1
|
Sagan B, Czerny B, Stasiłowicz-Krzemień A, Szulc P, Skomra U, Karpiński TM, Lisiecka J, Kamiński A, Kryszak A, Zimak-Krótkopad O, Cielecka-Piontek J. Anticholinesterase Activity and Bioactive Compound Profiling of Six Hop ( Humulus lupulus L.) Varieties. Foods 2024; 13:4155. [PMID: 39767097 PMCID: PMC11675283 DOI: 10.3390/foods13244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Hops (Humulus lupulus L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis. The hop varieties demonstrated significant variability in bioactive compound concentrations, with Aurora showing the highest xanthohumol (0.665 mg/g) and Zwiegniowski the highest lupulone (9.228 mg/g). TPC analysis revealed Aurora also had the highest phenolic content (22.47 mg GAE/g). Antioxidant activities were evaluated using DPPH, ABTS, CUPRAC, and FRAP assays, with Aurora and Oregon Fuggle displaying the most potent capacities. Aurora, in particular, showed the highest activity across multiple assays, including significant acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase inhibition, with IC50 values of 24.39 mg/mL, 20.38 mg/mL, and 9.37 mg/mL, respectively. The chelating activity was also assessed, with Apolon demonstrating the strongest metal ion binding capacity (IC50 = 1.04 mg/mL). Additionally, Aurora exhibited the most effective hyaluronidase inhibition (IC50 = 10.27 mg/mL), highlighting its potential for anti-inflammatory applications. The results underscore the influence of genetic and environmental factors on the bioactive compound profiles of hop varieties and their biological activity offering promising avenues for pharmaceutical and nutraceutical applications. However, further studies are needed to fully understand the potential interactions between hop cones components.
Collapse
Affiliation(s)
- Bartłomiej Sagan
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Urszula Skomra
- Institute of Soil Science and Plant Cultivation State Research Institute, Department of Biotechnology and Plant Breeding, Czartoryskich 8 Str., 24-100 Puławy, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland;
| | - Jolanta Lisiecka
- Department of Vegetable Crops, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Pomeranian Medical University Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Oskar Zimak-Krótkopad
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| |
Collapse
|
2
|
Jirabanjongjit A, Stewart AB, Chitchak N, Rattamanee C, Traiperm P. Variation in floral morphology, histochemistry, and floral visitors of three sympatric morning glory species. PeerJ 2024; 12:e17866. [PMID: 39210916 PMCID: PMC11361269 DOI: 10.7717/peerj.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Three morning glory species in the genus Argyreia Lour., A. lycioides (Choisy) Traiperm & Rattanakrajang, A. mekongensis Gagnep & Courchet, and A. versicolor (Kerr) Staples & Traiperm, were found co-occurring and co-flowering. Argyreia mekongensis and A. versicolor are rare, while A. lycioides is near threatened and distributed throughout Myanmar and Thailand. We investigated key floral characters (floral morphology and phenology, as well as the micromorphology of the floral nectary disc and staminal trichomes) and screened for important chemical compounds hypothesized to contribute to pollinator attraction. Our findings demonstrate that some aspects of floral morphology (e.g., corolla size, limb presence, and floral color) of the three studied congeners exhibit significant differences. Moreover, pollinator composition appears to be influenced by floral shape and size; morning glory species with wider corolla tubes were pollinated by larger bees. The morphology of the floral nectary disc was similar in all species, while variation in staminal trichomes was observed across species. Glandular trichomes were found in all three species, while non-glandular trichomes were found only in A. versicolor. Histochemical results revealed different compounds in the floral nectary and staminal trichomes of each species, which may contribute to both floral attraction and defense. These findings demonstrate some segregation of floral visitors among sympatric co-flowering morning glory species, which appears to be influenced by the macro- and micromorphology of flowers and their chemical compounds. Moreover, understanding the floral morphology and chemical attractants of these sympatric co-flowering Argyreia species may help to maintain their common pollinators in order to conserve these rare and endangered species, especially A. versicolor.
