1
|
Agrawal R, Thakur P, Singh A, Panchal P, Thakur JK. Mediator complex: an important regulator of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5521-5530. [PMID: 38881317 DOI: 10.1093/jxb/erae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/15/2024] [Indexed: 06/18/2024]
Abstract
Mediator, a multiprotein complex, is an important component of the transcription machinery. In plants, the latest studies have established that it functions as a signal processor that conveys transcriptional signals from transcription factors to RNA polymerase II. Mediator has been found to be involved in different developmental and stress-adaptation conditions, ranging from embryo, root, and shoot development to flowering and senescence, and also in responses to different biotic and abiotic stresses. In the last decade, significant progress has been made in understanding the role of Mediator subunits in root development. They have been shown to transcriptionally regulate development of almost all the components of the root system architecture-primary root, lateral roots, and root hairs. They also have a role in nutrient acquisition by the root. In this review, we discuss all the known functions of Mediator subunits during root development. We also highlight the role of Mediator as a nodal point for processing different hormone signals that regulate root morphogenesis and growth.
Collapse
Affiliation(s)
- Rekha Agrawal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amrita Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jitendra Kumar Thakur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
2
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
3
|
Blanch JR, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609911. [PMID: 39253446 PMCID: PMC11383001 DOI: 10.1101/2024.08.27.609911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA polymerase theta ( Pol θ ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes egg development and is required for tolerance of DNA double-strand breaks and interstrand crosslinks. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the helicase-like and polymerase domains. Furthermore, they suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| | - Manan Krishnamurthy
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
- Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| |
Collapse
|
4
|
de Pater S, Kamoen L, van Schendel R, Hooykaas PJJ, Tijsterman M. Profiling Cas9- and Cas12a-induced mutagenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39052360 DOI: 10.1111/tpj.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.
Collapse
Affiliation(s)
- Sylvia de Pater
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Lycka Kamoen
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands
| |
Collapse
|
5
|
Merker L, Feller L, Dorn A, Puchta H. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:242-254. [PMID: 38179887 DOI: 10.1111/tpj.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
In eukaryotes, double-strand breaks (DSBs) are either repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). In somatic plant cells, HR is very inefficient. Therefore, the vast majority of DSBs are repaired by two different pathways of NHEJ. The classical (cNHEJ) pathway depends on the heterodimer KU70/KU80, while polymerase theta (POLQ) is central to the alternative (aNHEJ) pathway. Surprisingly, Arabidopsis plants are viable, even when both pathways are impaired. However, they exhibit severe growth retardation and reduced fertility. Analysis of mitotic anaphases indicates that the double mutant is characterized by a dramatic increase in chromosome fragmentation due to defective DSB repair. In contrast to the single mutants, the double mutant was found to be highly sensitive to the DSB-inducing genotoxin bleomycin. Thus, both pathways can complement for each other efficiently in DSB repair. We speculated that in the absence of both NHEJ pathways, HR might be enhanced. This would be especially attractive for gene targeting (GT) in which predefined changes are introduced using a homologous template. Unexpectedly, the polq single mutant as well as the double mutant showed significantly lower GT frequencies in comparison to wildtype plants. Accordingly, we were able to show that elimination of both NHEJ pathways does not pose an attractive approach for Agrobacterium-mediated GT. However, our results clearly indicate that a loss of cNHEJ leads to an increase in GT frequency, which is especially drastic and attractive for practical applications, in which the in planta GT strategy is used.
Collapse
Affiliation(s)
- Laura Merker
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
6
|
Kralemann LEM, van Tol N, Hooykaas PJJ, Tijsterman M. Molecular analysis of the role of polymerase theta in gene targeting in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:255-262. [PMID: 38402589 DOI: 10.1111/tpj.16689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Precise genetic modification can be achieved via a sequence homology-mediated process known as gene targeting (GT). Whilst established for genome engineering purposes, the application of GT in plants still suffers from a low efficiency for which an explanation is currently lacking. Recently reported reduced rates of GT in A. thaliana deficient in polymerase theta (Polθ), a core component of theta-mediated end joining (TMEJ) of DNA breaks, have led to the suggestion of a direct involvement of this enzyme in the homology-directed process. Here, by monitoring homology-driven gene conversion in plants with CRISPR reagent and donor sequences pre-integrated at random sites in the genome (in planta GT), we demonstrate that Polθ action is not required for GT, but instead suppresses the process, likely by promoting the repair of the DNA break by end-joining. This finding indicates that lack of donor integration explains the previously established reduced GT rates seen upon transformation of Polθ-deficient plants. Our study additionally provides insight into ectopic gene targeting (EGT), recombination events between donor and target that do not map to the target locus. EGT, which occurs at similar frequencies as "true" GT during transformation, was rare in our in planta GT experiments arguing that EGT predominantly results from target locus recombination with nonintegrated T-DNA molecules. By describing mechanistic features of GT our study provides directions for the improvement of precise genetic modification of plants.
Collapse
Affiliation(s)
- Lejon E M Kralemann
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Niels van Tol
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Marcel Tijsterman
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
7
|
Kannan S, Gillespie SW, Picking WL, Picking WD, Lorson CL, Singh K. Inhibitors against DNA Polymerase I Family of Enzymes: Novel Targets and Opportunities. BIOLOGY 2024; 13:204. [PMID: 38666816 PMCID: PMC11048162 DOI: 10.3390/biology13040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerases replicate cellular genomes and/or participate in the maintenance of genome integrity. DNA polymerases sharing high sequence homology with E. coli DNA polymerase I (pol I) have been grouped in Family A. Pol I participates in Okazaki fragment maturation and in bacterial genome repair. Since its discovery in 1956, pol I has been extensively studied, primarily to gain deeper insights into the mechanism of DNA replication. As research on DNA polymerases advances, many novel functions of this group of polymerases are being uncovered. For example, human DNA polymerase θ (a Family A DNA pol) has been shown to synthesize DNA using RNA as a template, a function typically attributed to retroviral reverse transcriptase. Increased interest in drug discovery against pol θ has emerged due to its roles in cancer. Likewise, Pol I family enzymes also appear attractive as drug-development targets against microbial infections. Development of antimalarial compounds targeting apicoplast apPOL, an ortholog of Pol I, further extends the targeting of this family of enzymes. Here, we summarize reported drug-development efforts against Family A polymerases and future perspective regarding these enzymes as antibiotic targets. Recently developed techniques, such as artificial intelligence, can be used to facilitate the development of new drugs.
