstrated that CsMYB128 negatively regulated flavonol biosynthesis by repressing CsFLS1 in flavonol biosynthesis and CsCBF1 in cold tolerance. Given CsCBF1 also activated CsMYB128 transcription, the negative feedback regulation loop indicates a balance between tea plant growth promoted by CsMYB128 and cold tolerance meanwhile growth inhibition by CsCBF1. Moreover, CsICE1 interacted with and inhibited CsMYB128 repressor activity to promote cold tolerance. CsMYB128 is thus characterized as an early cold-responsive gene negatively regulating tea plant cold response and balancing tea plant growth and cold tolerance. This study provides insights into the roles of CCA1-like subfamily MYB TFs in regulating tea plant growth and interactions with environments.
Collapse
Affiliation(s)
- Shuwei Yu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Hongjie Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiaojia Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Gao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaojiao Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changbo Yuan
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinyu Liu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuantao Yao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lubin Song
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Zeng D, Qin R, Tang L, Jing C, Wen J, He P, Zhang J. Enrichment of rice endosperm with anthocyanins by endosperm-specific expression of rice endogenous genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109428. [PMID: 39721185 DOI: 10.1016/j.plaphy.2024.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
A diet rich in anthocyanins can benefit human health against a broad spectrum of human diseases due to the high antioxidant activities of anthocyanins. Enrichment of anthocyanins in the starchy endosperm of rice is an effective solution to provide nutritional food in human diets. However, previous attempts failed to engineer anthocyanin biosynthesis in the rice endosperm by transgenic expression of rice endogenous genes. In this study, four rice endogenous genes, OsDFR (encoding dihydroflavonol 4-reductase), OsRb (encoding a bHLH family transcription factor), OsC1 (encoding an R2R3-MYB-type transcription factor) and OsPAC1 (encoding a WD40 class protein), were employed to rebuild the anthocyanin biosynthesis pathway in the rice endosperm. Endosperm-specific expression of OsDFR-OsRb-OsC1 (DRC) or OsDFR-OsPAC1-OsRb-OsC1 (DPRC) resulted in transgenic rice germplasm with dark purple grains. The expression of endogenous anthocyanin biosynthesis-related genes was significantly upregulated in the transgenic lines. Metabolomics analysis revealed a substantial increase in flavonoids flux, including 12 anthocyanins, in the polished grains of these transgenic lines. Our findings demonstrated that ectopic expressing a minimal set of three rice endogenous genes enabled de novo anthocyanin biosynthesis in the rice endosperm. This study contributes valuable insights into the molecular mechanisms underlying rice organ coloration and provides valuable guidance for future anthocyanin biofortification in crops.
Collapse
Affiliation(s)
- Dongdong Zeng
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Ran Qin
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lin Tang
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Cuiyuan Jing
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiahui Wen
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng He
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhang
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Hamade K, Fliniaux O, Fontaine JX, Molinié R, Herfurth D, Mathiron D, Sarazin V, Mesnard F. Investigation of the reproducibility of the treatment efficacy of a commercial bio stimulant using metabolic profiling on flax. Metabolomics 2024; 20:122. [PMID: 39487363 PMCID: PMC11530474 DOI: 10.1007/s11306-024-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION AND OBJECTIVES Since the use of a bio stimulant should provide a response to a problem that depends on the production system implemented (crops, plant model, soil, climate, the farmer's practices…), the agricultural sector is facing concomitant challenges of choosing the best bio stimulant that suits their needs. Thus, understanding bio stimulant-plant interactions, at molecular level, using metabolomics approaches is a prerequisite, for the development of a bio stimulant, leading to an effective exploration and application of formulations in agriculture. AGRO-K®, is commercialized as a plant-based bio stimulant that improve vigor and enhance resistance to lodging in cereal crops. A recent previous untargeted metabolomics study has demonstrated the ability of this bio stimulant to improve wheat resistance to lodging, in real open-field conditions. However, the reproducibility of the impact of this bio stimulant in other filed crops is not yet investigated. METHODS Therefore, the present study aimed to assess the changes in primary and secondary metabolites in the roots, stems, and leaves of fiber flax (Linum usitatissimum L), treated with the bio stimulant, using NMR and LC-MS-based untargeted metabolomics approach. RESULTS AND CONCLUSIONS In addition to the previous result conducted in wheat, the present analysis seemed to show that this bio stimulant led to a similar pathway enhancement in flax. The pathways which seem to be reproducibly impacted are hydroxycinnamic acid amides (HCAAs), phenylpropanoids and flavonoids. Impacting these pathways enhance root growth and elongation and cell wall lignification, which can aid in preventing crop lodging. These results confirm that HCAAs, flavonoids, and phenylpropanoids could serve as signatory biomarkers of the impact of AGRO-K® on improving lodging resistance across various plant species.
Collapse
Affiliation(s)
- Kamar Hamade
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, Amiens, 80000, France
- , AgroStation, Rue de la Station, Aspach-le-Bas, 68700, France
| | - Ophelie Fliniaux
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, Amiens, 80000, France
| | - Jean-Xavier Fontaine
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, Amiens, 80000, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, Amiens, 80000, France
| | - Damien Herfurth
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, Amiens, 80000, France
| | - David Mathiron
- Plateforme Analytique, University of Picardie Jules Verne, Amiens, 80000, France
| | - Vivien Sarazin
- , AgroStation, Rue de la Station, Aspach-le-Bas, 68700, France
| | - Francois Mesnard
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, Amiens, 80000, France.
| |
Collapse
|
5
|
Choudhary N, Pucker B. Conserved amino acid residues and gene expression patterns associated with the substrate preferences of the competing enzymes FLS and DFR. PLoS One 2024; 19:e0305837. [PMID: 39196921 PMCID: PMC11356453 DOI: 10.1371/journal.pone.0305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/05/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Flavonoids, an important class of specialized metabolites, are synthesized from phenylalanine and present in almost all plant species. Different branches of flavonoid biosynthesis lead to products like flavones, flavonols, anthocyanins, and proanthocyanidins. Dihydroflavonols form the branching point towards the production of non-colored flavonols via flavonol synthase (FLS) and colored anthocyanins via dihydroflavonol 4-reductase (DFR). Despite the wealth of publicly accessible data, there remains a gap in understanding the mechanisms that mitigate competition between FLS and DFR for the shared substrate, dihydroflavonols. RESULTS An angiosperm-wide comparison of FLS and DFR sequences revealed the amino acids at positions associated with the substrate specificity in both enzymes. A global analysis of the phylogenetic distribution of these amino acid residues revealed that monocots generally possess FLS with Y132 (FLSY) and DFR with N133 (DFRN). In contrast, dicots generally possess FLSH and DFRN, DFRD, and DFRA. DFRA, which restricts substrate preference to dihydrokaempferol, previously believed to be unique to strawberry species, is found to be more widespread in angiosperms and has evolved independently multiple times. Generally, angiosperm FLS appears to prefer dihydrokaempferol, whereas DFR appears to favor dihydroquercetin or dihydromyricetin. Moreover, in the FLS-DFR competition, the dominance of one over the other is observed, with typically only one gene being expressed at any given time. CONCLUSION This study illustrates how almost mutually exclusive gene expression and substrate-preference determining residues could mitigate competition between FLS and DFR, delineates the evolution of these enzymes, and provides insights into mechanisms directing the metabolic flux of the flavonoid biosynthesis, with potential implications for ornamental plants and molecular breeding strategies.