Collapse
Affiliation(s)
- Awapa Jirabanjongjit
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alyssa B. Stewart
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Natthaphong Chitchak
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Ramos FP, Iwamoto L, Piva VH, Teixeira SP. Updating the Knowledge on the Secretory Machinery of Hops ( Humulus lupulus L., Cannabaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:864. [PMID: 38592855 PMCID: PMC10974171 DOI: 10.3390/plants13060864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Cannabaceae species garner attention in plant research due to their diverse secretory structures and pharmacological potential associated with the production of secondary metabolites. This study aims to update our understanding of the secretory system in Hops (Humulus lupulus L.), an economically important species especially known for its usage in beer production. For that, stems, leaves, roots, and inflorescences were collected and processed for external morphology, anatomical, histochemical, ultrastructural and cytochemical analyses of the secretory sites. Our findings reveal three types of secretory structures comprising the secretory machinery of Hops: laticifer, phenolic idioblasts and glandular trichomes. The laticifer system is articulated, anastomosing and unbranched, traversing all plant organs, except the roots. Phenolic idioblasts are widely dispersed throughout the leaves, roots and floral parts of the species. Glandular trichomes appear as two distinct morphological types: capitate (spherical head) and peltate (radial head) and are found mainly in foliar and floral parts. The often-mixed chemical composition in the secretory sites serves to shield the plant from excessive UVB radiation, elevated temperatures, and damage inflicted by herbivorous animals or pathogenic microorganisms. Besides the exudate from peltate glandular trichomes (lupulin glands), latex and idioblast content are also likely contributors to the pharmacological properties of different Hop varieties, given their extensive presence in the plant body.
Collapse
Affiliation(s)
- Felipe Paulino Ramos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (F.P.R.); (L.I.); (V.H.P.)
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-901, Brazil
| | - Lucas Iwamoto
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (F.P.R.); (L.I.); (V.H.P.)
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-901, Brazil
| | - Vítor Hélio Piva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (F.P.R.); (L.I.); (V.H.P.)
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-901, Brazil
| | - Simone Pádua Teixeira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (F.P.R.); (L.I.); (V.H.P.)
| |
Collapse
|
4
|
Yang S, Chen R, Cao X, Wang G, Zhou YJ. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat Commun 2024; 15:253. [PMID: 38177132 PMCID: PMC10766616 DOI: 10.1038/s41467-023-44654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The flavonoid xanthohumol is an important flavor substance in the brewing industry that has a wide variety of bioactivities. However, its unstable structure results in its low content in beer. Microbial biosynthesis is considered a sustainable and economically viable alternative. Here, we harness the yeast Saccharomyces cerevisiae for the de novo biosynthesis of xanthohumol from glucose by balancing the three parallel biosynthetic pathways, prenyltransferase engineering, enhancing precursor supply, constructing enzyme fusion, and peroxisomal engineering. These strategies improve the production of the key xanthohumol precursor demethylxanthohumol (DMX) by 83-fold and achieve the de novo biosynthesis of xanthohumol in yeast. We also reveal that prenylation is the key limiting step in DMX biosynthesis and develop tailored metabolic regulation strategies to enhance the DMAPP availability and prenylation efficiency. Our work provides feasible approaches for systematically engineering yeast cell factories for the de novo biosynthesis of complex natural products.
Collapse
Affiliation(s)
- Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibing Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Hagemann MH, Rigling M, Mannweiler S, Born U, Sprich E, Milyaev A, Zhang Y. Insight into the aroma quality of 'Callista' cultivar of hop (Humulus lupulus L.): Impact of harvest timing, year, and location. Food Res Int 2024; 175:113776. [PMID: 38129004 DOI: 10.1016/j.foodres.2023.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Hops (Humulus lupulus L.) are essential ingredients in brewing, contributing to beer's flavor, aroma, and stability. This study pioneers an in-depth analysis of the 'Callista' cultivar, aiming to unravel how harvest timing, annual variations, and cultivation location synergistically influence its molecular profile, sensory perception, and biochemistry. Leveraging high-performance liquid chromatography and gas chromatography-mass spectrometry-olfactometry, we identified significant year-to-year and location-based fluctuations in bitter acids-the quintessential aroma constituents in hops. Our comprehensive aroma profiling discerned 55 volatile compounds, marking the first-ever sensory detection of 2-butanone in hops, with its presence showing remarkable interannual variability. This study showed significant differences among the three years tested, whereas hops were perceived "fruitier" and more "citrusy" in 2021, even though the bitter acid and aroma analysis showed that 2022 sticks out due to extremely high lupulone values up to 10% dry cone weight and 78% β-myrcene in the oil fraction compared to 60% and 45% in 2020 and 2021, respectively. Molecular analysis of key enzymes involved in hop aroma biosynthesis revealed no significant associations with location, but a strong diurnal pattern for all genes. The results indicated that especially the hot temperatures of 2022 may have induced significant changes of cone quality, while 2021 was more interesting from the sensory evaluations, which may justify the usage of viticultural terms such as "vintage" for hop marketing. These findings contribute to a better understanding of the factors influencing hop aroma and quality.
