1
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
2
|
Deng L, Cheung S, Liu J, Chen J, Chen F, Zhang X, Liu H. Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123960. [PMID: 38608853 DOI: 10.1016/j.envpol.2024.123960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Nanoplastics pollution is a growing environmental problem worldwide. Recent research has demonstrated the toxic effects of nanoplastics on various marine organisms. However, the influences of nanoplastics on marine nitrogen-fixing cyanobacteria, a critical nitrogen source in the ocean, remained unknown. Here, we report that nanoplastics exposure significantly reduced growth, photosynthetic, and nitrogen fixation rates of Crocosphaera watsonii (a major marine nitrogen-fixing cyanobacterium). Transcriptomic analysis revealed that nanoplastics might harm C. watsonii via downregulation of photosynthetic pathways and DNA damage repair genes, while genes for respiration, cell damage, nitrogen limitation, and iron (and phosphorus) scavenging were upregulated. The number and size of starch grains and electron-dense vacuoles increased significantly after nanoplastics exposure, suggesting that C. watsonii allocated more resources to storage instead of growth under stress. We propose that nanoplastics can damage the cell (e.g., DNA, cell membrane, and membrane-bound transporters), inhibit nitrogen and carbon fixation, and hence lead to nutrient limitation and impaired growth. Our findings suggest the possibility that nanoplastics pollution could reduce the new nitrogen input and hence affect the productivity in the ocean. The impact of nanoplastics on marine nitrogen fixation and productivity should be considered when predicting the ecosystem response and biogeochemical cycling in the changing ocean.
Collapse
Affiliation(s)
- Lixia Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Shunyan Cheung
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Fengyuan Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, China; SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, China.
| |
Collapse
|
3
|
de Lichtenberg C, Rapatskiy L, Reus M, Heyno E, Schnegg A, Nowaczyk MM, Lubitz W, Messinger J, Cox N. Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor. Proc Natl Acad Sci U S A 2024; 121:e2319374121. [PMID: 38437550 PMCID: PMC10945779 DOI: 10.1073/pnas.2319374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Michael Reus
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Eiri Heyno
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-Universität Bochum, BochumD-44780, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Johannes Messinger
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
- Research School of Chemistry, Australian National University, Acton ACT2601, Australia
| |
Collapse
|
4
|
Ji N, Wang J, Huang W, Huang J, Cai Y, Sun S, Shen X, Liang Y. Transcriptome analysis of the harmful alga Heterosigma akashiwo under a 24-hour light-dark cycle. HARMFUL ALGAE 2024; 133:102601. [PMID: 38485440 DOI: 10.1016/j.hal.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The photoperiod, which is defined as the period of time within a 24-hour time frame that light is available, is an important environmental regulator of several physiological processes in phytoplankton, including harmful bloom-forming phytoplankton. The ichthyotoxic raphidophyte Heterosigma akashiwo is a globally distributed bloom-forming phytoplankton. Despite extensive studies on the ecological impact of H. akashiwo, the influence of the photoperiod on crucial biological processes of this species remains unclear. In this study, gene expression in H. akashiwo was analyzed over a 24-hour light-dark (14:10) treatment period. Approximately 36 % of unigenes in H. akashiwo were differentially expressed during this 24-hour treatment period, which is indicative of their involvement in the response to light-dark variation. Notably, the number of differentially expressed genes exhibited an initial increase followed by a subsequent decrease as the sampling time progressed (T0 vs. other time points). Unigenes associated with photosynthesis and photoprotection reached their peak expression levels after 2-4 h of illumination (T12-T14). In contrast, the expression of unigenes associated with DNA replication peaked at the starting point of the dark period (T0). Furthermore, although several unigenes annotated to photoreceptors displayed potential diel periodicity, genes from various photoreceptor families (such as phytochrome and cryptochrome) showed unique expression patterns. Collectively, our findings offer novel perspectives on the response of H. akashiwo to the light-dark cycle, serving as a valuable resource for investigating the physiology and ecology of this species.
Collapse
Affiliation(s)
- Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Junyue Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wencong Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinwang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Keil L, Mehlmer N, Cavelius P, Garbe D, Haack M, Ritz M, Awad D, Brück T. The Time-Resolved Salt Stress Response of Dunaliella tertiolecta-A Comprehensive System Biology Perspective. Int J Mol Sci 2023; 24:15374. [PMID: 37895054 PMCID: PMC10607294 DOI: 10.3390/ijms242015374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking β-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (L.K.); (N.M.); (P.C.); (D.G.); (M.H.); (M.R.); (D.A.)
| |
Collapse
|
7
|
Lambertz J, Meier-Credo J, Kucher S, Bordignon E, Langer JD, Nowaczyk MM. Isolation of a novel heterodimeric PSII complex via strep-tagged PsbO. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148953. [PMID: 36572329 DOI: 10.1016/j.bbabio.2022.148953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The multi-subunit membrane protein complex photosystem II (PSII) catalyzes the light-driven oxidation of water and with this the initial step of photosynthetic electron transport in plants, algae, and cyanobacteria. Its biogenesis is coordinated by a network of auxiliary proteins that facilitate the stepwise assembly of individual subunits and cofactors, forming various intermediate complexes until fully functional mature PSII is present at the end of the process. In the current study, we purified PSII complexes from a mutant line of the thermophilic cyanobacterium Thermosynechococcus vestitus BP-1 in which the extrinsic subunit PsbO, characteristic for active PSII, was fused with an N-terminal Twin-Strep-tag. Three distinct PSII complexes were separated by ion-exchange chromatography after the initial affinity purification. Two complexes differ in their oligomeric state (monomeric and dimeric) but share the typical subunit composition of mature PSII. They are characterized by the very high oxygen evolving activity of approx. 6000 μmol O2·(mg Chl·h)-1. Analysis of the third (heterodimeric) PSII complex revealed lower oxygen evolving activity of approx. 3000 μmol O2·(mg Chl·h)-1 and a manganese content of 2.7 (±0.2) per reaction center compared to 3.7 (±0.2) of fully active PSII. Mass spectrometry and time-resolved fluorescence spectroscopy further indicated that PsbO is partially replaced by Psb27 in this PSII fraction, thus implying a role of this complex in PSII repair.