Collapse
Affiliation(s)
- Nancy Choudhary
- Institute of Plant Biology & BRICS, Plant Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Institute of Plant Biology & BRICS, Plant Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Cao Y, Han Z, Zhang Z, He L, Huang C, Chen J, Dai F, Xuan L, Yan S, Si Z, Hu Y, Zhang T. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. PLANT COMMUNICATIONS 2024; 5:100938. [PMID: 38689494 PMCID: PMC11369780 DOI: 10.1016/j.xplc.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
Collapse
Affiliation(s)
- Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
7
|
Huang Y, Zhai L, Chai X, Liu Y, Lv J, Pi Y, Gao B, Wang X, Wu T, Zhang X, Han Z, Wang Y. Bacillus B2 promotes root growth and enhances phosphorus absorption in apple rootstocks by affecting MhMYB15. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1880-1899. [PMID: 38924231 DOI: 10.1111/tpj.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Due to the chelation of phosphorus in the soil, it becomes unavailable for plant growth and development. The mechanisms by which phosphorus-solubilizing bacteria activate immobilized phosphorus to promote the growth and development of woody plants, as well as the intrinsic molecular mechanisms, are not clear. Through the analysis of microbial communities in the rhizosphere 16S V3-V4 and a homologous gene encoding microbial alkaline phosphomonoesterase (phoD) in phosphate-efficient (PE) and phosphate-inefficient apple rootstocks, it was found that PE significantly enriched beneficial rhizobacteria. The best phosphorus-solubilizing bacteria, Bacillus sp. strain 7DB1 (B2), was isolated, purified, and identified from the rhizosphere soil of PE rootstocks. Incubating with Bacillus B2 into the rhizosphere of apple rootstocks significantly increased the soluble phosphorus and flavonoid content in the rhizosphere soil. Simultaneously, this process stimulates the root development of the rootstocks and enhances plant phosphorus uptake. After root transcriptome sequencing, candidate transcription factor MhMYB15, responsive to Bacillus B2, was identified through heatmap and co-expression network analysis. Yeast one-hybrid, electrophoretic mobility shift assay, and LUC assay confirmed that MhMYB15 can directly bind to the promoter regions of downstream functional genes, including chalcone synthase MhCHS2 and phosphate transporter MhPHT1;15. Transgenic experiments with MhMYB15 revealed that RNAi-MhMYB15 silenced lines failed to induce an increase in flavonoid content and phosphorus levels in the roots under the treatment of Bacillus B2, and plant growth was slower than the control. In conclusion, MhMYB15 actively responds to Bacillus B2, regulating the accumulation of flavonoids and the uptake of phosphorus, thereby influencing plant growth and development.
Collapse
Affiliation(s)
- Yimei Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Yao Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ying Pi
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Beibei Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| |
Collapse
|
8
|
Chen S, Qiu G. Physiological and multi-omics analysis reveals the influence of copper on Halophila beccarii Asch. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108785. [PMID: 38824692 DOI: 10.1016/j.plaphy.2024.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
High concentrations of copper can pollute coastal waters, primarily from agricultural runoff and mining activities, which can harm marine organisms, including seagrasses. The molecular mechanism of copper toxicity to seagrass currently remains unclear. To determine the response to copper, physiological and multi-omic analyses were conducted to explore the molecular mechanism by which copper affects the global threatened seagrass Halophila beccarii Asch. Excessive copper stress causes oxidative damage and stimulates the activity of the antioxidant enzyme system to remove excess reactive oxygen species (ROS), thereby reducing the damage caused by copper stress. Cu increases the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), glutathione peroxidase (EC 1.11.1.9), ascorbate oxidase (EC 1.10.3.3), glutathione reductase (EC 1.6.4.2), and dehydroascorbate reductase (EC 1.8.5.1) and the content of malondialdehyde and reduces the activity of monodehydroascorbate reductase (EC 1.6.5.4). Under copper stress, H. beccarii upregulates the metabolic pathways of steroid biosynthesis and cutin, suberin, and wax biosynthesis, downregulates the metabolic pathways of arginine and proline metabolism and fructose and mannose metabolism; the levels of expression of the ribosome-related genes; upregulates the levels of expression of circadian rhythm-related proteins and downregulates the levels of glutathione metabolism and the proteins related to carbon fixation. This study provides new insights into the response of seagrass to copper stress and reports potential candidate metabolites, genes, and proteins that can be considered as biomarkers to improve the protection and management of seagrass meadows.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| |
Collapse
|
9
|
Shahbazi M, Rutter LA, Barker R. Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight. PLANT MOLECULAR BIOLOGY 2024; 114:79. [PMID: 38935184 DOI: 10.1007/s11103-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Lindsay A Rutter
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Hamade K, Fliniaux O, Fontaine JX, Molinié R, Petit L, Mathiron D, Sarazin V, Mesnard F. NMR and LC-MS-based metabolomics to investigate the efficacy of a commercial bio stimulant for the treatment of wheat (Triticum aestivum). Metabolomics 2024; 20:58. [PMID: 38773056 PMCID: PMC11108958 DOI: 10.1007/s11306-024-02131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
INTRODUCTION Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging. OBJECTIVE However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied. METHOD Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat. RESULTS Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification. CONCLUSION These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.
Collapse
Affiliation(s)
- Kamar Hamade
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000, Amiens, France
- AgroStation, Rue de La Station, 68700, Aspach-Le-Bas, France
| | - Ophelie Fliniaux
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000, Amiens, France
| | - Jean-Xavier Fontaine
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000, Amiens, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000, Amiens, France
| | - Laurent Petit
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000, Amiens, France
| | - David Mathiron
- Plateforme Analytique, University of Picardie Jules Verne, 80000, Amiens, France
| | - Vivien Sarazin
- AgroStation, Rue de La Station, 68700, Aspach-Le-Bas, France
| | - Francois Mesnard
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000, Amiens, France.
| |
Collapse
|
11
|
Ding X, Wang H, Huang S, Zhang H, Chen H, Chen P, Wang Y, Yang Z, Wang Y, Peng S, Dai H, Mei W. Molecular evolution and characterization of type III polyketide synthase gene family in Aquilaria sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108571. [PMID: 38604011 DOI: 10.1016/j.plaphy.2024.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
2-(2-Phenylethyl) chromone (PEC) and its derivatives are markers of agarwood formation and are also related to agarwood quality. However, the biosynthetic and regulatory mechanisms of PECs still remain mysterious. Several studies suggested that type III polyketide synthases (PKSs) contribute to PEC biosynthesis in Aquilaria sinensis. Furthermore, systematic studies on the evolution of PKSs in A. sinensis have rarely been reported. Herein, we comprehensively analyzed PKS genes from 12 plant genomes and characterized the AsPKSs in detail. A unique branch contained only AsPKS members was identified through evolutionary analysis, including AsPKS01 that was previously indicated to participate in PEC biosynthesis. AsPKS07 and AsPKS08, two tandem-duplicated genes of AsPKS01 and lacking orthologous genes in evolutionary models, were selected for their transient expression in the leaves of Nicotiana benthamiana. Subsequently, PECs were detected in the extracts of N. benthamiana leaves, suggesting that AsPKS07 and AsPKS08 promote PEC biosynthesis. The interaction between the promoters of AsPKS07, AsPKS08 and five basic leucine zippers (bZIPs) from the S subfamily indicated that their transcripts could be regulated by these transcription factors (TFs) and might further contribute to PECs biosynthesis in A. sinensis. Our findings provide valuable insights into the molecular evolution of the PKS gene family in A. sinensis and serve as a foundation for advancing PEC production through the bioengineering of gene clusters. Ultimately, this contribution is expected to shed light on the mechanism underlying agarwood formation.