Collapse
Affiliation(s)
- M H Hagemann
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70599 Stuttgart, Germany
| | - M Rigling
- Department of Flavor Chemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - S Mannweiler
- Department of Flavor Chemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - U Born
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70599 Stuttgart, Germany
| | - E Sprich
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70599 Stuttgart, Germany
| | - A Milyaev
- Department Production Systems of Horticultural Crops, University of Hohenheim, 70599 Stuttgart, Germany
| | - Y Zhang
- Department of Flavor Chemistry, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
6
|
Liu G, Fu J, Wang L, Fang M, Zhang W, Yang M, Yang X, Xu Y, Shi L, Ma X, Wang Q, Chen H, Yu C, Yu D, Chen F, Jiang Y. Diverse O-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily Nymphaea prolifera. HORTICULTURE RESEARCH 2023; 10:uhad237. [PMID: 38156285 PMCID: PMC10753166 DOI: 10.1093/hr/uhad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.
Collapse
Affiliation(s)
- Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingyun Wang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Mingya Fang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Lin Shi
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hui Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Awasthi P, Mishra AK, Kocábek T, Nath VS, Mishra S, Hazzouri KM, Sudalaimuthuasari N, Stajner N, Jakše J, Krofta K, Hájek T, Amiri KM. CRISPR/Cas9-mediated mutagenesis of the mediator complex subunits MED5a and MED5b genes impaired secondary metabolite accumulation in hop (Humulus lupulus). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107851. [PMID: 37354728 DOI: 10.1016/j.plaphy.2023.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Hop (Humulus lupulus L.) is an important commercial crop known for the biosynthesis of valuable specialized secondary metabolites in glandular trichomes (lupulin glands), which are used for the brewing industry. To achieve burgeoning market demands is the essentiality of comprehensive understanding of the mechanisms of biosynthesis of secondary metabolites in hop. Over the past year, several studies using structural biology and functional genomics approaches have shown that Mediator (MED) serves as an integrative hub for RNAP II-mediated transcriptional regulation of various physiological and cellular processes, including involvement of MED5a and MED5b in hyperaccumulation of phenylpropanoid in A. thaliana. In the present work, an unprecedented attempt was made to generate Hlmed5a/med5b double loci mutant lines in hop using a CRISPR/Cas9-based genome editing system. The Hlmed5a/med5b double loci mutant lines showed reduced expression of structural genes of the flavonoid, humulone, and terpenoid biosynthetic pathways, which was more pronounced in the lupulin gland compared to leaf tissue and was consistent with their reduced accumulation. Phenotypic and anatomical observations revealed that Hlmed5a/med5b double loci mutant line exhibited robust growth, earlier flowering, earlier cone maturity, reduced cone size, variations in floral structure patterns, and distorted lupulin glands without any remarkable changes in leaf morphology, intensity of leaf color, and chlorophyll content. Comparative transcriptome analysis of leaf and lupulin gland tissues indicates that the expression of enzymatic genes related to secondary metabolite biosynthesis, phytohormone biosynthesis, floral organs, flowering time, and trichome development, including other genes related to starch and sucrose metabolism and defense mechanisms, were differentially modulated in the Hlmed5a/med5b lines. The combined results from functional and transcriptomic analyses illuminates the pivotal function of HlMED5a and HlMED5b in homeostasis of secondary meatbolites accumulation in hop.
Collapse
Affiliation(s)
- Praveen Awasthi
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, United Arab Emirates.
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Vishnu Sukumari Nath
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, United Arab Emirates
| | - Sagarika Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, United Arab Emirates
| | - Khaled M Hazzouri
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, United Arab Emirates
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Karel Krofta
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| | - Tomáš Hájek
- University of South Bohemia, Faculty of Science, Branišovská 1716/31c, 370 05, České Budějovice, Czech Republic
| | - Khaled Ma Amiri
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, United Arab Emirates.