Collapse
Affiliation(s)
- Saathvik Kannan
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Samuel W. Gillespie
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Wendy L. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Kamoen L, Kralemann LEM, van Schendel R, van Tol N, Hooykaas PJJ, de Pater S, Tijsterman M. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in Arabidopsis thaliana. PNAS NEXUS 2024; 3:pgae094. [PMID: 38463035 PMCID: PMC10923293 DOI: 10.1093/pnasnexus/pgae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.
Collapse
Affiliation(s)
- Lycka Kamoen
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Lejon E M Kralemann
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Niels van Tol
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Sylvia de Pater
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
9
|
Nishizawa‐Yokoi A, Gelvin SB. Transformation and regeneration of DNA polymerase Θ mutant rice plants. PLANT DIRECT 2023; 7:e526. [PMID: 37681196 PMCID: PMC10480422 DOI: 10.1002/pld3.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Agrobacterium T-DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non-homologous end-joining (NHEJ) protein DNA polymerase Θ, encoded by the PolQ gene, for T-DNA integration is controversial, with some groups claiming it is essential whereas others claim T-DNA integration in Arabidopsis and rice polQ mutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenic polQ mutant plants. We describe a protocol for regenerating transgenic polQ mutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species.
Collapse
Affiliation(s)
- Ayako Nishizawa‐Yokoi
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Stanton B. Gelvin
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
10
|
Dickinson L, Yuan W, LeBlanc C, Thomson G, Wang S, Jacob Y. Regulation of gene editing using T-DNA concatenation. NATURE PLANTS 2023; 9:1398-1408. [PMID: 37653336 PMCID: PMC11193869 DOI: 10.1038/s41477-023-01495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Transformation via Agrobacterium tumefaciens is the predominant method used to introduce exogenous DNA into plant genomes1,2. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in complex concatenated forms3,4, but the mechanisms affecting final T-DNA structure remain unknown. Here we demonstrate that inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase T-DNA copy number by more than 50-fold in Arabidopsis thaliana. These additional T-DNA copies are organized into large concatemers, an effect primarily induced by the long terminal repeats (LTRs) of RTs that can be replicated using non-LTR DNA repeats. We found that T-DNA concatenation is dependent on the activity of the DNA repair proteins MRE11, RAD17 and ATR. Finally, we show that T-DNA concatenation can be used to increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA concatenation for plant gene editing.
Collapse
Affiliation(s)
- Lauren Dickinson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Li J, Wang C, Liang W, Zhang J, Jiang CK, Liu Y, Ren Z, Ci D, Chang J, Han S, Deng XW, Wang Y, Qian W. Functional importance and divergence of plant apurinic/apyrimidinic endonucleases in somatic and meiotic DNA repair. THE PLANT CELL 2023; 35:2316-2331. [PMID: 36856605 PMCID: PMC10226563 DOI: 10.1093/plcell/koad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 05/30/2023]
Abstract
Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Shangling Han
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong 261000, China
| |
Collapse
|
12
|
Czernecki D, Nourisson A, Legrand P, Delarue M. Reclassification of family A DNA polymerases reveals novel functional subfamilies and distinctive structural features. Nucleic Acids Res 2023; 51:4488-4507. [PMID: 37070157 PMCID: PMC10201439 DOI: 10.1093/nar/gkad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Antonin Nourisson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Pierre Legrand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
| |
Collapse
|
13
|
Rogers CB, Kram RE, Lin K, Myers CL, Sobeck A, Hendrickson EA, Bielinsky AK. Fanconi anemia-associated chromosomal radial formation is dependent on POLθ-mediated alternative end joining. Cell Rep 2023; 42:112428. [PMID: 37086407 DOI: 10.1016/j.celrep.2023.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Activation of the Fanconi anemia (FA) pathway after treatment with mitomycin C (MMC) is essential for preventing chromosome translocations termed "radials." When replication forks stall at MMC-induced interstrand crosslinks (ICLs), the FA pathway is activated to orchestrate ICL unhooking and repair of the DNA break intermediates. However, in FA-deficient cells, how ICL-associated breaks are resolved in a manner that leads to radials is unclear. Here, we demonstrate that MMC-induced radials are dependent on DNA polymerase theta (POLθ)-mediated alternative end joining (A-EJ). Specifically, we show that radials observed in FANCD2-/- cells are dependent on POLθ and DNA ligase III and occur independently of classical non-homologous end joining. Furthermore, treatment of FANCD2-/- cells with POLθ inhibitors abolishes radials and leads to the accumulation of breaks co-localizing with common fragile sites. Uniformly, these observations implicate A-EJ in radial formation and provide mechanistic insights into the treatment of FA pathway-deficient cancers with POLθ inhibitors.
Collapse
Affiliation(s)
- Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel E Kram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
15
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
16
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
17
|
Lv Q, Han S, Wang L, Xia J, Li P, Hu R, Wang J, Gao L, Chen Y, Wang Y, Du J, Bao F, Hu Y, Xu X, Xiao W, He Y. TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res 2022; 50:6820-6836. [PMID: 35736216 PMCID: PMC9262624 DOI: 10.1093/nar/gkac469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.
Collapse
Affiliation(s)
- Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuang Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jinchan Xia
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Peng Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuli Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Du
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
18
|
Kralemann LEM, de Pater S, Shen H, Kloet SL, van Schendel R, Hooykaas PJJ, Tijsterman M. Distinct mechanisms for genomic attachment of the 5' and 3' ends of Agrobacterium T-DNA in plants. NATURE PLANTS 2022; 8:526-534. [PMID: 35534719 DOI: 10.1038/s41477-022-01147-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides the T-DNA into the plant's nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA 5' end. Different from capture of the 3' end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5' attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5' end-blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5' end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3' capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant's own DNA repair machineries to transform it.