Collapse
Affiliation(s)
- Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jakob Meier-Credo
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Svetlana Kucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland(1)
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany; Proteomics, Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Department of Biochemistry, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany(1).
| |
Collapse
|
8
|
Gan X, Zhang W, Lan S, Hu D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1369-1380. [PMID: 36626162 DOI: 10.1021/acs.jafc.2c06422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further develop new antiviral agents, several novel cyclized derivatives of ferulic acid were designed and synthesized. Their antiviral activities were evaluated against the cucumber mosaic virus (CMV), pepper mild mottle virus (PMMoV), and tomato spotted wilt virus (TSWV). The results showed that some ferulic acid derivatives exhibited desirable antiviral activities. Particularly, compound 5e exhibited excellent protective activities against CMV, PMMoV, and TSWV, with EC50 values of 167.2, 102.5, and 145.8 μg mL-1, respectively, which were superior to those obtained for trans-ferulic acid (581.7, 611.2, and 615.4 μg mL-1), dufulin (312.6, 302.5, and 298.2 μg mL-1), and ningnanmycin (264.3, 282.5, and 276.5 μg mL-1). Thereafter, the protective mechanisms of 5e were evaluated through photosynthesis evaluation, transcriptome profiling, and proteomic analysis. The results indicated that 5e significantly activated the expression levels of photosynthesis-related regulatory genes and proteins in tobacco plants and promoted the accumulation of defense molecules to resist viral infection. Thus, the findings of this study indicated that novel cyclized ferulic acid derivatives are potential antiviral agents that act via regulating photosynthesis in the host.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shichao Lan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
9
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
10
|
Rahimzadeh-Karvansara P, Pascual-Aznar G, Bečková M, Komenda J. Psb34 protein modulates binding of high-light-inducible proteins to CP47-containing photosystem II assembly intermediates in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2022; 152:333-346. [PMID: 35279779 PMCID: PMC9458560 DOI: 10.1007/s11120-022-00908-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Assembly of photosystem II (PSII), a water-splitting catalyst in chloroplasts and cyanobacteria, requires numerous auxiliary proteins which promote individual steps of this sequential process and transiently associate with one or more assembly intermediate complexes. In this study, we focussed on the role of a PSII-associated protein encoded by the ssl1498 gene in the cyanobacterium Synechocystis sp. PCC 6803. The N-terminal domain of this protein, which is here called Psb34, is very similar to the N-terminus of HliA/B proteins belonging to a family of high-light-inducible proteins (Hlips). Psb34 was identified in both dimeric and monomeric PSII, as well as in a PSII monomer lacking CP43 and containing Psb28. When FLAG-tagged, the protein is co-purified with these three complexes and with the PSII auxiliary proteins Psb27 and Psb28. However, the preparation also contained the oxygen-evolving enhancers PsbO and PsbV and lacked HliA/B proteins even when isolated from high-light-treated cells. The data suggest that Psb34 competes with HliA/B for the same binding site and that it is one of the components involved in the final conversion of late PSII assembly intermediates into functional PSII complexes, possibly keeping them free of Hlips. Unlike HliA/B, Psb34 does bind to the CP47 assembly module before its incorporation into PSII. Analysis of strains lacking Psb34 indicates that Psb34 mediates the optimal equilibrium of HliA/B binding among individual PSII assembly intermediates containing CP47, allowing Hlip-mediated photoprotection at all stages of PSII assembly.
Collapse
Affiliation(s)
- Parisa Rahimzadeh-Karvansara
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Guillem Pascual-Aznar
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic.
| |
Collapse
|
11
|
Johnson VM, Biswas S, Roose JL, Pakrasi HB, Liu H. Psb27, a photosystem II assembly protein, enables quenching of excess light energy during its participation in the PSII lifecycle. PHOTOSYNTHESIS RESEARCH 2022; 152:297-304. [PMID: 34985637 DOI: 10.1007/s11120-021-00895-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII), the enzyme responsible for oxidizing water into molecular oxygen, undergoes a complex lifecycle during which multiple assembly proteins transiently bind to and depart from PSII assembly intermediate complexes. Psb27 is one such protein. It associates with the CP43 chlorophyll-binding subunit of PSII to form a Psb27-PSII sub-complex that constitutes 7-10% of the total PSII pool. Psb27 remains bound to PSII assembly intermediates and dissociates prior to the formation of fully functional PSII. In this study, we compared a series of Psb27 mutant strains in the cyanobacterium Synechocystis sp. PCC 6803 with varied expression levels of Psb27: wild type (WT); psb27 genetic deletion (Del27), genetically complemented psb27 (Com27); and over-expressed Psb27 (OE27). The Del27 strain demonstrated decreased non-photochemical fluorescence quenching, while the OE27 strain showed increased non-photochemical quenching and tolerance to fluctuating light conditions. Multiple flashes and fluorescence decay analysis indicated that OE27 has the least affected maximum PSII quantum yield of the mutants. OE27 also displayed a minimal impact on the half-life of the fast component of QA- reoxidation over multiple flashes, indicating robust PSII function. We propose that the close association between Psb27 and CP43, and the absence of a fully functional manganese cluster in the Psb27-PSII complex create a PSII sub-population that dissipates excitation energy prior to its recruitment into the functional PSII pool. Efficient energy dissipation prevents damage to this pre-PSII pool and allows for efficient PSII repair and maturation. Participation of Psb27 in the PSII life cycle ensures high-quality PSII assembly.
Collapse
Affiliation(s)
- Virginia M Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | - Sandeep Biswas
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | - Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, USA.
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
12
|
Lambertz J, Liauw P, Whitelegge JP, Nowaczyk MM. Mass spectrometry analysis of the photosystem II assembly factor Psb27 revealed variations in its lipid modification. PHOTOSYNTHESIS RESEARCH 2022; 152:305-316. [PMID: 34910272 PMCID: PMC9458691 DOI: 10.1007/s11120-021-00891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The assembly of large, multi-cofactor membrane protein complexes like photosystem II (PSII) requires a high level of coordination. The process is facilitated by a large network of auxiliary proteins that bind transiently to unassembled subunits, preassembled modules or intermediate states of PSII, which are comprised of a subset of subunits. However, analysis of these immature, partially assembled PSII complexes is hampered by their low abundance and intrinsic instability. In this study, PSII was purified from the thermophilic cyanobacterium Thermosynechococcus elongatus via Twin-Strep-tagged CP43 and further separated by ion exchange chromatography into mature and immature complexes. Mass spectrometry analysis of the immature Psb27-PSII intermediate revealed six different Psb27 proteoforms with distinct lipid modifications. The maturation and functional role of thylakoid localized lipoproteins are discussed.