| |
Collapse
|
8
|
Cui G, Li Y, Yi X, Wang J, Lin P, Lu C, Zhang Q, Gao L, Zhong G. Meliaceae genomes provide insights into wood development and limonoids biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:574-590. [PMID: 36453987 PMCID: PMC9946144 DOI: 10.1111/pbi.13973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Meliaceae is a useful plant family owing to its high-quality timber and its many limonoids that have pharmacological and biological activities. Although some genomes of Meliaceae species have been reported, many questions regarding their unique family features, namely wood quality and natural products, have not been answered. In this study, we provide the whole-genome sequence of Melia azedarach comprising 237.16 Mb with a contig N50 of 8.07 Mb, and an improved genome sequence of Azadirachta indica comprising 223.66 Mb with a contig N50 of 8.91 Mb. Moreover, genome skimming data, transcriptomes and other published genomes were comprehensively analysed to determine the genes and proteins that produce superior wood and valuable limonoids. Phylogenetic analysis of chloroplast genomes, single-copy gene families and single-nucleotide polymorphisms revealed that Meliaceae should be classified into two subfamilies: Cedreloideae and Melioideae. Although the Meliaceae species did not undergo additional whole-genome duplication events, the secondary wall biosynthetic genes of the woody Cedreloideae species, Toona sinensis, expanded significantly compared to those of A. indica and M. azedarach, especially in downstream transcription factors and cellulose/hemicellulose biosynthesis-related genes. Moreover, expanded special oxidosqualene cyclase catalogues can help diversify Sapindales skeletons, and the clustered genes that regulate terpene chain elongation, cyclization and modification would support their roles in limonoid biosynthesis. The expanded clans of terpene synthase, O-methyltransferase and cytochrome P450, which are mainly derived from tandem duplication, are responsible for the different limonoid classes among the species. These results are beneficial for further investigations of wood development and limonoid biosynthesis.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Yun Li
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | - Xin Yi
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | - Jieyu Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Peifan Lin
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Cui Lu
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Qunjie Zhang
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Lizhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, College of Tropical CropsHainan UniversityHaikouChina
| | - Guohua Zhong
- College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
9
|
Lashley A, Miller R, Provenzano S, Jarecki SA, Erba P, Salim V. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules 2022; 28:43. [PMID: 36615239 PMCID: PMC9822479 DOI: 10.3390/molecules28010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In plants, methylation is a common step in specialized metabolic pathways, leading to a vast diversity of natural products. The methylation of these small molecules is catalyzed by S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which are categorized based on the methyl-accepting atom (O, N, C, S, or Se). These methyltransferases are responsible for the transformation of metabolites involved in plant defense response, pigments, and cell signaling. Plant natural product methyltransferases are part of the Class I methyltransferase-superfamily containing the canonical Rossmann fold. Recent advances in genomics have accelerated the functional characterization of plant natural product methyltransferases, allowing for the determination of substrate specificities and regioselectivity and further realizing the potential for enzyme engineering. This review compiles known biochemically characterized plant natural product methyltransferases that have contributed to our knowledge in the diversification of small molecules mediated by methylation steps.
Collapse
Affiliation(s)
- Audrey Lashley
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Ryan Miller
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Stephanie Provenzano
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Paul Erba
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Vonny Salim
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| |
Collapse
|
10
|
Svedlund N, Evering S, Gibson B, Krogerus K. Fruits of their labour: biotransformation reactions of yeasts during brewery fermentation. Appl Microbiol Biotechnol 2022; 106:4929-4944. [PMID: 35851416 PMCID: PMC9329171 DOI: 10.1007/s00253-022-12068-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
There is a growing appreciation for the role that yeast play in biotransformation of flavour compounds during beverage fermentations. This is particularly the case for brewing due to the continued popularity of aromatic beers produced via the dry-hopping process. Here, we review the current literature pertaining to biotransformation reactions mediated by fermentative yeasts. These reactions are diverse and include the liberation of thiols from cysteine or glutathione-bound adducts, as well as the release of glycosidically bound terpene alcohols. These changes serve generally to increase the fruit and floral aromas in beverages. This is particularly the case for the thiol compounds released via yeast β-lyase activity due to their low flavour thresholds. The role of yeast β-glucosidases in increasing terpene alcohols is less clear, at least with respect to fermentation of brewer’s wort. Yeast acetyl transferase and acetate esterase also have an impact on the quality and perceptibility of flavour compounds. Isomerization and reduction reactions, e.g. the conversion of geraniol (rose) to β-citronellol (citrus), also have potential to alter significantly flavour profiles. A greater understanding of biotransformation reactions is expected to not only facilitate greater control of beverage flavour profiles, but also to allow for more efficient exploitation of raw materials and thereby greater process sustainability. Key points • Yeast can alter and boost grape- and hop-derived flavour compounds in wine and beer • β-lyase activity can release fruit-flavoured thiols with low flavour thresholds • Floral and citrus-flavoured terpene alcohols can be released or interconverted