Collapse
Affiliation(s)
| | - Sylvia de Pater
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Susan L Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Marcel Tijsterman
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
19
|
Britt AB. Making it stick. NATURE PLANTS 2022; 8:459-460. [PMID: 35596079 DOI: 10.1038/s41477-022-01157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Anne B Britt
- Department of Plant Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Interplay between Arabidopsis thaliana Genotype, Plant Growth and Rhizosphere Colonization by Phytobeneficial Phenazine-Producing Pseudomonas chlororaphis. Microorganisms 2022; 10:microorganisms10030660. [PMID: 35336236 PMCID: PMC8950391 DOI: 10.3390/microorganisms10030660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Rhizosphere colonization by phytobeneficial Pseudomonas spp. is pivotal in triggering their positive effects on plant health. Many Pseudomonas spp. Determinants, involved in rhizosphere colonization, have already been deciphered. However, few studies have explored the role played by specific plant genes in rhizosphere colonization by these bacteria. Using isogenic Arabidopsis thaliana mutants, we studied the effect of 20 distinct plant genes on rhizosphere colonization by two phenazine-producing P. chlororaphis strains of biocontrol interest, differing in their colonization abilities: DTR133, a strong rhizosphere colonizer and ToZa7, which displays lower rhizocompetence. The investigated plant mutations were related to root exudation, immunity, and root system architecture. Mutations in smb and shv3, both involved in root architecture, were shown to positively affect rhizosphere colonization by ToZa7, but not DTR133. While these strains were not promoting plant growth in wild-type plants, increased plant biomass was measured in inoculated plants lacking fez, wrky70, cbp60g, pft1 and rlp30, genes mostly involved in plant immunity. These results point to an interplay between plant genotype, plant growth and rhizosphere colonization by phytobeneficial Pseudomonas spp. Some of the studied genes could become targets for plant breeding programs to improve plant-beneficial Pseudomonas rhizocompetence and biocontrol efficiency in the field.
Collapse
|
21
|
Davarinejad H, Huang YC, Mermaz B, LeBlanc C, Poulet A, Thomson G, Joly V, Muñoz M, Arvanitis-Vigneault A, Valsakumar D, Villarino G, Ross A, Rotstein BH, Alarcon EI, Brunzelle JS, Voigt P, Dong J, Couture JF, Jacob Y. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 2022; 375:1281-1286. [PMID: 35298257 PMCID: PMC9153895 DOI: 10.1126/science.abm5320] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. We found that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed histone H3 lysine 27 monomethylation in plants depends on H3.1, TSK, and DNA polymerase theta (Pol θ). This work reveals an H3.1-specific function during replication and a common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone monomethyltransferases and reading of the H3.1 variant.
Collapse
Affiliation(s)
- Hossein Davarinejad
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Yi-Chun Huang
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Benoit Mermaz
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Marcelo Muñoz
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Alexis Arvanitis-Vigneault
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute; Cambridge, CB22 3AT, United Kingdom
| | - Gonzalo Villarino
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| | - Alex Ross
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
- University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
| | - Emilio I. Alarcon
- BEaTS Research Laboratory, Division of Cardiac Surgery, University of Ottawa Heart Institute; Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, ON K1H 8M5, Canada
| | - Joseph S. Brunzelle
- Feinberg School of Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University; Chicago, Illinois 60611, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH9 3BF, United Kingdom
- Epigenetics Programme, Babraham Institute; Cambridge, CB22 3AT, United Kingdom
| | - Jie Dong
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
- Institute of Crop Science, Zhejiang University; Hangzhou 310058, China
| | - Jean-François Couture
- Ottawa Institute of Systems Biology; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa; Ottawa, Ontario K1H 8M5, Canada
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; 260 Whitney Avenue, New Haven, Connecticut 06511, USA
| |
Collapse
|
22
|
Hacker L, Capdeville N, Feller L, Enderle-Kukla J, Dorn A, Puchta H. The DNA-dependent protease AtWSS1A suppresses persistent double strand break formation during replication. THE NEW PHYTOLOGIST 2022; 233:1172-1187. [PMID: 34761387 DOI: 10.1111/nph.17848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The protease WSS1A is an important factor in the repair of DNA-protein crosslinks in plants. Here we show that the loss of WSS1A leads to a reduction of 45S rDNA repeats and chromosomal fragmentation in Arabidopsis. Moreover, in the absence of any factor of the RTR (RECQ4A/TOP3α/RMI1/2) complex, which is involved in the dissolution of DNA replication intermediates, WSS1A becomes essential for viability. If WSS1A loss is combined with loss of the classical (c) or alternative (a) nonhomologous end joining (NHEJ) pathways of double-strand break (DSB) repair, the resulting mutants show proliferation defects and enhanced chromosome fragmentation, which is especially aggravated in the absence of aNHEJ. This indicates that WSS1A is involved either in the suppression of DSB formation or in DSB repair itself. To test the latter we induced DSB by CRISPR/Cas9 at different loci in wild-type and mutant cells and analyzed their repair by deep sequencing. However, no change in the quality of the repair events and only a slight increase in their quantity was found. Thus, by removing complex DNA-protein structures, WSS1A seems to be required for the repair of replication intermediates which would otherwise be resolved into persistent DSB leading to genome instability.
Collapse
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Niklas Capdeville
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Janina Enderle-Kukla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
23
|
Hacker L, Dorn A, Enderle J, Puchta H. The repair of topoisomerase 2 cleavage complexes in Arabidopsis. THE PLANT CELL 2022; 34:287-301. [PMID: 34524446 PMCID: PMC8773952 DOI: 10.1093/plcell/koab228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 05/04/2023]
Abstract
DNA-protein crosslinks (DPCs) and DNA double-stranded breaks (DSBs), including those produced by stalled topoisomerase 2 cleavage complexes (TOP2ccs), must be repaired to ensure genome stability. The basic mechanisms of TOP2cc repair have been characterized in other eukaryotes, but we lack information for plants. Using CRISPR/Cas-induced mutants, we show that Arabidopsis thaliana has two main TOP2cc repair pathways: one is defined by TYROSYL-DNA-PHOSPHODIESTERASE 2 (TDP2), which hydrolyzes TOP2-DNA linkages, the other by the DNA-dependent protease WSS1A (a homolog of human SPARTAN/yeast weak suppressor of smt3 [Wss1]), which also functions in DPC repair. TDP1 and TDP2 function nonredundantly in TOP1cc repair, indicating that they act specifically on their respective stalled cleavage complexes. The nuclease METHYL METHANESULFONATE AND UV-SENSITIVE PROTEIN 81 (MUS81) plays a major role in global DPC repair and a minor role in TOP2cc repair. DSBs arise as intermediates of TOP2cc repair and are repaired by classical and alternative nonhomologous end joining (NHEJ) pathways. Double-mutant analysis indicates that "clean" DNA ends caused by TDP2 hydrolysis are mainly religated by classical NHEJ, which helps avoid mutation. In contrast, the mutagenic alternative NHEJ pathway mainly processes nonligateable DNA ends. Thus, TDP2 promotes maintenance of plant genome integrity by error-free repair of TOP2cc.