Collapse
Affiliation(s)
- Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Pasqual Liauw
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
13
|
Boussac A, Sellés J, Hamon M, Sugiura M. Properties of Photosystem II lacking the PsbJ subunit. PHOTOSYNTHESIS RESEARCH 2022; 152:347-361. [PMID: 34661808 DOI: 10.1007/s11120-021-00880-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like Psb27, Psb28, and Tsl0063. The presence of Psb27 has been proposed (Zabret et al. in Nat Plants 7:524-538, 2021; Huang et al. Proc Natl Acad Sci USA 118:e2018053118, 2021; Xiao et al. in Nat Plants 7:1132-1142, 2021) to prevent the binding of PsbJ, a single transmembrane α-helix close to the quinone QB binding site. Consequently, a PSII rid of Psb27, Psb28, and Tsl0034 prior to the binding of PsbJ would logically correspond to an assembly intermediate. The present work describes experiments aiming at further characterizing such a ∆PsbJ-PSII, purified from the thermophilic Thermosynechococcus elongatus, by means of MALDI-TOF spectroscopy, thermoluminescence, EPR spectroscopy, and UV-visible time-resolved spectroscopy. In the purified ∆PsbJ-PSII, an active Mn4CaO5 cluster is present in 60-70% of the centers. In these centers, although the forward electron transfer seems not affected, the Em of the QB/QB- couple increases by ≥ 120 mV , thus disfavoring the electron coming back on QA. The increase of the energy gap between QA/QA- and QB/QB- could contribute in a protection against the charge recombination between the donor side and QB-, identified at the origin of photoinhibition under low light (Keren et al. in Proc Natl Acad Sci USA 94:1579-1584, 1997), and possibly during the slow photoactivation process.
Collapse
Affiliation(s)
- Alain Boussac
- I2BC, UMR CNRS 9198, CEA Saclay, 91191, Gif-sur-Yvette, France.
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226/FRC550 CNRS and Sorbonne-Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Miwa Sugiura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
14
|
Niklas J, Agostini A, Carbonera D, Di Valentin M, Lubitz W. Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy. PHOTOSYNTHESIS RESEARCH 2022; 152:213-234. [PMID: 35290567 PMCID: PMC9424170 DOI: 10.1007/s11120-022-00905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Collapse
Affiliation(s)
- Jens Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
15
|
Gisriel CJ, Brudvig GW. Comparison of PsbQ and Psb27 in photosystem II provides insight into their roles. PHOTOSYNTHESIS RESEARCH 2022; 152:177-191. [PMID: 35001227 PMCID: PMC9271139 DOI: 10.1007/s11120-021-00888-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) catalyzes the oxidation of water at its active site that harbors a high-valent inorganic Mn4CaOx cluster called the oxygen-evolving complex (OEC). Extrinsic subunits generally serve to protect the OEC from reductants and stabilize the structure, but diversity in the extrinsic subunits exists between phototrophs. Recent cryo-electron microscopy experiments have provided new molecular structures of PSII with varied extrinsic subunits. We focus on the extrinsic subunit PsbQ, that binds to the mature PSII complex, and on Psb27, an extrinsic subunit involved in PSII biogenesis. PsbQ and Psb27 share a similar binding site and have a four-helix bundle tertiary structure, suggesting they are related. Here, we use sequence alignments, structural analyses, and binding simulations to compare PsbQ and Psb27 from different organisms. We find no evidence that PsbQ and Psb27 are related despite their similar structures and binding sites. Evolutionary divergence within PsbQ homologs from different lineages is high, probably due to their interactions with other extrinsic subunits that themselves exhibit vast diversity between lineages. This may result in functional variation as exemplified by large differences in their calculated binding energies. Psb27 homologs generally exhibit less divergence, which may be due to stronger evolutionary selection for certain residues that maintain its function during PSII biogenesis and this is consistent with their more similar calculated binding energies between organisms. Previous experimental inconsistencies, low confidence binding simulations, and recent structural data suggest that Psb27 is likely to exhibit flexibility that may be an important characteristic of its activity. The analysis provides insight into the functions and evolution of PsbQ and Psb27, and an unusual example of proteins with similar tertiary structures and binding sites that probably serve different roles.
Collapse
Affiliation(s)
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
Zhu Q, Yang Y, Xiao Y, Han W, Li X, Wang W, Kuang T, Shen JR, Han G. Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2022; 152:193-206. [PMID: 35503495 DOI: 10.1007/s11120-022-00920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from Thermosynechococcus vulcanus (T. vulcanus) showed that D1-R323, D1-N322, D1-D319 and D1-H304 are involved in one of these hydrogen-bonding networks located in the interfaces between the D1, CP43 and PsbV subunits. In order to investigate the functions of these residues in PSII, we generated seven site-directed mutants D1-R323A, D1-R323E, D1-N322R, D1-D319L, D1-D319R, D1-D319Y and D1-H304D of T. vulcanus and examined the effects of these mutations on the growth and functions of the oxygen-evolving complex. The photoautotrophic growth rates of these mutants were similar to that of the wild type, whereas the oxygen-evolving activities of the mutant cells were decreased differently to 63-91% of that of the wild type at pH 6.5. The mutant cells showed a higher relative activity at higher pH region than the wild type cells, suggesting that higher pH facilitated proton egress in the mutants. In addition, oxygen evolution of thylakoid membranes isolated from these mutants showed an apparent decrease compared to that of the cells. This is due to the loss of PsbU during purification of the thylakoid membranes. Moreover, PsbV was also lost in the PSII core complexes purified from the mutants. Taken together, D1-R323, D1-N322, D1-D319 and D1-H304 are vital for the optimal function of oxygen evolution and functional binding of extrinsic proteins to PSII core, and may be involved in the proton egress pathway mediated by YZ.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No.1 Beichen West Rd., Beijing, 100101, China.
- Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
17
|
Advances in the Understanding of the Lifecycle of Photosystem II. Microorganisms 2022; 10:microorganisms10050836. [PMID: 35630282 PMCID: PMC9145668 DOI: 10.3390/microorganisms10050836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Photosystem II is a light-driven water-plastoquinone oxidoreductase present in cyanobacteria, algae and plants. It produces molecular oxygen and protons to drive ATP synthesis, fueling life on Earth. As a multi-subunit membrane-protein-pigment complex, Photosystem II undergoes a dynamic cycle of synthesis, damage, and repair known as the Photosystem II lifecycle, to maintain a high level of photosynthetic activity at the cellular level. Cyanobacteria, oxygenic photosynthetic bacteria, are frequently used as model organisms to study oxygenic photosynthetic processes due to their ease of growth and genetic manipulation. The cyanobacterial PSII structure and function have been well-characterized, but its lifecycle is under active investigation. In this review, advances in studying the lifecycle of Photosystem II in cyanobacteria will be discussed, with a particular emphasis on new structural findings enabled by cryo-electron microscopy. These structural findings complement a rich and growing body of biochemical and molecular biology research into Photosystem II assembly and repair.