Collapse
|
11
|
Antibacterial Activity of Prenylated Flavonoids Isolated from Hop against Fish Pathogens Streptococcus iniae and Vibrio vulnificus. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0247-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Somaletha Chandran K, Humphries J, Goodger JQ, Woodrow IE. Molecular Characterisation of Flavanone O-methylation in Eucalyptus. Int J Mol Sci 2022; 23:ijms23063190. [PMID: 35328610 PMCID: PMC8954846 DOI: 10.3390/ijms23063190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are ubiquitous polyphenolic compounds in plants, long recognised for their health-promoting properties in humans. Methylated flavonoids have received increasing attention due to the potential of methylation to enhance medicinal efficacy. Recently, Eucalyptus species with high levels of the O-methylated flavanone pinostrobin have been identified. Pinostrobin has potential commercial value due to its numerous pharmacological and functional food benefits. Little is known about the identity or mode of action of the enzymes involved in methylating flavanones. This study aimed to identify and characterise the methyltransferase(s) involved in the regiospecific methylation of pinostrobin in Eucalyptus and thereby add to our limited understanding of flavanone biosynthesis in plants. RNA-seq analysis of leaf tips enabled the isolation of a gene encoding a flavanone 7-O-methyltransferase (EnOMT1) in Eucalyptus. Biochemical characterisation of its in vitro activity revealed a range of substrates upon which EnOMT1 acts in a regiospecific manner. Comparison to a homologous sequence from a Eucalyptus species lacking O-methylated flavonoids identified critical catalytic amino acid residues within EnOMT1 responsible for its activity. This detailed molecular characterisation identified a methyltransferase responsible for chemical ornamentation of the core flavanone structure of pinocembrin and helps shed light on the mechanism of flavanone biosynthesis in Eucalyptus.
Collapse
Affiliation(s)
| | - John Humphries
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.S.C.); (J.H.)
| | - Jason Q.D. Goodger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Correspondence:
| | - Ian E. Woodrow
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
13
|
Judickaitė A, Lyushkevich V, Filatova I, Mildažienė V, Žūkienė R. The Potential of Cold Plasma and Electromagnetic Field as Stimulators of Natural Sweeteners Biosynthesis in Stevia rebaudiana Bertoni. PLANTS 2022; 11:plants11050611. [PMID: 35270081 PMCID: PMC8912274 DOI: 10.3390/plants11050611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Abstract
Stevioside (Stev) and rebaudioside A (RebA) are the most abundant steviol glycosides (SGs) responsible for the sweetness of Stevia rabaudiana Bertoni. As compared to Stev, RebA has a higher sweetening potency, better taste and therefore is the most preferred component of the stevia leaf extracts. The aim of this study was to determine the effect of pre-sowing seed treatment with abiotic stressors cold plasma (CP) and electromagnetic field (EMF) on the amount and ratio of RebA and Stev in the leaves of stevia. Additionally, the effect on total phenolic content, flavonoid content and antioxidant activity was investigated. Seeds were treated 5 and 7 min with cold plasma (CP5 and CP7 groups) and 10 min with electromagnetic field (EMF10 group) six days before sowing. The germination tests in vitro demonstrated that all treatments slightly increased germination rate and percentage. HPLC analysis revealed that CP and EMF had strong stimulating effect on SGs accumulation. All treatments increased RebA concentration approximately 1.6-fold; however, the ratio of RebA/Stev decreased from 8.5 in the control to 1.9, 2.5 and 1.1 in CP5, CP7 and EMF10 groups respectively, since the concentration of Stev increased more than RebA, 7.1, 4.6 and 11.0-fold, respectively, compared to control. However, treatments had opposite effect on total phenolic content, flavonoid content, and antioxidant activity. We have demonstrated for the first time that short time pre-sowing treatment of stevia seeds with CP and EMF can be a powerful tool for the enhancement of biosynthesis of RebA and Stev, however it can have negative impact on the content of other secondary metabolites.
Collapse
Affiliation(s)
- Augustė Judickaitė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Str. 8, LT-44404 Kaunas, Lithuania; (A.J.); (V.M.)
| | - Veronika Lyushkevich
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Prospekt Nezavisimosti, BY-220072 Minsk, Belarus; (V.L.); (I.F.)
| | - Irina Filatova
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Prospekt Nezavisimosti, BY-220072 Minsk, Belarus; (V.L.); (I.F.)
| | - Vida Mildažienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Str. 8, LT-44404 Kaunas, Lithuania; (A.J.); (V.M.)
| | - Rasa Žūkienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos Str. 8, LT-44404 Kaunas, Lithuania; (A.J.); (V.M.)