Collapse
Affiliation(s)
- Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shengzhuo Huang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pengwei Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yuguang Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhuo Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yali Wang
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
12
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
13
|
Naake T, Zhu F, Alseekh S, Scossa F, Perez de Souza L, Borghi M, Brotman Y, Mori T, Nakabayashi R, Tohge T, Fernie AR. Genome-wide association studies identify loci controlling specialized seed metabolites in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1705-1721. [PMID: 37758174 PMCID: PMC10904349 DOI: 10.1093/plphys/kiad511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.
Collapse
Affiliation(s)
- Thomas Naake
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Federico Scossa
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Research Center for Genomics and Bioinformatics (CREA-GB), Council for Agricultural Research and Economics, Via Ardeatina 546, 00178 Rome, Italy
| | - Leonardo Perez de Souza
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Monica Borghi
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84321-5305, USA
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Be’er Sheva, Israel
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Solanki MK, Joshi NC, Singh PK, Singh SK, Santoyo G, Basilio de Azevedo LC, Kumar A. From concept to reality: Transforming agriculture through innovative rhizosphere engineering for plant health and productivity. Microbiol Res 2024; 279:127553. [PMID: 38007891 DOI: 10.1016/j.micres.2023.127553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The plant rhizosphere is regarded as a microbial hotspot due to a wide array of root exudates. These root exudates comprise diverse organic compounds such as phenolic, polysaccharides, flavonoids, fatty acids, and amino acids that showed chemotactic responses towards microbial communities and mediate significant roles in root colonization. The rhizospheric microbiome is a crucial driver of plant growth and productivity, contributing directly or indirectly by facilitating nutrient acquisition, phytohormone modulation, and phosphate solubilization under normal and stressful conditions. Moreover, these microbial candidates protect plants from pathogen invasion by secreting antimicrobial and volatile organic compounds. To enhance plant fitness and yield, rhizospheric microbes are frequently employed as microbial inoculants. However, recent developments have shifted towards targeted rhizosphere engineering or microbial recruitments as a practical approach to constructing desired plant rhizospheres for specific outcomes. The rhizosphere, composed of plants, microbes, and soil, can be modified in several ways to improve inoculant efficiency. Rhizosphere engineering is achieved through three essential mechanisms: a) plant-mediated modifications involving genetic engineering, transgenics, and gene editing of plants; b) microbe-mediated modifications involving genetic alterations of microbes through upstream or downstream methodologies; and c) soil amendments. These mechanisms shape the rhizospheric microbiome, making plants more productive and resilient under different stress conditions. This review paper comprehensively summarizes the various aspects of rhizosphere engineering and their potential applications in maintaining plant health and achieving optimum agricultural productivity.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, India
| | - Sandeep Kumar Singh
- Department of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Lucas Carvalho Basilio de Azevedo
- Instituto de Ciências Agrárias, Campus Glória-Bloco CCG, Universidade Federal de Uberlândia, RodoviaBR-050, KM 78, S/N, Uberlândia CEP 38410-337, Brazil
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
15
|
Baruah PM, Bordoloi KS, Gill SS, Agarwala N. CircRNAs responsive to winter dormancy and spring flushing conditions of tea leaf buds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111828. [PMID: 37586421 DOI: 10.1016/j.plantsci.2023.111828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Circular RNAs (circRNAs) are important regulators of diverse biological processes of plants. However, the evolution and potential functions of circRNAs during winter dormancy and spring bud flushing of tea plant is largely unknown. Using RNA-seq data, a total of 1184 circRNAs were identified in the winter dormant and spring bud flushing leaf samples of tea plants in two different cultivars exhibiting different duration of winter dormancy. A total of 156 circRNAs are found to be differentially expressed and the weighted gene co-expression network (WGCNA) analysis revealed that 22 and 20 differentially expressed-circRNAs (DE-circRNAs) positively correlated with the flushing and dormant leaf traits, respectively, in both the tea cultivars used. Some transcription factors (TFs) viz. MYB, WRKY, ERF, bHLH and several genes related to secondary metabolite biosynthetic pathways are found to co-express with circRNAs. DE-circRNAs also predicted to interact with miRNAs and can regulate phytohormone biosynthesis and various signalling pathways in tea plant. This study uncovers the potential roles of circRNAs to determine winter dormancy and spring bud flushing conditions in tea plants.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Kuntala Sarma Bordoloi
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India; Mangaldai College, Upahupara, Mangaldai 784125, Assam, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
16
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
17
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
18
|
Wang J, Wang X, Zhao S, Xi X, Feng J, Han R. Brachypodium BdCHS is a homolog of Arabidopsis AtCHS involved in the synthesis of flavonoids and lateral root development. PROTOPLASMA 2023; 260:999-1003. [PMID: 36342530 DOI: 10.1007/s00709-022-01819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Flavonoids are a kind of plant-specific secondary metabolites, which play an important role in regulating plant growth and development, stress response, and also have medicinal value. Chalcone synthase is the key enzyme in the synthesis of flavonoids. The function of chalcone synthase in Arabidopsis thaliana has been well studied, but its homologous protein in Brachypodium distachyon has not been reported. In this study, we identified a homolog of AtCHS in B. distachyon, named BdCHS, and described its function. Phylogenetic tree analysis showed that BdCHS was most closely related to CHS in Triticum aestivum. Transgene analysis revealed that BdCHS protein was localized in the cytoplasm of Arabidopsis root cells. BdCHS protein can complement the phenotype of AtCHS mutants with lighter seed coat color and increased lateral root density. The content of superoxide anion in the cortical cells above the lateral root primordium in AtCHS mutants was higher than that in the wild-type, and BdCHS protein could restore the content of superoxide anion in AtCHS mutant to the level of that in the wild-type. The results showed that BdCHS was a functional homolog of AtCHS, which laid a foundation for the subsequent application of BdCHS in genetic breeding and crop improvement.
Collapse
Affiliation(s)
- Jin Wang
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Xiaolei Wang
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Shifeng Zhao
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Xiaoyu Xi
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China
| | - Jinlin Feng
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
| | - Rong Han
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 031002, China.
| |
Collapse
|
19
|
Dong Y, Wu Y, Zhang Z, Wang S, Cheng J, Gao Y, Wang W, Ma N, Wang Y. Transcriptomic analysis reveals GA 3 is involved in regulating flavonoid metabolism in grape development for facility cultivation. Mol Genet Genomics 2023; 298:845-855. [PMID: 37069340 DOI: 10.1007/s00438-023-02019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
Gibberellin, as one of the pivotal plant growth regulators, can improve fruit quality by altering fruit size and secondary metabolite content. Flavonoids are the most abundant secondary metabolites in grapes, which influence the color and quality of the fruit. However, the molecular mechanism of whether and how GA3 affects flavonoid metabolism has not been reported, especially for the 'Red globe' grape with delayed cultivation in Hexi corridor. In the present study, the 'Red globe' grape grown in delayed facilities was sprayed with 20, 40, 60, 80 and 100 mg/L GA3 at berries pea size (BPS), veraison (V) and berries ripe (BR), respectively. The results showed that the berry weight, soluble sugar content and secondary metabolite content (the flavonoid content, anthocyanin content and polyphenol content) at BR under 80 mg/L GA3 treatment were remarkably increased compared with other concentration treatments. Therefore, RNA sequencing (RNA-seq) was used to analyze the differentially expressed genes (DEGS) and pathways under 80 mg/L GA3 treatment at three periods. GO analysis showed that DEGs were closely related to transporter activity, cofactor binding, photosynthetic membrane, thylakoid, ribosome biogenesis and other items. The KEGG enrichment analysis found that the DEGs were mainly involved in flavonoid biosynthesis and phenylpropanoid biosynthesis, indicating GA3 exerted an impact on the color and quality of berries through these pathways. In conclusion, GA3 significantly increased the expression of genes related to flavonoid synthesis, enhanced the production of secondary metabolites, and improved fruit quality. In addition, these findings can provide a theoretical basis for GA3 to modulate the accumulation and metabolism of flavonoids in grape fruit.