Collapse
|
18
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
19
|
Gisriel CJ, Shen G, Ho MY, Kurashov V, Flesher DA, Wang J, Armstrong WH, Golbeck JH, Gunner MR, Vinyard DJ, Debus RJ, Brudvig GW, Bryant DA. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. J Biol Chem 2022; 298:101424. [PMID: 34801554 PMCID: PMC8689208 DOI: 10.1016/j.jbc.2021.101424] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022] Open
Abstract
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marilyn R Gunner
- Department of Physics, City College of New York, New York, New York, USA
| | - David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
20
|
Xiao Y, Huang G, You X, Zhu Q, Wang W, Kuang T, Han G, Sui SF, Shen JR. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. NATURE PLANTS 2021; 7:1132-1142. [PMID: 34226692 DOI: 10.1038/s41477-021-00961-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyses light-induced water oxidation, leading to the conversion of light energy into chemical energy and the release of dioxygen. We analysed the structures of two Psb28-bound PSII intermediates, Psb28-RC47 and Psb28-PSII, purified from a psbV-deletion strain of the thermophilic cyanobacterium Thermosynechococcus vulcanus, using cryo-electron microscopy. Both Psb28-RC47 and Psb28-PSII bind one Psb28, one Tsl0063 and an unknown subunit. Psb28 is located at the cytoplasmic surface of PSII and interacts with D1, D2 and CP47, whereas Tsl0063 is a transmembrane subunit and binds at the side of CP47/PsbH. Substantial structural perturbations are observed at the acceptor side, which result in conformational changes of the quinone (QB) and non-haem iron binding sites and thus may protect PSII from photodamage during assembly. These results provide a solid structural basis for understanding the assembly process of native PSII.
Collapse
Affiliation(s)
- Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
21
|
Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus. Proc Natl Acad Sci U S A 2021; 118:2018053118. [PMID: 33495333 DOI: 10.1073/pnas.2018053118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyzes light-driven water oxidation, leading to the conversion of light energy into chemical energy and the release of molecular oxygen. Psb27 is a small thylakoid lumen-localized protein known to serve as an assembly factor for the biogenesis and repair of the PSII complex. The exact location and binding fashion of Psb27 in the intermediate PSII remain elusive. Here, we report the structure of a dimeric Psb27-PSII complex purified from a psbV deletion mutant (ΔPsbV) of the cyanobacterium Thermosynechococcus vulcanus, solved by cryo-electron microscopy. Our structure showed that Psb27 is associated with CP43 at the luminal side, with specific interactions formed between Helix 2 and Helix 3 of Psb27 and a loop region between Helix 3 and Helix 4 of CP43 (loop C) as well as the large, lumen-exposed and hydrophilic E-loop of CP43. The binding of Psb27 imposes some conflicts with the N-terminal region of PsbO and also induces some conformational changes in CP43, CP47, and D2. This makes PsbO unable to bind in the Psb27-PSII. Conformational changes also occurred in D1, PsbE, PsbF, and PsbZ; this, together with the conformational changes occurred in CP43, CP47, and D2, may prevent the binding of PsbU and induce dissociation of PsbJ. This structural information provides important insights into the regulation mechanism of Psb27 in the biogenesis and repair of PSII.
Collapse
|
22
|
Soule T, Ferreira D, Lothamer J, Garcia-Pichel F. The Independent and Shared Transcriptomic Response to UVA, UVB and Oxidative Stress in the Cyanobacterium Nostoc punctiforme ATCC 29133. Photochem Photobiol 2021; 97:1063-1071. [PMID: 33955032 DOI: 10.1111/php.13444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
Research on the UVA, UVB and oxidative (as reactive oxygen species, ROS) stress response in cyanobacteria has typically focused on each individual stress condition, with limited studies addressing the intersection. Here, we evaluated the transcriptomic responses of the model cyanobacterium Nostoc punctiforme after exposure to each of these conditions. Overall, response to UVA was characterized by more gene down-regulation than the UVB or ROS response, although UVB affected over fourfold more genes than UVA or ROS. Regarding expression patterns, responses to UVA and ROS were more similar and differentiated from those to UVB. For example, genes involved in ROS metabolism were up-regulated under both UVA and ROS. However, when it came to RNA and protein metabolism, there were more up-regulated genes under UVB and ROS compared to UVA. This suggests that the response to UVB and ROS is more active than the response to UVA, which stimulated more genes in secondary metabolism. Histidine kinases and response regulators were often differentially expressed, demonstrating that regulatory systems were at the base of the patterns. This study provides background for future studies targeting different genes, proteins and systems sensitive to these conditions. It also highlights the significance of considering multiple stress conditions.
Collapse
Affiliation(s)
- Tanya Soule
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | - Daniela Ferreira
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Justin Lothamer
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | | |
Collapse
|
23
|
The Photosystem II Assembly Factor Ycf48 from the Cyanobacterium Synechocystis sp. PCC 6803 Is Lipidated Using an Atypical Lipobox Sequence. Int J Mol Sci 2021; 22:ijms22073733. [PMID: 33918522 PMCID: PMC8038367 DOI: 10.3390/ijms22073733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/24/2023] Open
Abstract
Photochemical energy conversion during oxygenic photosynthesis is performed by membrane-embedded chlorophyll-binding protein complexes. The biogenesis and maintenance of these complexes requires auxiliary protein factors that optimize the assembly process and protect nascent complexes from photodamage. In cyanobacteria, several lipoproteins contribute to the biogenesis and function of the photosystem II (PSII) complex. They include CyanoP, CyanoQ, and Psb27, which are all attached to the lumenal side of PSII complexes. Here, we show that the lumenal Ycf48 assembly factor found in the cyanobacterium Synechocystis sp. PCC 6803 is also a lipoprotein. Detailed mass spectrometric analysis of the isolated protein supported by site-directed mutagenesis experiments indicates lipidation of the N-terminal C29 residue of Ycf48 and removal of three amino acids from the C-terminus. The lipobox sequence in Ycf48 contains a cysteine residue at the -3 position compared to Leu/Val/Ile residues found in the canonical lipobox sequence. The atypical Ycf48 lipobox sequence is present in most cyanobacteria but is absent in eukaryotes. A possible role for lipoproteins in the coordinated assembly of cyanobacterial PSII is discussed.
Collapse
|
24
|
Zabret J, Bohn S, Schuller SK, Arnolds O, Möller M, Meier-Credo J, Liauw P, Chan A, Tajkhorshid E, Langer JD, Stoll R, Krieger-Liszkay A, Engel BD, Rudack T, Schuller JM, Nowaczyk MM. Structural insights into photosystem II assembly. NATURE PLANTS 2021; 7:524-538. [PMID: 33846594 PMCID: PMC8094115 DOI: 10.1038/s41477-021-00895-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.