- Correspondence:
| |
Collapse
|
14
|
Sun S, Wang X, Yuan A, Liu J, Li Z, Xie D, Zhang H, Luo W, Xu H, Liu J, Nie C, Zhang H. Chemical constituents and bioactivities of hops (
Humulus lupulus L
.) and their effects on beer‐related microorganisms. Food Energy Secur 2022. [DOI: 10.1002/fes3.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shaokang Sun
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiaochen Wang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Ai Yuan
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jianlin Liu
- College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Dongxiao Xie
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Huimin Zhang
- College of Life Sciences Shandong Normal University Jinan China
| | - Wenqing Luo
- Global Leaders College Yonsei University Seoul Korea
| | - Hengyuan Xu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jinshang Liu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Cong Nie
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Haojun Zhang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
15
|
Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. PLANTS 2022; 11:plants11040564. [PMID: 35214897 PMCID: PMC8876552 DOI: 10.3390/plants11040564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
The O-methylation of specialized metabolites in plants is a unique decoration that provides structural and functional diversity of the metabolites with changes in chemical properties and intracellular localizations. The O-methylation of flavonoids, which is a class of plant specialized metabolites, promotes their antimicrobial activities and liposolubility. Flavonoid O-methyltransferases (FOMTs), which are responsible for the O-methylation process of the flavonoid aglycone, generally accept a broad range of substrates across flavones, flavonols and lignin precursors, with different substrate preferences. Therefore, the characterization of FOMTs with the physiology roles of methoxylated flavonoids is useful for crop improvement and metabolic engineering. In this review, we summarized the chemodiversity and physiology roles of methoxylated flavonoids, which were already reported, and we performed a cross-species comparison to illustrate an overview of diversification and conserved catalytic sites of the flavonoid O-methyltransferases.
Collapse
|
16
|
Eriksen RL, Padgitt-Cobb LK, Randazzo AM, Hendrix DA, Henning JA. Gene Expression of Agronomically Important Secondary Metabolites in cv. ‘USDA Cascade’ Hop (Humulus lupulus L.) Cones during Critical Developmental Stages. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1973328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Renée L. Eriksen
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| | | | - Angela M. Randazzo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, U.S.A
| | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, U.S.A
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, U.S.A
| | - John A. Henning
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
17
|
Patzak J, Henychová A, Krofta K, Svoboda P, Malířová I. The Influence of Hop Latent Viroid (HLVd) Infection on Gene Expression and Secondary Metabolite Contents in Hop ( Humulus lupulus L.) Glandular Trichomes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112297. [PMID: 34834660 PMCID: PMC8617911 DOI: 10.3390/plants10112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 05/10/2023]
Abstract
Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.
Collapse
|
18
|
Hong K, Wang L, Johnpaul A, Lv C, Ma C. Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications. Int J Mol Sci 2021; 22:9373. [PMID: 34502286 PMCID: PMC8430942 DOI: 10.3390/ijms22179373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops' phytochemical composition are herein critically summarized. Hops' phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production.
Collapse
Affiliation(s)
| | | | | | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| |
Collapse
|
19
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
20
|
Goodger JQD, Sargent D, Humphries J, Woodrow IE. Monoterpene synthases responsible for the terpene profile of anther glands in Eucalyptus polybractea R.T. Baker (Myrtaceae). TREE PHYSIOLOGY 2021; 41:849-864. [PMID: 33219374 DOI: 10.1093/treephys/tpaa161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Research on terpene biosynthesis in the genus Eucalyptus (Myrtaceae) is poorly developed, but recently large numbers of terpene synthase (TPS) genes have been identified. Few of these have been characterized or their expression localized to specific tissues. A prime candidate for detailed examination of TPS gene expression is the bisexual eucalypt flower-composed of male and female reproductive organs, and vegetative tissues that may express different TPS genes. We aimed to characterize and compare the terpene profile and TPS genes expressed in anthers and gynoecia in the high oil-yielding Eucalyptus polybractea R.T. Baker. We hypothesized that gynoecia will produce greater amounts of defensive terpenes, whereas anthers will have a terpene profile that is biased towards a role in pollination. Microscopy of isolated anthers showed them to possess a single, prominent oil gland. Chemical analysis of whole floral structures at different stages of development showed total oil per unit dry mass increased as flower buds expanded, with highest concentrations in mature flower buds just prior to flower opening. The oil profile of gynoecia was dominated by the monoterpene 1,8-cineole, whereas that of isolated anthers were enriched with the monoterpene α-pinene. Through transcriptomic analysis and recombinant protein expression, we were able to identify monoterpene synthases responsible for the different profiles. Synthases for α-pinene and 1,8-cineole were expressed in each tissue type, but the relative expression of the former was higher in anthers. Sequence comparison and site-directed mutagenesis of the α-pinene synthase allowed us to identify amino acids that influence the α-pinene to β-pinene ratio of the product profile. We suggest the terpene constituents of anthers may have multiple roles including attracting pollinators through emission of volatile α-pinene, deterrence of palynivores through emission of volatile 1,8-cineole and adhesion of pollen to pollinators via the release of sticky α-pinene onto the anther surface.