Collapse
Affiliation(s)
- Yongjuan Dong
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuxia Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangcheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiao Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Naiying Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
20
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
22
|
Wang L, Chen M, Lam PY, Dini-Andreote F, Dai L, Wei Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. MICROBIOME 2022; 10:233. [PMID: 36527160 PMCID: PMC9756786 DOI: 10.1186/s40168-022-01420-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/09/2022] [Indexed: 05/07/2023]
Abstract
Plant-microbe interactions dynamically affect plant growth, health, and development. The mechanisms underpinning these associations are-to a large extent-mediated by specialized host-derived secondary metabolites. Flavonoids are one of the most studied classes of such metabolites, regulating both plant development and the interaction with commensal microbes. Here, we provide a comprehensive review of the multiple roles of flavonoids in mediating plant-microbe interactions. First, we briefly summarize the general aspects of flavonoid synthesis, transport, and exudation in plants. Then, we review the importance of flavonoids regulating plant-microbe interactions and dynamically influencing the overall community assembly of plant-root microbiomes. Last, we highlight potential knowledge gaps in our understanding of how flavonoids determine the interactions between plants and commensal microbes. Collectively, we advocate the importance of advancing research in this area toward innovative strategies to effectively manipulate plant-microbiome composition, in this case, via flavonoid production and exudation in plant roots. Video Abstract.
Collapse
Affiliation(s)
- Lanxiang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Moxian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pui-Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Liu Z, Liu H, Zheng L, Xu F, Wu Y, Pu L, Zhang G. Enolase2 regulates seed fatty acid accumulation via mediating carbon partitioning in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13797. [PMID: 36251672 DOI: 10.1111/ppl.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In many higher plants, fatty acid (FA) biosynthesis is coordinately regulated at multiple levels by intricate regulatory networks. However, the factors and their regulatory mechanisms underlying seed oil accumulation are still limited. Here, we identified that loss of glycolytic metalloenzyme enolase2 (AtENO2) activity increased the contents of total FAs and salicylic acid (SA) but reduced the accumulation of flavonoids and mucilage by regulating the expression of key genes involved in their biosynthesis pathway in Arabidopsis thaliana seeds. AtENO2 physically interacts with the transcription factor AtTGA5, which may participate in the regulation of SA levels. Non-targeted metabolomics analysis of eno2- and WT also showed that the levels of three flavonoids, quercetin-3-galactoside, quercitrin, and epicatechin, were significantly decreased in eno2- , and the flavonoid biosynthesis pathway was also enriched in the KEGG analysis. Meanwhile, the mutation of AtENO2 delayed silique ripening, thereby prolonging silique photosynthesis time, allowing siliques to generate more photosynthesis products for FA biosynthesis. These results reveal a molecular mechanism by AtENO2 to regulate seed oil accumulation in A. thaliana, providing potential targets for improving crop seed oil quality.
Collapse
Affiliation(s)
- Zijin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Huimin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lamei Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Jeon JS, Rybka D, Carreno-Quintero N, De Vos R, Raaijmakers JM, Etalo DW. Metabolic signatures of rhizobacteria-induced plant growth promotion. PLANT, CELL & ENVIRONMENT 2022; 45:3086-3099. [PMID: 35751418 DOI: 10.1111/pce.14385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50%-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with 12 Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Dominika Rybka
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- KeyGene, Wageningen, The Netherlands
| | - Ric De Vos
- Wageningen Plant Research, Bioscience, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
25
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
26
|
Liu W, Chen T, Liu Y, Le QT, Wang R, Lee H, Xiong L. The Plastidial DIG5 Protein Affects Lateral Root Development by Regulating Flavonoid Biosynthesis and Auxin Transport in Arabidopsis. Int J Mol Sci 2022; 23:ijms231810642. [PMID: 36142550 PMCID: PMC9501241 DOI: 10.3390/ijms231810642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
To reveal the mechanisms underlying root adaptation to drought stress, we isolated and characterized an Arabidopsis mutant, dig5 (drought inhibition of lateral root growth 5), which exhibited increased sensitivity to the phytohormone abscisic acid (ABA) for the inhibition of lateral root growth. The dig5 mutant also had fewer lateral roots under normal conditions and the aerial parts were yellowish with a lower level of chlorophylls. The mutant seedlings also displayed phenotypes indicative of impaired auxin transport, such as abnormal root curling, leaf venation defects, absence of apical hook formation, and reduced hypocotyl elongation in darkness. Auxin transport assays with [3H]-labeled indole acetic acid (IAA) confirmed that dig5 roots were impaired in polar auxin transport. Map-based cloning and complementation assays indicated that the DIG5 locus encodes a chloroplast-localized tRNA adenosine deaminase arginine (TADA) that is involved in chloroplast protein translation. The levels of flavonoids, which are naturally occurring auxin transport inhibitors in plants, were significantly higher in dig5 roots than in the wild type roots. Further investigation showed that flavonoid biosynthetic genes were upregulated in dig5. Introduction of the flavonoid biosynthetic mutation transparent testa 4 (tt4) into dig5 restored the lateral root growth of dig5. Our study uncovers an important role of DIG5/TADA in retrogradely controlling flavonoid biosynthesis and lateral root development. We suggest that the DIG5-related signaling pathways, triggered likely by drought-induced chlorophyll breakdown and leaf senescence, may potentially help the plants to adapt to drought stress through optimizing the root system architecture.
Collapse
Affiliation(s)
- Wei Liu
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yajie Liu
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Ruigang Wang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Liming Xiong
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
- State Key Laboratory for Agribiotechnology, Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
27
|
Baba AI, Mir MY, Riyazuddin R, Cséplő Á, Rigó G, Fehér A. Plants in Microgravity: Molecular and Technological Perspectives. Int J Mol Sci 2022; 23:10548. [PMID: 36142459 PMCID: PMC9505700 DOI: 10.3390/ijms231810548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Plants are vital components of our ecosystem for a balanced life here on Earth, as a source of both food and oxygen for survival. Recent space exploration has extended the field of plant biology, allowing for future studies on life support farming on distant planets. This exploration will utilize life support technologies for long-term human space flights and settlements. Such longer space missions will depend on the supply of clean air, food, and proper waste management. The ubiquitous force of gravity is known to impact plant growth and development. Despite this, we still have limited knowledge about how plants can sense and adapt to microgravity in space. Thus, the ability of plants to survive in microgravity in space settings becomes an intriguing topic to be investigated in detail. The new knowledge could be applied to provide food for astronaut missions to space and could also teach us more about how plants can adapt to unique environments. Here, we briefly review and discuss the current knowledge about plant gravity-sensing mechanisms and the experimental possibilities to research microgravity-effects on plants either on the Earth or in orbit.