Collapse
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
24
|
van Tol N, van Schendel R, Bos A, van Kregten M, de Pater S, Hooykaas PJ, Tijsterman M. Gene targeting in polymerase theta-deficient Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:112-125. [PMID: 34713516 PMCID: PMC9299229 DOI: 10.1111/tpj.15557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 05/26/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Robin van Schendel
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| | - Alex Bos
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Maartje van Kregten
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Sylvia de Pater
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Paul J.J. Hooykaas
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Marcel Tijsterman
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| |
Collapse
|
25
|
Wolter F, Schindele P, Beying N, Scheben A, Puchta H. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. THE PLANT CELL 2021; 33:3454-3469. [PMID: 34375428 PMCID: PMC8566284 DOI: 10.1093/plcell/koab204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 05/03/2023]
Abstract
In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Natalja Beying
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Author for correspondence:
| |
Collapse
|
26
|
García-Medel PL, Peralta-Castro A, Baruch-Torres N, Fuentes-Pascacio A, Pedroza-García JA, Cruz-Ramirez A, Brieba LG. Arabidopsis thaliana PrimPol is a primase and lesion bypass DNA polymerase with the biochemical characteristics to cope with DNA damage in the nucleus, mitochondria, and chloroplast. Sci Rep 2021; 11:20582. [PMID: 34663822 PMCID: PMC8523556 DOI: 10.1038/s41598-021-00151-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
PrimPol is a novel Primase–Polymerase that synthesizes RNA and DNA primers de novo and extents from these primers as a DNA polymerase. Animal PrimPol is involved in nuclear and mitochondrial DNA replication by virtue of its translesion DNA synthesis (TLS) and repriming activities. Here we report that the plant model Arabidopsis thaliana encodes a functional PrimPol (AtPrimPol). AtPrimPol is a low fidelity and a TLS polymerase capable to bypass DNA lesions, like thymine glycol and abasic sites, by incorporating directly across these lesions or by skipping them. AtPrimPol is also an efficient primase that preferentially recognizes the single-stranded 3′-GTCG-5′ DNA sequence, where the 3′-G is cryptic. AtPrimPol is the first DNA polymerase that localizes in three cellular compartments: nucleus, mitochondria, and chloroplast. In vitro, AtPrimPol synthesizes primers that are extended by the plant organellar DNA polymerases and this reaction is regulated by organellar single-stranded binding proteins. Given the constant exposure of plants to endogenous and exogenous DNA-damaging agents and the enzymatic capabilities of lesion bypass and re-priming of AtPrimPol, we postulate a predominant role of this enzyme in avoiding replication fork collapse in all three plant genomes, both as a primase and as a TLS polymerase.
Collapse
Affiliation(s)
- Paola L García-Medel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico.,Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Alma Fuentes-Pascacio
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - José A Pedroza-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - Alfredo Cruz-Ramirez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
27
|
Zahn KE, Jensen RB. Polymerase θ Coordinates Multiple Intrinsic Enzymatic Activities during DNA Repair. Genes (Basel) 2021; 12:1310. [PMID: 34573292 PMCID: PMC8470613 DOI: 10.3390/genes12091310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The POLQ gene encodes DNA polymerase θ, a 2590 amino acid protein product harboring DNA-dependent ATPase, template-dependent DNA polymerase, dNTP-dependent endonuclease, and 5'-dRP lyase functions. Polymerase θ participates at an essential step of a DNA double-strand break repair pathway able to join 5'-resected substrates by locating and pairing microhomologies present in 3'-overhanging single-stranded tails, cleaving the extraneous 3'-DNA by dNTP-dependent end-processing, before extending the nascent 3' end from the microhomology annealing site. Metazoans require polymerase θ for full resistance to DNA double-strand break inducing agents but can survive knockout of the POLQ gene. Cancer cells with compromised homologous recombination, or other DNA repair defects, over-utilize end-joining by polymerase θ and often over-express the POLQ gene. This dependency points to polymerase θ as an ideal drug target candidate and multiple drug-development programs are now preparing to enter clinical trials with small-molecule inhibitors. Specific inhibitors of polymerase θ would not only be predicted to treat BRCA-mutant cancers, but could thwart accumulated resistance to current standard-of-care cancer therapies and overcome PARP-inhibitor resistance in patients. This article will discuss synthetic lethal strategies targeting polymerase θ in DNA damage-response-deficient cancers and summarize data, describing molecular structures and enzymatic functions.