Collapse
Affiliation(s)
- Jure Zabret
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Bohn
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sandra K Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Madeline Möller
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Pasqual Liauw
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Aaron Chan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany.
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany.
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
25
|
Xiao Y, Zhu Q, Yang Y, Wang W, Kuang T, Shen JR, Han G. Role of PsbV-Tyr137 in photosystem II studied by site-directed mutagenesis in the thermophilic cyanobacterium Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2020; 146:41-54. [PMID: 32342261 DOI: 10.1007/s11120-020-00753-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/19/2020] [Indexed: 05/07/2023]
Abstract
PsbV (cytochrome c550) is one of the three extrinsic proteins of photosystem II (PSII) and functions to maintain the stability and activity of the Mn4CaO5 cluster, the catalytic center for water oxidation. PsbV-Y137 is the C-terminal residue of PsbV and is located at the exit of a hydrogen-bond network mediated by the D1-Y161-H190 residue pair. In order to examine the function of PsbV-Y137, four mutants, PsbV-Y137A, PsbV-Y137F, PsbV-Y137G, and PsbV-Y137W, were generated with Thermosynechococcus vulcanus (T. vulcanus). These mutants showed growth rates similar to that of the wild-type strain (WT); however, their oxygen-evolving activities were different. At pH 6.5, the oxygen evolution rates of Y137F and Y137W were almost identical to that of WT, whereas the oxygen evolution rates of the Y137A, Y137G mutants were 64% and 61% of WT, respectively. However, the oxygen evolution in the latter two mutants decreased less at higher pHs, suggesting that higher pHs facilitated oxygen evolution probably by facilitating proton egress in these two mutants. Furthermore, thylakoid membranes isolated from the PsbV-Y137A, PsbV-Y137G mutants exhibited much lower levels of oxygen-evolving activity than that of WT, which was found to be caused by the release of PsbV. In addition, PSII complexes purified from the PsbV-Y137A and PsbV-Y137G mutants lost all of the three extrinsic proteins but instead bind Psb27, an assembly cofactor of PSII. These results demonstrate that the PsbV-Tyr137 residue is required for the stable binding of PsbV to PSII, and the hydrogen-bond network mediated by D1-Y161-H190 is likely to function in proton egress during water oxidation.
Collapse
Affiliation(s)
- Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No. 1 Beichen West Rd., Beijing, 100101, China.
- Research Institute of Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
26
|
Zhu Q, Yang Y, Xiao Y, Wang W, Kuang T, Shen JR, Han G. Function of PsbO-Asp158 in photosystem II: effects of mutation of this residue on the binding of PsbO and function of PSII in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2020; 146:29-40. [PMID: 32016668 DOI: 10.1007/s11120-020-00715-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
PsbO-D158 is a highly conserved residue of the PsbO protein in photosystem II (PSII), and participates in one of the hydrogen-bonding networks connecting the manganese cluster with the lumenal surface. In order to examine the role of PsbO-D158, we mutated it to E, N or K in Thermosynechococcus vulcanus and characterized photosynthetic properties of the mutants obtained. The growth rates of these three mutants were similar to that of the wild type, whereas the oxygen-evolving activity of the three mutant cells decreased to 60-64% of the wild type. Fluorescence kinetics showed that the mutations did not affect the electron transfer from QA to QB, but slightly affected the donor side of PSII. Moreover, all of the three mutant cells were more sensitive to high light and became slower to recover from photoinhibition. In the isolated thylakoid membranes from the three mutants, the PsbU subunit was lost and the oxygen-evolving activity was reduced to a lower level compared to that in the respective cells. PSII complexes isolated from these mutants showed no oxygen-evolving activity, which was found to be due to large or complete loss of PsbO, PsbV and PsbU during the process of purification. Moreover, PSII cores purified from the three mutants contained Psb27, an assembly co-factor of PSII. These results suggest that PsbO-D158 is required for the proper binding of the three extrinsic proteins to PSII and plays an important role in maintaining the optimal oxygen-evolving activity, and its mutation caused incomplete assembly of the PSII complex.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
27
|
The role of Ca 2+ and protein scaffolding in the formation of nature's water oxidizing complex. Proc Natl Acad Sci U S A 2020; 117:28036-28045. [PMID: 33106422 PMCID: PMC7668025 DOI: 10.1073/pnas.2011315117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Photosynthetic O2 evolution is catalyzed by the Mn4CaO5 cluster of the water oxidation complex of the photosystem II (PSII) complex. The photooxidative self-assembly of the Mn4CaO5 cluster, termed photoactivation, utilizes the same highly oxidizing species that drive the water oxidation in order to drive the incorporation of Mn2+ into the high-valence Mn4CaO5 cluster. This multistep process proceeds with low quantum efficiency, involves a molecular rearrangement between light-activated steps, and is prone to photoinactivation and misassembly. A sensitive polarographic technique was used to track the assembly process under flash illumination as a function of the constituent Mn2+ and Ca2+ ions in genetically engineered membranes of the cyanobacterium Synechocystis sp. PCC6803 to elucidate the action of Ca2+ and peripheral proteins. We show that the protein scaffolding organizing this process is allosterically modulated by the assembly protein Psb27, which together with Ca2+ stabilizes the intermediates of photoactivation, a feature especially evident at long intervals between photoactivating flashes. The results indicate three critical metal-binding sites: two Mn and one Ca, with occupation of the Ca site by Ca2+ critical for the suppression of photoinactivation. The long-observed competition between Mn2+ and Ca2+ occurs at the second Mn site, and its occupation by competing Ca2+ slows the rearrangement. The relatively low overall quantum efficiency of photoactivation is explained by the requirement of correct occupancy of these metal-binding sites coupled to a slow restructuring of the protein ligation environment, which are jointly necessary for the photooxidative trapping of the first stable assembly intermediate.