Collapse
Affiliation(s)
- Abu Imran Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mohd Yaqub Mir
- Doctoral School of Neuroscience, Semmelweis University, H-1083 Budapest, Hungary
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| |
Collapse
|
28
|
Chen Y, Sun Y, Niu Y, Wang B, Zhang Z, Zeng L, Li L, sun W. Portable Electrochemical Sensing of Indole‐3‐acetic Acid Based on Self‐assembled MXene and Multi‐walled Carbon Nanotubes Composite Modified Screen‐printed Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202200279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | - Lin Li
- Hainan Normal University CHINA
| | | |
Collapse
|
29
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
30
|
Pastor-Fernández J, Sánchez-Bel P, Gamir J, Pastor V, Sanmartín N, Cerezo M, Andrés-Moreno S, Flors V. Tomato Systemin induces resistance against Plectosphaerella cucumerina in Arabidopsis through the induction of phenolic compounds and priming of tryptophan derivatives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111321. [PMID: 35696921 DOI: 10.1016/j.plantsci.2022.111321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Phytocytokines are endogenous danger peptides that are actively released after a pest or pathogen attack, triggering an amplification of plant immune responses. Here, we found that Systemin, a peptide from tomato, has a substantial impact at the molecular level in Arabidopsis plants that leads to induced resistance against Plectosphaerella cucumerina. Using transcriptional and metabolomics approaches, and loss-of-function mutants to analyse the molecular mechanisms underlying induced resistance against the necrotroph, we decipher the enhanced molecular responses in Systemin-treated plants following infection. Some protein complexes involved in the response to other damage signals, including the BAK1-BIK1 protein complex and heterotrimeric G proteins, as well as MPK activation, were among the early signalling events triggered by Systemin in Arabidopsis upon infection. Non-targeted analysis of the late responses underlying Systemin-Induced Resistance1 (Sys-IR) showed that phenolic and indolic compounds were the most representative groups in the Systemin metabolic fingerprint. Lack of flavonoids resulted in the impairment of Sys-IR. On the other hand, some indolic compounds showed a priming profile and were also essential for functional Sys-IR. Evidence presented here shows that plants can sense heterologous peptides from other species as danger signals driving the participation of common protein cascades activated in the PTI and promoting enhanced resistance against necrotrophic fungus.
Collapse
Affiliation(s)
- J Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - P Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - J Gamir
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - V Pastor
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - N Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - M Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - S Andrés-Moreno
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain
| | - V Flors
- Metabolic Integration and Cell Signaling Laboratory, Biochemistry and Molecular Biology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
31
|
Suzuki S, Sakiragaoglu O, Chirila TV. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022; 27:4635. [PMID: 35889503 PMCID: PMC9315601 DOI: 10.3390/molecules27144635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of natural substances able to fulfill the role of antioxidants in a physiologic environment is important for the development of therapies against diseases associated with excessive production of reactive oxygen species and ensuing oxidative stress. Antioxidant properties have been reported episodically for sericin, a proteinaceous constituent of the silk thread in the cocoons generated by the larvae of the Lepidoptera order. We investigated the sericin fractions isolated from the cocoons spun by the domesticated (Bombyx mori) silkworm. Three fractions were isolated and evaluated, including two peptidoid fractions, the crude sericin and the purified (dialyzed) sericin, and the non-peptidoid methanolic extract of the crude fraction. When subjected to Trolox equivalent antioxidant capacity (TEAC) assay, the extract showed much higher antioxidant capacity as compared to the crude or purified sericin fractions. The three fractions were also evaluated in cultures of murine retinal photoreceptor cells (661 W), a cell line that is highly susceptible to oxidants and is crucially involved in the retinopathies primarily caused by oxidative stress. The extract displayed a significant dose-dependent protective effect on the cultured cells exposed to hydrogen peroxide. In identical conditions, the crude sericin showed a certain level of antioxidative activity at a higher concentration, while the purified sericin did not show any activity. We concluded that the non-peptidoid components accompanying sericin were chiefly responsible for the previously reported antioxidant capacity associated with sericin fractions, a conclusion supported by the qualitative detection of flavonoids in the extract but not in the purified sericin fraction.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Onur Sakiragaoglu
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Traian V. Chirila
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
- School of Chemistry & Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering & Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, George E. Palade University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mures, Romania
| |
Collapse
|
32
|
Jiang W, Xia Y, Su X, Pang Y. ARF2 positively regulates flavonols and proanthocyanidins biosynthesis in Arabidopsis thaliana. PLANTA 2022; 256:44. [PMID: 35857143 DOI: 10.1007/s00425-022-03936-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factor 2 acts as a positive regulator to fine-tune the spatial and temporal accumulation of flavonoid compounds, mainly flavonols and proanthocyanidins in Arabidopsis. Auxin response factor (ARF) proteins are reported to involve in auxin-mediated regulation of flavonoid biosynthesis. However, the detailed regulation mechanism of ARF remains still unknown. Here, we provide genetic and molecular evidence that one of the twenty-three ARF members-ARF2-positively regulates flavonoid biosynthesis at multi-level in tissue-specific manner in Arabidopsis thaliana. Loss-of-function mutation of ARF2 led to significant reduction in flavonoid content (e.g., flavonols and proanthocyanidins) in the seedlings and seeds of the Arabidopsis arf2 mutants. Over-expression of ARF2 increased flavonols and proanthocyanidins content in Arabidopsis. Additionally, the changes of flavonoid content correlate well with the transcript abundance of several regulatory genes (e.g., MYB11, MYB12, MYB111, TT2, and GL3), and key biosynthetic genes (e.g., CHS, F3'H, FLS, ANS, ANR, TT12, TT19, and TT15), in the arf2 mutant and ARF2 over-expression lines. Transient transactivation assays with site-directed mutagenesis confirmed that ARF2 directly regulates the expression of MYB12 and FLS genes in the flavonol pathway and ANR in the proanthocyanidin pathway, and indirectly regulates MYB11 and MYB111 genes in the flavonol pathway, and ANS, TT12, TT19 and TT15 genes in the proanthocyanidin pathway. Further genetic results indicated that ARF2 acts upstream of MYB12 to regulate flavonol accumulation, and of TT2 to regulate proanthocyanidins accumulation. In particular, yeast two-hybrid assays revealed that ARF2 physically interacts with TT2, a master regulator of proanthocyanidins biosynthesis. Combined together, these results indicated that ARF2 functions as a positive regulator for the fine-tuned spatial and temporal regulation of flavonoids (mainly flavonols and proanthocyanidins) accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
33
|
Zhang Z, Gao L, Ke M, Gao Z, Tu T, Huang L, Chen J, Guan Y, Huang X, Chen X. GmPIN1-mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1325-1338. [PMID: 35485227 DOI: 10.1111/jipb.13269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean. CRISPR-Cas9-induced Gmpin1abc and Gmpin1bc multiple mutants displayed a compact architecture with a smaller petiole angle than wild-type plants. GmPIN1 transcripts and auxin were distributed asymmetrically in the petiole base, with high levels of GmPIN1a/c transcript and auxin in the lower cells, which resulted in asymmetric cell expansion. By contrast, the (iso)flavonoid content was greater in the upper petiole cells than in the lower cells. Our results suggest that (iso)flavonoids inhibit GmPIN1a/c expression to regulate the petiole angle. Overall, our study demonstrates that a signal cascade that integrates (iso)flavonoid biosynthesis, GmPIN1a/c expression, auxin accumulation, and cell expansion in an asymmetric manner creates a desirable petiole curvature in soybean. This study provides a genetic resource for improving soybean plant architecture.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Le Gao
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Hui Z, Xu J, Jian Y, Bian C, Duan S, Hu J, Li G, Jin L. Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.). PLANTS 2022; 11:plants11131707. [PMID: 35807658 PMCID: PMC9268856 DOI: 10.3390/plants11131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Maturity is a key trait for breeders to identify potato cultivars suitable to grow in different latitudes. However, the molecular mechanism regulating maturity remains unclear. In this study, we performed a grafting experiment using the early-maturing cultivar Zhongshu 5 (Z5) and the late-maturing cultivar Zhongshu 18 (Z18) and found that abscisic acid (ABA) and salicylic acid (SA) positively regulate the early maturity of potato, while indole-3-acetic acid (IAA) negatively regulated early maturity. A total of 43 long-distance transport mRNAs are observed to be involved in early maturity, and 292 long-distance transport mRNAs involved in late maturity were identified using RNA sequencing. Specifically, StMADS18, StSWEET10C, and StSWEET11 are detected to be candidate genes for their association with potato early maturity. Metabolomic data analysis shows a significant increase in phenolic acid and flavonoid contents increased in the scion of the early-maturing cultivar Z5, but a significant decrease in amino acid, phenolic acid, and alkaloid contents increased in the scion of the late-maturing cultivar Z18. This work reveals a significant association between the maturity of tetraploid cultivated potato and long-distance transport signal molecules and provides useful data for assessing the molecular mechanisms underlying the maturity of potato plants and for breeding early-maturing potato cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangcun Li
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| | - Liping Jin
- Correspondence: (G.L.); (L.J.); Tel.: +86-010-82105955 (G.L.); +86-010-82109543 (L.J.)