Collapse
Affiliation(s)
- Karl E. Zahn
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Repare Therapeutics, 7210 Rue Frederick Banting, Montreal, QC H4S 2A1, Canada
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
28
|
Verhage L. Solving the theta enigma: polymerase Ɵ deficiency causes developmental defects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1195-1196. [PMID: 34224177 DOI: 10.1111/tpj.15356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
29
|
Nisa M, Bergis C, Pedroza-Garcia JA, Drouin-Wahbi J, Mazubert C, Bergounioux C, Benhamed M, Raynaud C. The plant DNA polymerase theta is essential for the repair of replication-associated DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1197-1207. [PMID: 33989439 DOI: 10.1111/tpj.15295] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Safeguarding of genome integrity is a key process in all living organisms. Due to their sessile lifestyle, plants are particularly exposed to all kinds of stress conditions that could induce DNA damage. However, very few genes involved in the maintenance of genome integrity are indispensable to plants' viability. One remarkable exception is the POLQ gene, which encodes DNA polymerase theta (Pol θ), a non-replicative polymerase involved in trans-lesion synthesis during DNA replication and double-strand break (DSB) repair. The Arabidopsis tebichi (teb) mutants, deficient in Pol θ, have been reported to display severe developmental defects, leading to the conclusion that Pol θ is required for normal plant development. However, this essential role of Pol θ in plants is challenged by contradictory reports regarding the phenotypic defects of teb mutants and the recent finding that rice (Oryza sativa) null mutants develop normally. Here we show that the phenotype of teb mutants is highly variable. Taking advantage of hypomorphic mutants for the replicative DNA polymerase epsilon, which display constitutive replicative stress, we show that Pol θ allows maintenance of meristem activity when DNA replication is partially compromised. Furthermore, we found that the phenotype of Pol θ mutants can be aggravated by modifying their growth conditions, suggesting that environmental conditions impact the basal level of replicative stress and providing evidence for a link between plants' responses to adverse conditions and mechanisms involved in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Maherun Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Clara Bergis
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Jose-Antonio Pedroza-Garcia
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
- Institut Universitaire de France (IUF), France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| |
Collapse
|
30
|
Shchennikova AV, Beletsky AV, Filyushin MA, Slugina MA, Gruzdev EV, Mardanov AV, Kochieva EZ, Ravin NV. Nepenthes × ventrata Transcriptome Profiling Reveals a Similarity Between the Evolutionary Origins of Carnivorous Traps and Floral Organs. FRONTIERS IN PLANT SCIENCE 2021; 12:643137. [PMID: 34122470 PMCID: PMC8194089 DOI: 10.3389/fpls.2021.643137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The emergence of the carnivory syndrome and traps in plants is one of the most intriguing questions in evolutionary biology. In the present study, we addressed it by comparative transcriptomics analysis of leaves and leaf-derived pitcher traps from a predatory plant Nepenthes ventricosa × Nepenthes alata. Pitchers were collected at three stages of development and a total of 12 transcriptomes were sequenced and assembled de novo. In comparison with leaves, pitchers at all developmental stages were found to be highly enriched with upregulated genes involved in stress response, specification of shoot apical meristem, biosynthesis of sucrose, wax/cutin, anthocyanins, and alkaloids, genes encoding digestive enzymes (proteases and oligosaccharide hydrolases), and flowering-related MADS-box genes. At the same time, photosynthesis-related genes in pitchers were transcriptionally downregulated. As the MADS-box genes are thought to be associated with the origin of flower organs from leaves, we suggest that Nepenthes species could have employed a similar pathway involving highly conserved MADS-domain transcription factors to develop a novel structure, pitcher-like trap, for capture and digestion of animal prey during the evolutionary transition to carnivory. The data obtained should clarify the molecular mechanisms of trap initiation and development and may contribute to solving the problem of its emergence in plants.
Collapse
|
31
|
Faure D. Is there a unique integration mechanism of Agrobacterium T-DNA into a plant genome? THE NEW PHYTOLOGIST 2021; 229:2386-2388. [PMID: 33616946 DOI: 10.1111/nph.17184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is a Commentary on Nishizawa‐Yokoi et al. (2021), 229: 2859–2872.
Collapse
Affiliation(s)
- Denis Faure
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, 91 190, Gif-sur-Yvette, France
| |
Collapse
|
32
|
DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 2021; 477:2655-2677. [PMID: 32726436 DOI: 10.1042/bcj20190579] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
DNA-damage tolerance (DDT) is employed by eukaryotic cells to bypass replication-blocking lesions induced by DNA-damaging agents. In budding yeast Saccharomyces cerevisiae, DDT is mediated by RAD6 epistatic group genes and the central event for DDT is sequential ubiquitination of proliferating cell nuclear antigen (PCNA), a DNA clamp required for replication and DNA repair. DDT consists of two parallel pathways: error-prone DDT is mediated by PCNA monoubiquitination, which recruits translesion synthesis DNA polymerases to bypass lesions with decreased fidelity; and error-free DDT is mediated by K63-linked polyubiquitination of PCNA at the same residue of monoubiquitination, which facilitates homologous recombination-mediated template switch. Interestingly, the same PCNA residue is also subjected to sumoylation, which leads to inhibition of unwanted recombination at replication forks. All three types of PCNA posttranslational modifications require dedicated conjugating and ligation enzymes, and these enzymes are highly conserved in eukaryotes, from yeast to human.
Collapse
|
33
|
Ruiz-Aguilar B, Raya-González J, López-Bucio JS, Reyes de la Cruz H, Herrera-Estrella L, Ruiz-Herrera LF, Martínez-Trujillo M, López-Bucio J. Mutation of MEDIATOR 18 and chromate trigger twinning of the primary root meristem in Arabidopsis. PLANT, CELL & ENVIRONMENT 2020; 43:1989-1999. [PMID: 32400913 DOI: 10.1111/pce.13786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Plants adapt to soil injury and biotic stress via cell regeneration. In Arabidopsis, root tip damage by genotoxic agents, antibiotics, UV light and cutting induces a program that recovers the missing tissues through activation of stem cells and involves ethylene response factor 115 (ERF115), which triggers cell replenishment. Here, we show that mutation of the gene encoding an MED18 subunit of the transcriptional MEDIATOR complex and chromate [Cr(VI)], an environmental pollutant, synergistically trigger a developmental program that enables the splitting of the meristem in vivo to produce twin roots. Expression of the quiescent centre gene marker WOX5, auxin-inducible DR5:GFP reporter and the ERF115 factor traced the changes in cell identity during the conversion of single primary root meristems into twin roots and were induced in an MED18 and chromate-dependent manner during the root twinning events, which also required auxin redistribution and signalling mediated by IAA14/SOLITARY ROOT (SLR1). Splitting of the root meristem allowed dichotomous root branching in Arabidopsis, a poorly understood process in which stem cells may act to enable whole organ regeneration.