Collapse
Affiliation(s)
- Jason Q D Goodger
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Demi Sargent
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - John Humphries
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian E Woodrow
- School of Ecosystem and Forest Sciences, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Eriksen RL, Padgitt-Cobb LK, Townsend MS, Henning JA. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci Rep 2021; 11:5138. [PMID: 33664420 PMCID: PMC7970847 DOI: 10.1038/s41598-021-84691-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Hops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.
Collapse
Affiliation(s)
- Renée L. Eriksen
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Lillian K. Padgitt-Cobb
- grid.4391.f0000 0001 2112 1969Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331 USA
| | - M. Shaun Townsend
- grid.4391.f0000 0001 2112 1969Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
22
|
Zhou Z, Tan H, Li Q, Li Q, Wang Y, Bu Q, Li Y, Wu Y, Chen W, Zhang L. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2020; 228:932-945. [PMID: 32589757 DOI: 10.1111/nph.16777] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 05/21/2023]
Abstract
Glandular secretory trichomes (GSTs) are regarded as biofactories for synthesizing, storing, and secreting artemisinin. It is necessary to figure out the initiation and development regulatory mechanism of GSTs to cultivate high-yielding Artemisia annua. Here, we identified an MYB transcription factor, AaTAR2, from bioinformatics analysis of the A. annua genome database and Arabidopsis trichome development-related genes. AaTAR2 is mainly expressed in young leaves and located in the nucleus. Repression and overexpression of AaTAR2 resulted in a decrease and increase, respectively, in the GSTs numbers, leaf biomass, and the artemisinin content in transgenic plants. Furthermore, the morphological characteristics changed obviously in trichomes, suggesting AaTAR2 plays a key role in trichome formation. In addition, the expression of flavonoid biosynthesis genes and total flavonoid content increased dramatically in AaTAR2-overexpressing transgenic plants. Owing to flavonoids possibly counteracting emerging resistance to artemisinin in Plasmodium species, AaTAR2 is a potential target to improve the effect of artemisinin in clinical therapy. Taken together, AaTAR2 positively regulates trichome development and artemisinin and flavonoid biosynthesis. A better understanding of this 'multiple functions' transcription factor may enable enhanced artemisinin and flavonoids yield. AaTAR2 is a potential breeding target for cultivating high-quality A. annua.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Qi Li
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai,, 200003, China
| | - Yun Wang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qitao Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Yaoxin Li
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Yu Wu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai,, 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai,, 200433, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
23
|
Brendel R, Schwolow S, Rohn S, Weller P. Gas-phase volatilomic approaches for quality control of brewing hops based on simultaneous GC-MS-IMS and machine learning. Anal Bioanal Chem 2020; 412:7085-7097. [PMID: 32754792 PMCID: PMC7497504 DOI: 10.1007/s00216-020-02842-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
For the first time, a prototype HS-GC-MS-IMS dual-detection system is presented for the analysis of volatile organic compounds (VOCs) in fields of quality control of brewing hop. With a soft ionization and drift time-based ion separation in IMS and a hard ionization and m/z-based separation in MS, substance identification in the case of co-elution was improved, substantially. Machine learning tools were used for a non-targeted screening of the complex VOC profiles of 65 different hop samples for similarity search by principal component analysis (PCA) followed by hierarchical cluster analysis (HCA). Partial least square regression (PLSR) was applied to investigate the observed correlation between the volatile profile and the α-acid content of hops and resulted in a standard error of prediction of only 1.04% α-acid. This promising volatilomic approach shows clearly the potential of HS-GC-MS-IMS in combination with machine learning for the enhancement of future quality assurance of hops. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rebecca Brendel
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany.,Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Sebastian Schwolow
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Philipp Weller
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany.