| |
Collapse
|
35
|
Abstract
Root system architecture is an important determinant of below-ground resource capture and hence overall plant fitness. The plant hormone auxin plays a central role in almost every facet of root development from the cellular to the whole-root-system level. Here, using Arabidopsis as a model, we review the multiple gene signaling networks regulated by auxin biosynthesis, conjugation, and transport that underpin primary and lateral root development. We describe the role of auxin in establishing the root apical meristem and discuss how the tight spatiotemporal regulation of auxin distribution controls transitions between cell division, cell growth, and differentiation. This includes the localized reestablishment of mitotic activity required to elaborate the root system via the production of lateral roots. We also summarize recent discoveries on the effects of auxin and auxin signaling and transport on the control of lateral root gravitropic setpoint angle (GSA), a critical determinant of the overall shape of the root system. Finally, we discuss how environmental conditions influence root developmental plasticity by modulation of auxin biosynthesis, transport, and the canonical auxin signaling pathway.
Collapse
Affiliation(s)
- Suruchi Roychoudhry
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
36
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. PLANT, CELL & ENVIRONMENT 2022; 45:1554-1572. [PMID: 35147228 DOI: 10.1111/pce.14290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.
Collapse
Affiliation(s)
- Manvi Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
37
|
Villacampa A, Fañanás‐Pueyo I, Medina FJ, Ciska M. Root growth direction in simulated microgravity is modulated by a light avoidance mechanism mediated by flavonols. PHYSIOLOGIA PLANTARUM 2022; 174:e13722. [PMID: 35606933 PMCID: PMC9327515 DOI: 10.1111/ppl.13722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In a microgravity environment, without any gravitropic signal, plants are not able to define and establish a longitudinal growth axis. Consequently, absorption of water and nutrients by the root and exposure of leaves to sunlight for efficient photosynthesis is hindered. In these conditions, other external cues can be explored to guide the direction of organ growth. Providing a unilateral light source can guide the shoot growth, but prolonged root exposure to light causes a stress response, affecting growth and development, and also affecting the response to other environmental factors. Here, we have investigated how the protection of the root from light exposure, while the shoot is illuminated, influences the direction of root growth in microgravity. We report that the light avoidance mechanism existing in roots guides their growth towards diminishing light and helps establish the proper longitudinal seedling axis in simulated microgravity conditions. This process is regulated by flavonols, as shown in the flavonoid-accumulating mutant transparent testa 3, which shows an increased correction of the root growth direction in microgravity, when the seedling is grown with the root protected from light. This finding may improve the efficiency of water and nutrient sourcing and photosynthesis under microgravity conditions, as they exist in space, contributing to better plant fitness and biomass production in space farming enterprises, necessary for space exploration by humans.
Collapse
Affiliation(s)
- Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas – CSICMadridSpain
| | | | - F. Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas – CSICMadridSpain
| | - Malgorzata Ciska
- Centro de Investigaciones Biológicas Margarita Salas – CSICMadridSpain
| |
Collapse
|
38
|
Offor BC, Mhlongo MI, Steenkamp PA, Dubery IA, Piater LA. Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2 and bak1-4 Mutants Following Treatment with Two LPS Chemotypes. Metabolites 2022; 12:379. [PMID: 35629883 PMCID: PMC9146344 DOI: 10.3390/metabo12050379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Plants perceive pathogenic threats from the environment that have evaded preformed barriers through pattern recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs). The perception of and triggered defence to lipopolysaccharides (LPSs) as a MAMP is well-studied in mammals, but little is known in plants, including the PRR(s). Understanding LPS-induced secondary metabolites and perturbed metabolic pathways in Arabidopsis will be key to generating disease-resistant plants and improving global plant crop yield. Recently, Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related proteins (LBP/BPI related-1) and (LBP/BPI related-2) were shown to perceive LPS from Pseudomonas aeruginosa and trigger defence responses. In turn, brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) is a well-established co-receptor for several defence-related PRRs in plants. Due to the lack of knowledge pertaining to LPS perception in plants and given the involvement of the afore-mentioned proteins in MAMPs recognition, in this study, Arabidopsis wild type (WT) and mutant (lbr2-2 and bak1-4) plants were pressure-infiltrated with LPSs purified from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc). Metabolites were extracted from the leaves at four time points over a 24 h period and analysed by UHPLC-MS, generating distinct metabolite profiles. Data analysed using unsupervised and supervised multivariate data analysis (MVDA) tools generated results that reflected time- and treatment-related variations after both LPS chemotypes treatments. Forty-five significant metabolites were putatively annotated and belong to the following groups: glucosinolates, hydroxycinnamic acid derivatives, flavonoids, lignans, lipids, oxylipins, arabidopsides and phytohormones, while metabolic pathway analysis (MetPA) showed enrichment of flavone and flavanol biosynthesis, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and glucosinolate biosynthesis. Distinct metabolite accumulations depended on the LPS chemotype and the genetic background of the lbr2-2 and bak1-4 mutants. This study highlights the role of LPSs in the reprogramming Arabidopsis metabolism into a defensive state, and the possible role of LBR and BAK1 proteins in LPSs perception and thus plant defence against pathogenic bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (B.C.O.); (M.I.M.); (P.A.S.); (I.A.D.)
| |
Collapse
|
39
|
Tian X, Jiang Q, Jia Z, Fang Y, Wang Z, Wang J. Identification of TabZIP family members with possible roles in the response to auxin in wheat roots. PHYTOCHEMISTRY 2022; 196:113103. [PMID: 35091213 DOI: 10.1016/j.phytochem.2022.113103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Auxin regulates root development and is considered a potential target for improving crop yield. In this study, we identified 22 basic leucine zipper transcription factors (bZIP TFs) that responded to two concentrations (1 and 50 μM) of indole-acetic acid (IAA) during wheat root development by transcriptome analysis. In addition, we identified 176 TabZIP genes from the wheat genome. Phylogenetic classification and gene structure analysis indicated that the 22 auxin-responsive TabZIPs were divided into groups 1 to 9 (except group 3) with different functions. Phenotypic analysis showed that knocking out Arabidopsis AtHY5, which is the homologous gene of TabZIP6D_147 (one of the downregulated auxin-responsive TabZIPs under both 1 and 50 μM IAA that belonged to group 4), resulted in insensitivity to IAA, while the phenotype of TabZIP6D_147/hy5 complementary lines recovered to that of the wild type, suggesting that downregulated TabZIP6D_147 plays a negative role in the auxin signalling pathway. These results revealed that auxin-responsive TabZIP genes may play different roles in root architecture in the response to the two concentrations of auxin.