Collapse
Affiliation(s)
- Bricia Ruiz-Aguilar
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Salvador López-Bucio
- CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Edificio R, Ciudad Universitaria, Morelia, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
34
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
35
|
Atkins PA, Voytas DF. Overcoming bottlenecks in plant gene editing. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:79-84. [PMID: 32143167 DOI: 10.1016/j.pbi.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 05/06/2023]
Abstract
Agriculture has reached a technological inflection point. The development of novel gene editing tools and methods for their delivery to plant cells promises to increase genome malleability and transform plant biology. Whereas gene editing is capable of making a myriad of DNA sequence modifications, its widespread adoption has been hindered by a number of factors, particularly inefficiencies in creating precise DNA sequence modifications and ineffective methods for delivering gene editing reagents to plant cells. Here, we briefly overview the principles of plant genome editing and highlight a subset of the most recent advances that promise to overcome current limitations.
Collapse
Affiliation(s)
- Paul Ap Atkins
- Center for Genome Engineering, Center for Precision Plant Genomics and Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel F Voytas
- Center for Genome Engineering, Center for Precision Plant Genomics and Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
36
|
DNA Helicases as Safekeepers of Genome Stability in Plants. Genes (Basel) 2019; 10:genes10121028. [PMID: 31835565 PMCID: PMC6947026 DOI: 10.3390/genes10121028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic information of all organisms is coded in double-stranded DNA. DNA helicases are essential for unwinding this double strand when it comes to replication, repair or transcription of genetic information. In this review, we will focus on what is known about a variety of DNA helicases that are required to ensure genome stability in plants. Due to their sessile lifestyle, plants are especially exposed to harmful environmental factors. Moreover, many crop plants have large and highly repetitive genomes, making them absolutely dependent on the correct interplay of DNA helicases for safeguarding their stability. Although basic features of a number of these enzymes are conserved between plants and other eukaryotes, a more detailed analysis shows surprising peculiarities, partly also between different plant species. This is additionally of high relevance for plant breeding as a number of these helicases are also involved in crossover control during meiosis and influence the outcome of different approaches of CRISPR/Cas based plant genome engineering. Thus, gaining knowledge about plant helicases, their interplay, as well as the manipulation of their pathways, possesses the potential for improving agriculture. In the long run, this might even help us cope with the increasing obstacles of climate change threatening food security in completely new ways.
Collapse
|
37
|
García-Medel PL, Baruch-Torres N, Peralta-Castro A, Trasviña-Arenas CH, Torres-Larios A, Brieba LG. Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining. Nucleic Acids Res 2019; 47:3028-3044. [PMID: 30698803 PMCID: PMC6451138 DOI: 10.1093/nar/gkz039] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.
Collapse
Affiliation(s)
- Paola L García-Medel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado postal 70-243, Mexico City 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| |
Collapse
|
38
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
39
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
40
|
Mara K, Charlot F, Guyon-Debast A, Schaefer DG, Collonnier C, Grelon M, Nogué F. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2019; 222:1380-1391. [PMID: 30636294 DOI: 10.1111/nph.15680] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 05/19/2023]
Abstract
Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.
Collapse
Affiliation(s)
- Kostlend Mara
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Didier G Schaefer
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Cécile Collonnier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
41
|
Huang R, Shu S, Liu M, Wang C, Jiang B, Jiang J, Yang C, Zhang S. Nuclear Prohibitin3 Maintains Genome Integrity and Cell Proliferation in the Root Meristem through Minichromosome Maintenance 2. PLANT PHYSIOLOGY 2019; 179:1669-1691. [PMID: 30674698 PMCID: PMC6446790 DOI: 10.1104/pp.18.01463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 05/30/2023]
Abstract
The nucleo-mitochondrial dual-localized proteins can act as gene expression regulators; however, few instances of these proteins have been described in plants. Arabidopsis (Arabidopsis thaliana) PROHIBITIN 3 (PHB3) is involved in stress responses and developmental processes, but it is unknown how these roles are achieved at the molecular level in the nucleus. In this study, we show that nucleo-mitochondrial PHB3 plays an essential role in regulating genome stability and cell proliferation. PHB3 is up-regulated by DNA damage agents, and the stress-induced PHB3 proteins accumulate in the nucleus. Loss of function of PHB3 results in DNA damage and defective maintenance of the root stem cell niche. Subsequently, the expression patterns and levels of the root stem cell regulators are altered and down-regulated, respectively. In addition, the phb3 mutant shows aberrant cell division and altered expression of cell cycle-related genes, such as CycB1 and Cyclin dependent kinase 1 Moreover, the minichromosome maintenance (MCM) genes, e.g. MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7, are up-regulated in the phb3 mutant. Reducing the MCM2 expression level substantially recovers the DNA damage in the phb3 mutant and partially rescues the altered cell proliferation and root deficiency of phb3 seedlings. PHB3 acts as a transcriptional coregulator that represses MCM2 expression by competitively binding to the promoter E2F-cis-acting elements with E2Fa so as to modulate primary root growth. Collectively, these findings indicate that nuclear-localized PHB3 acts as a transcriptional coregulator that suppresses MCM2 expression to sustain genome integrity and cell proliferation for stem cell niche maintenance in Arabidopsis.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Si Shu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengling Liu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bei Jiang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
42
|
Cardinal-McTeague WM, Wurdack KJ, Sigel EM, Gillespie LJ. Seed size evolution and biogeography of Plukenetia (Euphorbiaceae), a pantropical genus with traditionally cultivated oilseed species. BMC Evol Biol 2019; 19:29. [PMID: 30670006 PMCID: PMC6341577 DOI: 10.1186/s12862-018-1308-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/23/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Plukenetia is a small pantropical genus of lianas and vines with variably sized edible oil-rich seeds that presents an ideal system to investigate neotropical and pantropical diversification patterns and seed size evolution. We assessed the biogeography and seed evolution of Plukenetia through phylogenetic analyses of a 5069 character molecular dataset comprising five nuclear and two plastid markers for 86 terminals in subtribe Plukenetiinae (representing 20 of ~ 23 Plukenetia species). Two nuclear genes, KEA1 and TEB, were used for phylogenetic reconstruction for the first time. Our goals were: (1) produce a robust, time-dependent evolutionary framework for Plukenetia using BEAST; (2) reconstruct its biogeographical history with ancestral range estimation in BIOGEOBEARS; (3) define seed size categories; (4) identify patterns of seed size evolution using ancestral state estimation; and (5) conduct regression analyses with putative drivers of seed size using the threshold model. RESULTS Plukenetia was resolved into two major groups, which we refer to as the pinnately- and palmately-veined clades. Our analyses suggest Plukenetia originated in the Amazon or Atlantic Forest of Brazil during the Oligocene (28.7 Mya) and migrated/dispersed between those regions and Central America/Mexico throughout the Miocene. Trans-oceanic dispersals explain the pantropical distribution of Plukenetia, including from the Amazon to Africa in the Early Miocene (17.4 Mya), followed by Africa to Madagascar and Africa to Southeast Asia in the Late Miocene (9.4 Mya) and Pliocene (4.5 Mya), respectively. We infer a single origin of large seeds in the ancestor of Plukenetia. Seed size fits a Brownian motion model of trait evolution and is moderately to strongly associated with plant size, fruit type/dispersal syndrome, and seedling ecology. Biome shifts were not drivers of seed size, although there was a weak association with a transition to fire prone semi-arid savannas. CONCLUSIONS The major relationships among the species of Plukenetia are now well-resolved. Our biogeographical analyses support growing evidence that many pantropical distributions developed by periodic trans-oceanic dispersals throughout the Miocene and Pliocene. Selection on a combination of traits contributed to seed size variation, while movement between forest edge/light gap and canopy niches likely contributed to the seed size extremes in Plukenetia.