Collapse
|
28
|
Tokano T, Kato Y, Sugiyama S, Uchihashi T, Noguchi T. Structural Dynamics of a Protein Domain Relevant to the Water-Oxidizing Complex in Photosystem II as Visualized by High-Speed Atomic Force Microscopy. J Phys Chem B 2020; 124:5847-5857. [PMID: 32551630 DOI: 10.1021/acs.jpcb.0c03892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photosystem II (PSII) is a multiprotein complex that has a function of light-driven water oxidation. The catalytic site of water oxidation is the Mn4CaO5 cluster, which is bound to the lumenal side of PSII through amino acid residues from the D1 and CP43 proteins and is further surrounded by the extrinsic proteins. In this study, we have for the first time visualized the structural dynamics of the lumenal region of a PSII core complex using high-speed atomic force microscopy (HS-AFM). The HS-AFM images of a PSII membrane fragment showed stepwise dissociation of the PsbP and PsbO extrinsic proteins. Upon subsequent destruction of the Mn4CaO5 cluster, the lumenal domain of CP43 was found to undergo a conformational fluctuation. The observed structural flexibility and conformational fluctuation of the CP43 lumenal domain are suggested to play important roles in the biogenesis of PSII and the photoassembly of the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shogo Sugiyama
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
29
|
Trinugroho JP, Bečková M, Shao S, Yu J, Zhao Z, Murray JW, Sobotka R, Komenda J, Nixon PJ. Chlorophyll f synthesis by a super-rogue photosystem II complex. NATURE PLANTS 2020; 6:238-244. [PMID: 32170286 DOI: 10.1038/s41477-020-0616-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/06/2020] [Indexed: 05/21/2023]
Abstract
Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
Collapse
Affiliation(s)
- Joko P Trinugroho
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Ziyu Zhao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
30
|
Sun J, Qiu C, Qian W, Wang Y, Sun L, Li Y, Ding Z. Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genomics 2019; 20:340. [PMID: 31060518 PMCID: PMC6501322 DOI: 10.1186/s12864-019-5716-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lysine crotonylation, as a novel evolutionarily conserved type of post-translational modifications, is ubiquitous and essential in cell biology. However, its functions in tea plants are largely unknown, and the full functions of lysine crotonylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Our study attempts to describe the global profiling of nonhistone lysine crotonylation in tea leaves and to explore how ammonium (NH4+) triggers the response mechanism of lysine crotonylome in tea plants. RESULTS Here, we performed the global analysis of crotonylome in tea leaves under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 lysine crotonylation sites on 971 proteins were identified, of which contained in 15 types of crotonylated motifs. Most of crotonylated proteins were located in chloroplast (37%) and cytoplasm (33%). Compared with NH4+ deficiency, 120 and 151 crotonylated proteins were significantly changed at 3 h and 3 days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed crotonylated proteins participated in diverse biological processes such as photosynthesis (PsbO, PsbP, PsbQ, Pbs27, PsaN, PsaF, FNR and ATPase), carbon fixation (rbcs, rbcl, TK, ALDO, PGK and PRK) and amino acid metabolism (SGAT, GGAT2, SHMT4 and GDC), suggesting that lysine crotonylation played important roles in these processes. Moreover, the protein-protein interaction analysis revealed that the interactions of identified crotonylated proteins diversely involved in photosynthesis, carbon fixation and amino acid metabolism. Interestingly, a large number of enzymes were crotonylated, such as Rubisco, TK, SGAT and GGAT, and their activities and crotonylation levels changed significantly by sensing ammonium, indicating a potential function of crotonylation in the regulation of enzyme activities. CONCLUSIONS The results indicated that the crotonylated proteins had a profound influence on metabolic process of tea leaves in response to NH4+ deficiency/resupply, which mainly involved in diverse aspects of primary metabolic processes by sensing NH4+, especially in photosynthesis, carbon fixation and amino acid metabolism. The data might serve as important resources for exploring the roles of lysine crotonylation in N metabolism of tea plants. Data were available via ProteomeXchange with identifier PXD011610.
Collapse
Affiliation(s)
- Jianhao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan, 250000, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
31
|
Barrera-Rojas J, de la Vara LG, Ríos-Castro E, Leyva-Castillo LE, Gómez-Lojero C. The distribution of divinyl chlorophylls a and b and the presence of ferredoxin-NADP + reductase in Prochlorococcus marinus MIT9313 thylakoid membranes. Heliyon 2018; 4:e01100. [PMID: 30627680 PMCID: PMC6312871 DOI: 10.1016/j.heliyon.2018.e01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
The marine unicellular green cyanobacterium Prochlorococcus marinus MIT9313 belongs to the most abundant and photosynthetically productive genus of cyanobacteria in the oceans. This monophyletic genus use divinyl chlorophyll a (Chl a 2 ) and b (Chl b 2 ) to build the photosystems and the membrane-intrinsic Pcb-type antennae. We used the mild detergent n-dodecyl β D-maltopyranoside to solubilize the thylakoid membranes. Gel electrophoresis and sucrose gradient ultracentrifugation was then used to separate the complexes of the photosynthetic apparatus. The proteins and the pigments were identified by mass spectrometry. Protein complexes were characterized biochemically, and the distribution of Chl a 2 and Chl b 2 was determined. The photosynthetic apparatus was shown as supercomplexes formed by Photosystem II dimers with up to eight PcbB proteins; Photosystem I was present as trimers. A heterogeneous distribution of pigments was shown using sucrose gradient-enriched fractions with ratios of [Chl b 2 ]/[Chl a 2 ] of 2.16 ± 0.13, 1.86 ± 0.08, and 2.61 ± 0.07, for Photosystem I, Photosystem II, and PcbB, respectively. These ratios of Chl b/a are without precedent in organisms with oxygenic photosynthesis. Diaphorase activity was measured in the fractions of the sucrose gradient. Gel electrophoresis, immunodetection, and mass spectrometry were used to conclude that the commonly soluble protein ferredoxin-NADP+ reductase (FNR) is a membrane-anchored protein (probably associated to cytochrome b 6 f complex) in the low-light adapted Prochlorococcus marinus MIT9313.
Collapse
Affiliation(s)
- Jesús Barrera-Rojas
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico
| | | | | | | | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico
| |
Collapse
|
32
|
Cordara A, Manfredi M, van Alphen P, Marengo E, Pirone R, Saracco G, Branco Dos Santos F, Hellingwerf KJ, Pagliano C. Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:524-534. [PMID: 30316162 DOI: 10.1016/j.plaphy.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Photoautotrophic growth of Synechocystis sp. PCC 6803 in a flat-panel photobioreactor, run in turbidostat mode under increasing intensities of orange-red light (636 nm), showed a maximal growth rate (0.12 h-1) at 300 μmolphotons m-2 s-1, whereas first signs of photoinhibition were detected above 800 μmolphotons m-2 s-1. To investigate the dynamic modulation of the thylakoid proteome in response to photoinhibitory light intensities, quantitative proteomics analyses by SWATH mass spectrometry were performed by comparing thylakoid membranes extracted from Synechocystis grown under low-intensity illumination (i.e. 50 μmolphotons m-2 s-1) with samples isolated from cells subjected to photoinhibitory light regimes (800, 950 and 1460 μmolphotons m-2 s-1). We identified and quantified 126 proteins with altered abundance in all three photoinhibitory illumination regimes. These data reveal the strategies by which Synechocystis responds to photoinibitory growth irradiances of orange-red light. The accumulation of core proteins of Photosystem II and reduction of oxygen-evolving-complex subunits in photoinhibited cells revealed a different turnover and repair rates of the integral and extrinsic Photosystem II subunits with variation of light intensity. Furthermore, Synechocystis displayed a differentiated response to photoinhibitory regimes also regarding Photosystem I: the amount of PsaD, PsaE, PsaJ and PsaM subunits decreased, while there was an increased abundance of the PsaA, PsaB, Psak2 and PsaL proteins. Photoinhibition with 636 nm light also elicited an increased capacity for cyclic electron transport, a lowering of the amount of phycobilisomes and an increase of the orange carotenoid protein content, all presumably as a photoprotective mechanism against the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Alessandro Cordara
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy; Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Pascal van Alphen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Emilio Marengo
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Raffaele Pirone
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Guido Saracco
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090, GE, Amsterdam, Netherlands
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy.