Collapse
Affiliation(s)
- Xinyu Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziyao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
40
|
Pucker B, Selmar D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:963. [PMID: 35406945 PMCID: PMC9002769 DOI: 10.3390/plants11070963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Dirk Selmar
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
41
|
Richmond BL, Coelho CL, Wilkinson H, McKenna J, Ratchinski P, Schwarze M, Frost M, Lagunas B, Gifford ML. Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13681. [PMID: 35362177 PMCID: PMC9324854 DOI: 10.1111/ppl.13681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are the most recently discovered phytohormones, and their roles in root architecture and metabolism are not fully understood. Here, we investigated four MORE AXILLARY GROWTH (MAX) SL mutants in Arabidopsis thaliana, max3-9, max4-1, max1-1 and max2-1, as well as the SL receptor mutant d14-1 and karrikin receptor mutant kai2-2. By characterising max2-1 and max4-1, we found that variation in SL biosynthesis modified multiple metabolic pathways in root tissue, including that of xyloglucan, triterpenoids, fatty acids and flavonoids. The transcription of key flavonoid biosynthetic genes, including TRANSPARENT TESTA4 (TT4) and TRANSPARENT TESTA5 (TT5) was downregulated in max2 roots and seedlings, indicating that the proposed MAX2 regulation of flavonoid biosynthesis has a widespread effect. We found an enrichment of BRI1-EMS-SUPPRESSOR 1 (BES1) targets amongst genes specifically altered in the max2 mutant, reflecting that the regulation of flavonoid biosynthesis likely occurs through the MAX2 degradation of BES1, a key brassinosteroid-related transcription factor. Finally, flavonoid accumulation decreased in max2-1 roots, supporting a role for MAX2 in regulating both SL and flavonoid biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Maximillian Schwarze
- School of Life SciencesUniversity of WarwickCoventryUK
- School of BiosciencesBirminghamUK
| | - Matthew Frost
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Miriam L. Gifford
- School of Life SciencesUniversity of WarwickCoventryUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryUK
| |
Collapse
|
42
|
Zhang H, Tao H, Yang H, Zhang L, Feng G, An Y, Wang L. MdSCL8 as a Negative Regulator Participates in ALA-Induced FLS1 to Promote Flavonol Accumulation in Apples. Int J Mol Sci 2022; 23:ijms23042033. [PMID: 35216148 PMCID: PMC8875840 DOI: 10.3390/ijms23042033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
Apples (Malus domestica) are rich in flavonols, and 5-aminolevulinic acid (ALA) plays an important role in the regulation of plant flavonoid metabolism. To date, the underlying mechanism of ALA promoting flavonol accumulation is unclear. Flavonol synthase (FLS) is a key enzyme in flavonol biosynthesis. In this study, we found that ALA could enhance the promoter activity of MdFLS1 in the ‘Fuji’ apple and improve its expression. With MdFLS1 as bait, we screened a novel transcription factor MdSCL8 by the Yeast One-Hybrid (Y1H) system from the apple cDNA library which we previously constructed. Using luciferase reporter assay and transient GUS activity assay, we verified that MdSCL8 inhibits the activity of MdFLS1 promoter and hinders MdFLS1 expression, thus reducing flavonol accumulation in apple. ALA significantly inhibited MdSCL8 expression. Therefore, ALA promoted the expression of MdFLS1 and the consequent flavonol accumulation probably by down-regulating MdSCL8. We also found that ALA significantly enhanced the gene expression of MdMYB22 and MdHY5, two positive regulators of MdFLS. We further demonstrated that MdMYB22 interacts with MdHY5, but neither of them interacts with MdSCL8. Taken together, our data suggest MdSCL8 as a novel regulator of MdFLS1 and provide important insights into mechanisms of ALA-induced flavonol accumulation in apples.
Collapse
|
43
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
44
|
Xiong C, Li X, Wang X, Wang J, Lambers H, Vance CP, Shen J, Cheng L. Flavonoids are involved in phosphorus-deficiency-induced cluster-root formation in white lupin. ANNALS OF BOTANY 2022; 129:101-112. [PMID: 34668958 PMCID: PMC8829899 DOI: 10.1093/aob/mcab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/16/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Initiation of cluster roots in white lupin (Lupinus albus) under phosphorus (P) deficiency requires auxin signalling, whereas flavonoids inhibit auxin transport. However, little information is available about the interactions between P deficiency and flavonoids in terms of cluster-root formation in white lupin. METHODS Hydroponic and aeroponic systems were used to investigate the role of flavonoids in cluster-root formation, with or without 75 μm P supply. KEY RESULTS Phosphorus-deficiency-induced flavonoid accumulation in cluster roots depended on developmental stage, based on in situ determination of fluorescence of flavonoids and flavonoid concentration. LaCHS8, which codes for a chalcone synthase isoform, was highly expressed in cluster roots, and silencing LaCHS8 reduced flavonoid production and rootlet density. Exogenous flavonoids suppressed cluster-root formation. Tissue-specific distribution of flavonoids in roots was altered by P deficiency, suggesting that P deficiency induced flavonoid accumulation, thus fine-tuning the effect of flavonoids on cluster-root formation. Furthermore, naringenin inhibited expression of an auxin-responsive DR5:GUS marker, suggesting an interaction of flavonoids and auxin in regulating cluster-root formation. CONCLUSIONS Phosphorus deficiency triggered cluster-root formation through the regulation of flavonoid distribution, which fine-tuned an auxin response in the early stages of cluster-root development. These findings provide valuable insights into the mechanisms of cluster-root formation under P deficiency.
Collapse
Affiliation(s)
- Chuanyong Xiong
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaoqing Li
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jingxin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Hans Lambers
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- School of Biological Sciences and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Carroll P Vance
- Department of Agronomy and Plant Genetics, University of Minnesota and United States Department of Agriculture Agricultural Research Service, St. Paul, MN, USA
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- For correspondence. E-mail ;
| | - Lingyun Cheng
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- For correspondence. E-mail ;
| |
Collapse
|
45
|
Kruse CPS, Wyatt SE. Nitric oxide, gravity response, and a unified schematic of plant signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111105. [PMID: 34895542 DOI: 10.1016/j.plantsci.2021.111105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Plant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades. In the response to gravity, the role of many of these individual components has been studied, but a specific sequence of signals has not yet been assembled into a cohesive schematic of gravity response signaling. Herein, we provide a review of existing knowledge of gravity response and differential protein and gene regulation induced by the absence of gravity stimulus aboard the International Space Station and propose an integrated theoretical schematic of gravity response incorporating that information. Recent developments in the role of nitric oxide in gravity signaling provided some of the final contextual pillars for the assembly of the model, where nitric oxide and the role of cysteine S-nitrosation may be central to the gravity response. The proposed schematic accounts for the known responses to reorientation with respect to gravity in roots-the most well studied gravitropic plant tissue-and is supported by the extensive evolutionary conservation of regulatory amino acids within protein components of the signaling schematic. The identification of a role of nitric oxide in regulating the TIR1 auxin receptor is indicative of the broader relevance of the schematic in studying a multitude of environmental and stress responses. Finally, there are several experimental approaches that are highlighted as essential to the further study and validation of this schematic.