Collapse
Affiliation(s)
- Warren M. Cardinal-McTeague
- Department of Biology, University of Ottawa, Gendron Hall, Room 160, 30 Marie Curie, Ottawa, Ontario K1N 6N5 Canada
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4 Canada
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012 USA
| | - Kenneth J. Wurdack
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012 USA
| | - Erin M. Sigel
- Department of Biology, University of Louisiana at Lafayette, Billeaud Hall, Room 108, 410 E. St. Mary Blvd, Lafayette, LA 70503 USA
| | - Lynn J. Gillespie
- Department of Biology, University of Ottawa, Gendron Hall, Room 160, 30 Marie Curie, Ottawa, Ontario K1N 6N5 Canada
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4 Canada
| |
Collapse
|
43
|
Sakamoto AN. Translesion Synthesis in Plants: Ultraviolet Resistance and Beyond. FRONTIERS IN PLANT SCIENCE 2019; 10:1208. [PMID: 31649692 PMCID: PMC6794406 DOI: 10.3389/fpls.2019.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
Plant genomes sustain various forms of DNA damage that stall replication forks. Translesion synthesis (TLS) is one of the pathways to overcome stalled replication in which specific polymerases (TLS polymerase) perform bypass synthesis across DNA damage. This article gives a brief overview of plant TLS polymerases. In Arabidopsis, DNA polymerase (Pol) ζ, η, κ, θ, and λ and Reversionless1 (Rev1) are shown to be involved in the TLS. For example, AtPolη bypasses ultraviolet (UV)-induced cyclobutane pyrimidine dimers in vitro. Disruption of AtPolζ or AtPolη increases root stem cell death after UV irradiation. These results suggest that AtPolζ and ATPolη bypass UV-induced damage, prevent replication arrest, and allow damaged cells to survive and grow. In general, TLS polymerases have low fidelity and often induce mutations. Accordingly, disruption of AtPolζ or AtRev1 reduces somatic mutation frequency, whereas disruption of AtPolη elevates it, suggesting that plants have both mutagenic and less mutagenic TLS activities. The stalled replication fork can be resolved by a strand switch pathway involving a DNA helicase Rad5. Disruption of both AtPolζ and AtRAD5a shows synergistic or additive effects in the sensitivity to DNA-damaging agents. Moreover, AtPolζ or AtRev1 disruption elevates homologous recombination frequencies in somatic tissues. These results suggest that the Rad5-dependent pathway and TLS are parallel. Plants grown in the presence of heat shock protein 90 (HSP90) inhibitor showed lower mutation frequencies, suggesting that HSP90 regulates mutagenic TLS in plants. Hypersensitivities of TLS-deficient plants to γ-ray and/or crosslink damage suggest that plant TLS polymerases have multiple roles, as reported in other organisms.
Collapse
|
44
|
Baruch-Torres N, Brieba LG. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Nucleic Acids Res 2017; 45:10751-10763. [PMID: 28977655 PMCID: PMC5737093 DOI: 10.1093/nar/gkx744] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not related to metazoan and fungal mitochondrial DNAPs. Herein we report that replicative POPs from the plant model Arabidopsis thaliana (AtPolI) efficiently bypass one the most insidious DNA lesions, an apurinic/apyrimidinic (AP) site. AtPolIs accomplish lesion bypass with high catalytic efficiency during nucleotide insertion and extension. Lesion bypass depends on two unique polymerization domain insertions evolutionarily unrelated to the insertions responsible for lesion bypass by DNAP θ, an analogous lesion bypass polymerase. AtPolIs exhibit an insertion fidelity that ranks between the fidelity of replicative and lesion bypass DNAPs, moderate 3′-5′ exonuclease activity and strong strand-displacement. AtPolIs are the first known example of a family-A DNAP evolved to function in both DNA replication and lesion bypass. The lesion bypass capabilities of POPs may be required to prevent replication fork collapse in plant organelles.
Collapse
Affiliation(s)
- Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| |
Collapse
|
45
|
Klemm T, Mannuß A, Kobbe D, Knoll A, Trapp O, Dorn A, Puchta H. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:725-740. [PMID: 28509359 DOI: 10.1111/tpj.13602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.