| |
Collapse
|
33
|
Partensky F, Mella-Flores D, Six C, Garczarek L, Czjzek M, Marie D, Kotabová E, Felcmanová K, Prášil O. Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex. PHOTOSYNTHESIS RESEARCH 2018; 138:57-71. [PMID: 29938315 DOI: 10.1007/s11120-018-0539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
Collapse
Affiliation(s)
- Frédéric Partensky
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France.
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France.
| | - Daniella Mella-Flores
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christophe Six
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 8227, Marine Glycobiology Group, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Dominique Marie
- Sorbonne Université, Station Biologique, CS 90074, 29688, Roscoff cedex, France
- CNRS UMR 7144, Station Biologique, CS 90074, 29680, Roscoff, France
| | - Eva Kotabová
- Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Kristina Felcmanová
- Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic
| | - Ondřej Prášil
- Laboratory of Photosynthesis, Institute of Microbiology, MBU AVČR, Opatovický mlýn, 37981, Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, Branišovská, 37005, České Budějovice, Czech Republic
| |
Collapse
|
34
|
Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proc Natl Acad Sci U S A 2018; 115:E7824-E7833. [PMID: 30061392 DOI: 10.1073/pnas.1800609115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.
Collapse
|
35
|
Xingxing C, Jiuyang L, Huan Z, Fudong L, Shuya Z, Min X, Ke R, Yuhua W, Aigen F. Crystal structure of Psb27 from Arabidopsis thaliana determined at a resolution of 1.85 Å. PHOTOSYNTHESIS RESEARCH 2018; 136:139-146. [PMID: 29098572 PMCID: PMC5895690 DOI: 10.1007/s11120-017-0450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Proper biogenesis and maintenance of photosynthetic thylakoid membrane complexes are essential for the photosynthetic light reactions. A thylakoid lumenal protein, Psb27, plays a vital role in assembly or/and maintenance of photosystem II (PSII). In cyanobacteria, it is a small lipoprotein docked to the lumenal side of PSII, and functions in the assembly of the Mn4Ca cluster and in the PSII repair cycle. However, Psb27 from Arabidopsis thaliana is not a lipoprotein, and it is involved in PSII repair and acclimation to fluctuating light stress, suggesting a functional divergence between Arabidopsis Psb27 and cyanobacterial Psb27s. To gain a better understanding of Psb27 from higher plants, we determined the crystal structure of Arabidopsis Psb27 by X-ray crystallography at a resolution of 1.85 Å. The structure of Arabidopsis Psb27 is a four-helix bundle, similar to its orthologues from cyanobacteria. However, there are several structural differences between Arabidopsis Psb27 and cyanobacterial Psb27s concerning the overall molecular shape, the N- and C-terminal structures, and the surface charge. These differences suggest that Psb27 from higher plants and cyanobacteria may function differently.
Collapse
Affiliation(s)
- Cheng Xingxing
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Liu Jiuyang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Zhang Huan
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Li Fudong
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Zhang Shuya
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Xu Min
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Ruan Ke
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzai Road, Hefei, 230027 Anhui China
| | - Wang Yuhua
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| | - Fu Aigen
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, 710069 Shaanxi China
| |
Collapse
|
36
|
Lin Q, Liang JR, Huang QQ, Luo CS, Anderson DM, Bowler C, Chen CP, Li XS, Gao YH. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS One 2017; 12:e0184849. [PMID: 28910417 PMCID: PMC5599023 DOI: 10.1371/journal.pone.0184849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physiological and biochemical techniques to explore oxidative stress- and cell fate decision-related cellular and metabolic responses of the diatom Thalassiosira pseudonana to nitrate (N) and inorganic phosphate (P) stresses. A total of 1151 proteins were detected; 122 and 56 were significantly differentially expressed from control under N- and P-limited conditions, respectively. In N-limited cells, responsive proteins were related to reactive oxygen species (ROS) accumulation, oxidative stress responses and cell death, corresponding to a significant decrease in photosynthetic efficiency, marked intracellular ROS accumulation, and caspase-mediated programmed cell death activation. None of these responses were identified in P-limited cells; however, a significant up-regulation of alkaline phosphatase proteins was observed, which could be the major contributor for P-limited cells to cope with ambient P deficiency. These findings demonstrate that fundamentally different metabolic responses and cellular regulations are employed by the diatom in response to different nutrient stresses and to keep the cells viable.
Collapse
Affiliation(s)
- Qun Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun-Rong Liang
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
- * E-mail:
| | | | - Chun-Shan Luo
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Donald M. Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Chris Bowler
- Ecology and Evolutionary Biology Section, CNRS UMR8197 INSERM U1024, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, 46 rue d’Ulm, Paris, France
| | - Chang-Ping Chen
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
| | - Xue-Song Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Ya-Hui Gao
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
| |
Collapse
|
37
|
El-Khouly ME, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Bečková M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp. PCC 6803 to High Light. MOLECULAR PLANT 2017; 10:62-72. [PMID: 27530366 DOI: 10.1016/j.molp.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 05/23/2023]
Abstract
Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.