Collapse
Affiliation(s)
- Colin P S Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States; Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, United States(1)
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
46
|
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, Sarah G, Farrera I, Leclercq J, Grynberg P, Coiti Togawa R, Mota do Carmo Costa M, Costes E, Andrés F. The Identification of Small RNAs Differentially Expressed in Apple Buds Reveals a Potential Role of the Mir159-MYB Regulatory Module during Dormancy. PLANTS (BASEL, SWITZERLAND) 2021; 10:2665. [PMID: 34961136 PMCID: PMC8703471 DOI: 10.3390/plants10122665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warmer temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of 17 micro RNAs (miRNAs) that change their pattern of expression in apple buds during dormancy. Furthermore, the functional analysis of their predicted target genes suggests a main role of the 17 miRNAs in phenylpropanoid biosynthesis, gene regulation, plant development and growth, and response to stimulus. Finally, we studied the conservation of the Arabidopsis thaliana regulatory miR159-MYB module in apple in the context of the plant hormone abscisic acid homeostasis.
Collapse
Affiliation(s)
- Julio Garighan
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Etienne Dvorak
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Joan Estevan
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Karine Loridon
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany;
| | - Gautier Sarah
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Isabelle Farrera
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Julie Leclercq
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
- UMR AGAP Institute, CIRAD, F-34398 Montpellier, France
| | - Priscila Grynberg
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Roberto Coiti Togawa
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Marcos Mota do Carmo Costa
- Bioinformatica Laboratory, Embrapa Recursos Genéticos e Biotecnologia—Cenargen, Brasilia 02372, Brazil; (P.G.); (R.C.T.); (M.M.d.C.C.)
| | - Evelyne Costes
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| | - Fernando Andrés
- UMR AGAP Institute, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34398 Montpellier, France; (J.G.); (E.D.); (J.E.); (K.L.); (G.S.); (I.F.); (J.L.); (E.C.)
| |
Collapse
|
47
|
Morales-Quintana L, Ramos P. A Talk between Flavonoids and Hormones to Reorient the Growth of Gymnosperms. Int J Mol Sci 2021; 22:ijms222312630. [PMID: 34884435 PMCID: PMC8657560 DOI: 10.3390/ijms222312630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/05/2022] Open
Abstract
Plants reorient the growth of affected organs in response to the loss of gravity vector. In trees, this phenomenon has received special attention due to its importance for the forestry industry of conifer species. Sustainable management is a key factor in improving wood quality. It is of paramount importance to understand the molecular and genetic mechanisms underlying wood formation, together with the hormonal and environmental factors that affect wood formation and quality. Hormones are related to the modulation of vertical growth rectification. Many studies have resulted in a model that proposes differential growth in the stem due to unequal auxin and jasmonate allocation. Furthermore, many studies have suggested that in auxin distribution, flavonoids act as molecular controllers. It is well known that flavonoids affect auxin flux, and this is a new area of study to understand the intracellular concentrations and how these compounds can control the gravitropic response. In this review, we focused on different molecular aspects related to the hormonal role in flavonoid homeostasis and what has been done in conifer trees to identify molecular players that could take part during the gravitropic response and reduce low-quality wood formation.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| |
Collapse
|
48
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
49
|
Chen W, Li Y, Yan R, Ren L, Liu F, Zeng L, Sun S, Yang H, Chen K, Xu L, Liu L, Fang X, Liu S. SnRK1.1-mediated resistance of Arabidopsis thaliana to clubroot disease is inhibited by the novel Plasmodiophora brassicae effector PBZF1. MOLECULAR PLANT PATHOLOGY 2021; 22:1057-1069. [PMID: 34165877 PMCID: PMC8358996 DOI: 10.1111/mpp.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a series of strategies to combat pathogen infection. Plant SnRK1 is probably involved in shifting carbon and energy use from growth-associated processes to survival and defence upon pathogen attack, enhancing the resistance to many plant pathogens. The present study demonstrated that SnRK1.1 enhanced the resistance of Arabidopsis thaliana to clubroot disease caused by the plant-pathogenic protozoan Plasmodiophora brassicae. Through a yeast two-hybrid assay, glutathione S-transferase pull-down assay, and bimolecular fluorescence complementation assay, a P. brassicae RxLR effector, PBZF1, was shown to interact with SnRK1.1. Further expression level analysis of SnRK1.1-regulated genes showed that PBZF1 inhibited the biological function of SnRK1.1 as indicated by the disequilibration of the expression level of SnRK1.1-regulated genes in heterogeneous PBZF1-expressing A. thaliana. Moreover, heterogeneous expression of PBZF1 in A. thaliana promoted plant susceptibility to clubroot disease. In addition, PBZF1 was found to be P. brassicae-specific and conserved. This gene was significantly highly expressed in resting spores. Taken together, our results provide new insights into how the plant-pathogenic protist P. brassicae employs an effector to overcome plant resistance, and they offer new insights into the genetic improvement of plant resistance against clubroot disease.
Collapse
Affiliation(s)
- Wang Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Yan Li
- Hubei Collaborative Innovation Center for Grain IndustryYangtze UniversityJingzhouChina
- School of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanHubeiChina
| | - Ruibin Yan
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Li Ren
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Fan Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Lingyi Zeng
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Shengnan Sun
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Huihui Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Kunrong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Li Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Lijiang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Xiaoping Fang
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| | - Shengyi Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetics Improvement of Oil CropsMinistry of Agriculture and Rural AffairsWuhanHubeiChina
| |
Collapse
|
50
|
Chen W, Xiao Z, Wang Y, Wang J, Zhai R, Lin-Wang K, Espley R, Ma F, Li P. Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus. HORTICULTURE RESEARCH 2021; 8:173. [PMID: 34333541 PMCID: PMC8325685 DOI: 10.1038/s41438-021-00609-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/20/2021] [Indexed: 05/03/2023]
Abstract
Flavonoids play important roles in regulating plant growth and development. In this study, three kaempferol 3-O-glycosides were identified and mainly accumulated in flowers but not in leaves or fruits of Malus. In Malus, flower petal color is normally white, but some genotypes have red flowers containing anthocyanin. Anthocyanin biosynthesis appears to be in competition with kaempferol 3-O-glycosides production and controlled by the biosynthetic genes. The white flower Malus genotypes had better-developed seeds than the red flower genotypes. In flowers, the overexpression of MYB10 in Malus domestica enhanced the accumulation of anthocyanin, but decreased that of kaempferol 3-O-glycosides. After pollination the transgenic plants showed slower pollen tube growth and fewer developed seeds. Exogenous application of different flavonoid compounds suggested that kaempferol 3-O-glycosides, especially kaempferol 3-O-rhamnoside, regulated pollen tube growth and seed set rather than cyanidin or quercetin 3-O-glycosides. It was found that kaempferol 3-O-rhamnoside might regulate pollen tube growth through effects on auxin, the Rho of plants (ROP) GTPases, calcium and the phosphoinositides signaling pathway. With the inhibition of auxin transport, the transcription levels of Heat Shock Proteins (HSPs) and ROP GTPases were downregulated while the levels were not changed or even enhanced when blocking calcium signaling, suggesting that HSPs and ROP GTPases were downstream of auxin signaling, but upstream of calcium signaling. In summary, kaempferol glycoside concentrations in pistils correlated with auxin transport, the transcription of HSPs and ROP GTPases, and calcium signaling in pollen tubes, culminating in changes to pollen tube growth and seed set.
Collapse
Affiliation(s)
- Weifeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengcao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinxiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag, 92169, Auckland, New Zealand
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag, 92169, Auckland, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|