Collapse
Affiliation(s)
- Tobias Klemm
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | | | - Daniela Kobbe
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | | | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
46
|
Beagan K, Armstrong RL, Witsell A, Roy U, Renedo N, Baker AE, Schärer OD, McVey M. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLoS Genet 2017; 13:e1006813. [PMID: 28542210 PMCID: PMC5466332 DOI: 10.1371/journal.pgen.1006813] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/09/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance. Error-prone DNA Polymerase θ (Pol θ) plays a conserved role in a mutagenic DNA double-strand break repair mechanism called microhomology-mediated end joining (MMEJ). In many organisms, it also participates in a process crucial to the removal/repair of DNA interstrand crosslinks. The exact mechanism by which Pol θ promotes these processes is unclear, but a clue may lie in its dual-domain structure. While the role of its polymerase domain has been well-studied, the function of its helicase-like domain remains an open question. Here we report an absolute requirement for ATPase activity of the helicase-like domain during interstrand crosslink repair in Drosophila melanogaster. We also find that although end joining frequency does not decrease in ATPase-dead mutants, ATPase activity is critical for generating templated insertions. Using purified Pol θ protein, we show that it can bypass synthetic substrates mimicking interstrand crosslink intermediates and can promote MMEJ-like reactions with partial double-stranded and single-stranded DNA. Together, these data demonstrate a novel function for the helicase-like domain of Pol θ in both interstrand crosslink repair and MMEJ and provide insight into why the dual-domain structure has been conserved throughout evolution.
Collapse
Affiliation(s)
- Kelly Beagan
- Department of Biology, Tufts University, Medford, Massachusetts
| | | | - Alice Witsell
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Upasana Roy
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Nikolai Renedo
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Amy E. Baker
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Orlando D. Schärer
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea and Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts
- * E-mail:
| |
Collapse
|
47
|
Batzenschlager M, Schmit AC, Herzog E, Fuchs J, Schubert V, Houlné G, Chabouté ME. MGO3 and GIP1 act synergistically for the maintenance of centromeric cohesion. Nucleus 2017; 8:98-105. [PMID: 28033038 DOI: 10.1080/19491034.2016.1276142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The control of genomic maintenance during S phase is crucial in eukaryotes. It involves the establishment of sister chromatid cohesion, ensuring faithful chromosome segregation, as well as proper DNA replication and repair to preserve genetic information. In animals, nuclear periphery proteins - including inner nuclear membrane proteins and nuclear pore-associated components - are key factors which regulate DNA integrity. Corresponding functional homologues are not so well known in plants which may have developed specific mechanisms due to their sessile life. We have already characterized the Gamma-tubulin Complex Protein 3-interacting proteins (GIPs) as essential regulators of centromeric cohesion at the nuclear periphery. GIPs were also shown to interact with TSA1, first described as a partner of the epigenetic regulator MGOUN3 (MGO3)/BRUSHY1 (BRU1)/TONSOKU (TSK) involved in genomic maintenance. Here, using genetic analyses, we show that the mgo3gip1 mutants display an impaired and pleiotropic development including fasciation. We also provide evidence for the contribution of both MGO3 and GIP1 to the regulation of centromeric cohesion in Arabidopsis.
Collapse
Affiliation(s)
- Morgane Batzenschlager
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Anne-Catherine Schmit
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Etienne Herzog
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Joerg Fuchs
- b Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben , Stadt Seeland , Germany
| | - Veit Schubert
- b Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben , Stadt Seeland , Germany
| | - Guy Houlné
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Marie-Edith Chabouté
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
48
|
Wei Q, Jiao C, Guo L, Ding Y, Cao J, Feng J, Dong X, Mao L, Sun H, Yu F, Yang G, Shi P, Ren G, Fei Z. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. THE NEW PHYTOLOGIST 2017; 214:81-96. [PMID: 27859288 DOI: 10.1111/nph.14284] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 05/27/2023]
Abstract
The primary thickening growth of Moso (Phyllostachys edulis) underground shoots largely determines the culm circumference. However, its developmental mechanisms remain largely unknown. Using an integrated anatomy, mathematics and genomics approach, we systematically studied cellular and molecular mechanisms underlying the growth of Moso underground shoots. We discovered that the growth displayed a spiral pattern and pith played an important role in promoting the primary thickening process of Moso underground shoots and driving the evolution of culms with different sizes among different bamboo species. Different with model plants, the shoot apical meristem (SAM) of Moso is composed of six layers of cells. Comparative transcriptome analysis identified a large number of genes related to the vascular tissue formation that were significantly upregulated in a thick wall variant with narrow pith cavity, mildly spiral growth, and flat and enlarged SAM, including those related to plant hormones and those involved in cell wall development. These results provide a systematic perspective on the primary thickening growth of Moso underground shoots, and support a plausible mechanism resulting in the narrow pith cavity, weak spiral growth but increased vascular bundle of the thick wall Moso.
Collapse
Affiliation(s)
- Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Junjie Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiaobo Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Linyong Mao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, 330045, China
| | - Guangyao Yang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, 330045, China
| | - Peijian Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
49
|
van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. NATURE PLANTS 2016; 2:16164. [PMID: 27797358 DOI: 10.1038/nplants.2016.164] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/27/2016] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens is a pathogenic bacterium, which transforms plants by transferring a discrete segment of its DNA, the T-DNA, to plant cells. The T-DNA then integrates into the plant genome. T-DNA biotechnology is widely exploited in the genetic engineering of model plants and crops. However, the molecular mechanism underlying T-DNA integration remains unknown1. Here we demonstrate that in Arabidopsis thaliana T-DNA integration critically depends on polymerase theta (Pol θ). We find that TEBICHI/POLQ mutant plants (which have mutated Pol θ), although susceptible to Agrobacterium infection, are resistant to T-DNA integration. Characterization of >10,000 T-DNA-plant genome junctions reveals a distinct signature of Pol θ action and also indicates that 3' end capture at genomic breaks is the prevalent mechanism of T-DNA integration. The primer-template switching ability of Pol θ can explain the molecular patchwork known as filler DNA that is frequently observed at sites of integration. T-DNA integration signatures in other plant species closely resemble those of Arabidopsis, suggesting that Pol-θ-mediated integration is evolutionarily conserved. Thus, Pol θ provides the mechanism for T-DNA random integration into the plant genome, demonstrating a potential to disrupt random integration so as to improve the quality and biosafety of plant transgenesis.
Collapse
Affiliation(s)
- Maartje van Kregten
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Sylvia de Pater
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Paul J J Hooykaas
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| |
Collapse
|
50
|
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|