Collapse
Affiliation(s)
- Martina Bečková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Plant Molecular Biology, Biology Centre Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Konik
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
39
|
Veit S, Takeda K, Tsunoyama Y, Baymann F, Nevo R, Reich Z, Rögner M, Miki K, Rexroth S. Structural and functional characterisation of the cyanobacterial PetC3 Rieske protein family. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1879-1891. [DOI: 10.1016/j.bbabio.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022]
|
40
|
Theis J, Schroda M. Revisiting the photosystem II repair cycle. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218587. [PMID: 27494214 PMCID: PMC5058467 DOI: 10.1080/15592324.2016.1218587] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 05/18/2023]
Abstract
The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii) partial disassembly of PSII; (iv) proteolytic degradation of damaged D1; (v) replacement of damaged D1 protein with a new copy; (vi) reassembly of PSII monomers and migration back to grana thylakoids for dimerization and supercomplex assembly. Here we review the current knowledge on the PSII repair cycle.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
- CONTACT Michael Schroda Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich-Str. 70, 67663 Kaiserslautern, Germany
| |
Collapse
|
41
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
42
|
Bao H, Burnap RL. Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:578. [PMID: 27200051 PMCID: PMC4853684 DOI: 10.3389/fpls.2016.00578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/14/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. The assembly of the Mn4O5Ca requires light and involves a sequential process called photoactivation. This process harnesses the charge-separation of the photochemical reaction center and the coordination environment provided by the amino acid side chains of the protein to oxidize and organize the incoming manganese ions to form the oxo-bridged metal cluster capable of H2O-oxidation. Although most aspects of this assembly process remain poorly understood, recent advances in the elucidation of the crystal structure of the fully assembled cyanobacterial PSII complex help in the interpretation of the rich history of experiments designed to understand this process. Moreover, recent insights on the structure and stability of the constituent ions of the Mn4CaO5 cluster may guide future experiments. Here we consider the literature and suggest possible models of assembly including one involving single Mn(2+) oxidation site for all Mn but requiring ion relocation.
Collapse
Affiliation(s)
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
43
|
Rast A, Rengstl B, Heinz S, Klingl A, Nickelsen J. The Role of Slr0151, a Tetratricopeptide Repeat Protein from Synechocystis sp. PCC 6803, during Photosystem II Assembly and Repair. FRONTIERS IN PLANT SCIENCE 2016; 7:605. [PMID: 27200072 PMCID: PMC4853703 DOI: 10.3389/fpls.2016.00605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 05/29/2023]
Abstract
The assembly and repair of photosystem II (PSII) is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR) protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis) has previously been assigned a repair function under high light conditions (Yang et al., 2014). Here, we show that inactivation of slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.
Collapse
Affiliation(s)
- Anna Rast
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Birgit Rengstl
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Steffen Heinz
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Jörg Nickelsen
- Molekularbiologie der Pflanzen, Biozentrum der Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| |
Collapse
|
44
|
Cormann KU, Möller M, Nowaczyk MM. Critical Assessment of Protein Cross-Linking and Molecular Docking: An Updated Model for the Interaction Between Photosystem II and Psb27. FRONTIERS IN PLANT SCIENCE 2016; 7:157. [PMID: 26925076 PMCID: PMC4758025 DOI: 10.3389/fpls.2016.00157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/30/2016] [Indexed: 05/09/2023]
Abstract
Photosystem II (PSII) is a large membrane-protein complex composed of about 20 subunits and various cofactors, which mediates the light-driven oxidation of water and reduction of plastoquinone, and is part of the photosynthetic electron transfer chain that is localized in the thylakoid membrane of cyanobacteria, algae, and plants. The stepwise assembly of PSII is guided and facilitated by numerous auxiliary proteins that play specific roles in this spatiotemporal process. Psb27, a small protein localized in the thylakoid lumen, appears to associate with an intermediate PSII complex that is involved in assembly of the Mn4CaO5 cluster. Its precise binding position on the PSII intermediate remains elusive, as previous approaches to the localization of Psb27 on PSII have yielded contradictory results. This was our motivation for a critical assessment of previously used methods and the development of an improved analysis pipeline. The combination of chemical cross-linking and mass spectrometry (CX-MS) with isotope-coded cross-linkers was refined and validated with reference to the PSII crystal structure. Psb27 was localized on the PSII surface adjacent to the large lumenal domain of CP43 on the basis of a cross-link connecting Psb27-K91 to CP43-K381. Additional contacts associating Psb27 with CP47 and the C-termini of D1 and D2 were detected by surface plasmon resonance (SPR) spectroscopy. This information was used to model the binding of Psb27 to the PSII surface in a region that is occupied by PsbV in the mature complex.
Collapse
|
45
|
Abstract
Thylakoid membranes in cyanobacterial cells and chloroplasts of algae and higher plants are the sites of oxygenic photosynthesis. The lipid composition of the thylakoid membrane is unique and highly conserved among oxygenic photosynthetic organisms. Major lipids in thylakoid membranes are glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and the phospholipid, phosphatidylglycerol. The identification of almost all genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that these lipids play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in photosynthetic complexes. In addition to the studies with the mutants, recent X-ray crystallography studies of photosynthetic complexes in thylakoid membranes have also provided critical information on the association of lipids with photosynthetic complexes and their activities. In this chapter, we summarize our current understanding about the structural and functional involvement of thylakoid lipids in oxygenic photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
46
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
47
|
Selão TT, Zhang L, Knoppová J, Komenda J, Norling B. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2016; 57:95-104. [PMID: 26578692 DOI: 10.1093/pcp/pcv178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/09/2015] [Indexed: 05/09/2023]
Abstract
Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis.
Collapse
Affiliation(s)
- Tiago T Selão
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lifang Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jana Knoppová
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Birgitta Norling
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
48
|
Heinz S, Liauw P, Nickelsen J, Nowaczyk M. Analysis of photosystem II biogenesis in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:274-87. [PMID: 26592144 DOI: 10.1016/j.bbabio.2015.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 11/25/2022]
Abstract
Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Steffen Heinz
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Pasqual Liauw
- Biochemie der Pflanzen, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum LMU München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Marc Nowaczyk
- Biochemie der Pflanzen, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
49
|
Liu H, Weisz DA, Pakrasi HB. Multiple copies of the PsbQ protein in a cyanobacterial photosystem II assembly intermediate complex. PHOTOSYNTHESIS RESEARCH 2015; 126:375-83. [PMID: 25800517 DOI: 10.1007/s11120-015-0123-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/15/2015] [Indexed: 05/03/2023]
Abstract
Photosystem II (PSII) undergoes frequent damage owing to the demanding electron transfer chemistry it performs. To sustain photosynthetic activity, damaged PSII undergoes a complex repair cycle consisting of many transient intermediate complexes. By purifying PSII from the cyanobacterium Synechocystis sp. PCC 6803 using a histidine-tag on the PsbQ protein, a lumenal extrinsic subunit, a novel PSII assembly intermediate was isolated in addition to the mature PSII complex. This new complex, which we refer to as PSII-Q4, contained four copies of the PsbQ protein per PSII monomer, instead of the expected one copy. In addition, PSII-Q4 lacked two other lumenal extrinsic proteins, PsbU and PsbV, which are present in the mature PSII complex. We suggest that PSII-Q4 is a late PSII assembly intermediate that is formed just before the binding of PsbU and PsbV, and we incorporate these results into an updated model of PSII assembly.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, CB1137, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | - Daniel A Weisz
- Department of Biology, CB1137, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, CB1137, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
50
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|