| |
Collapse
|
24
|
Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep 2020; 10:12464. [PMID: 32719384 PMCID: PMC7385631 DOI: 10.1038/s41598-020-69373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Glandular trichomes (GTs) are defensive structures that produce and accumulate specialized metabolites and protect plants against herbivores, pathogens, and abiotic stress. GTs have been extensively studied in angiosperms for their roles in defense and biosynthesis of high-value metabolites. In contrast, trichomes of gymnosperms have been described in fossilized samples, but have not been studied in living plants. Here, we describe the characterization of GTs on young stems of a hybrid white spruce. Metabolite and histological analysis of spruce GTs support a glandular function with accumulation of a diverse array of mono-, sesqui- and diterpenes including diterpene methylesters. Methylated diterpenes have previously been associated with insect resistance in white spruce. Headspeace analysis of spruce GTs showed a profile of volatiles dominated by monoterpenes and a highly diverse array of sesquiterpenes. Spruce GTs appear early during shoot growth, prior to the development of a lignified bark and prior to accumulation of terpenes in needles. Spruce GTs may provide an early, terpene-based chemical defense system at a developmental stage when young shoots are particularly vulnerable to foliage and shoot feeding insects, and before the resin duct system characteristic of conifers has fully developed.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lufiani L Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
25
|
Guo Y, Zhang T, Zhong J, Ba T, Xu T, Zhang Q, Sun M. Identification of the Volatile Compounds and Observation of the Glandular Trichomes in Opisthopappus taihangensis and Four Species of Chrysanthemum. PLANTS 2020; 9:plants9070855. [PMID: 32640748 PMCID: PMC7412243 DOI: 10.3390/plants9070855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/23/2022]
Abstract
Opisthopappus taihangensis (Ling) Shih, a wild relative germplasm of chrysanthemum, releases a completely different fragrance from chrysanthemum species. We aimed to identify the volatile compounds of the leaves of O. taihangensis and four other Chrysanthemum species using headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC/MS). In total, 70 compounds were detected, and terpenoids accounted for the largest percentage in these five species. Many specific compounds were only emitted from O. taihangensis and not from the other four species. In particular, 1,8-cineole could be responsible for the special leaf fragrance of O. taihangensis as it accounted for the largest proportion of the compounds in O. taihangensis but a small or no proportion at all in other species. The glandular trichomes (GTs) in the leaves are the main organs responsible for the emission of volatiles. To explore the relationship between the emissions and the density of the GTs on the leaf epidermis, the shape and density of the GTs were observed and calculated, respectively. The results showed that the trichomes have two shapes in these leaves: T-shaped non-glandular trichomes and capitate trichomes. Histochemical staining analyses indicated that terpenoids are mainly emitted from capitate glandular trichomes. Correlation analysis showed that the volatile amount of terpenoids is highly related to the density of capitate trichomes. In O. taihangensis, the terpenoids content and density of capitate trichomes are the highest. We identified the diversity of leaf volatiles from O. taihangensis and four other Chrysanthemum species and found a possible relationship between the content of volatile compounds and the density of capitate trichomes, which explained the cause of the fragrance of O. taihangensis leaves.
Collapse
Affiliation(s)
- Yanhong Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
| | - Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
| | - Jian Zhong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
| | - Tingting Ba
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
| | - Ting Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.G.); (T.Z.); (J.Z.); (T.B.); (T.X.); (Q.Z.)
- Correspondence:
| |
Collapse
|
26
|
Hassani D, Fu X, Shen Q, Khalid M, Rose JKC, Tang K. Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:466-476. [PMID: 32304658 DOI: 10.1016/j.tplants.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Plants regulate the synthesis of specialized compounds through the actions of individual transcription factors (TFs) or sets of TFs. One such compound, artemisinin from Artemisia annua, is widely used as a pharmacological product in the first-line treatment of malaria. However, the emergence of resistance to artemisinin in Plasmodium species, as well as its low production rates, have required innovative treatments such as exploiting the synergistic effects of flavonoids with artemisinin. We overview current knowledge about flavonoid and artemisinin transcriptional regulation in A. annua, and review the dual action of TFs and structural genes that can regulate both pathways simultaneously. Understanding the concerted action of these TFs and their associated structural genes can guide the development of strategies to further improve flavonoid and artemisinin production.
Collapse
Affiliation(s)
- Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.
| |
Collapse
|
27
|
Kovalchuk I, Pellino M, Rigault P, van Velzen R, Ebersbach J, Ashnest JR, Mau M, Schranz ME, Alcorn J, Laprairie RB, McKay JK, Burbridge C, Schneider D, Vergara D, Kane NC, Sharbel TF. The Genomics of Cannabis and Its Close Relatives. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:713-739. [PMID: 32155342 DOI: 10.1146/annurev-arplant-081519-040203] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of Cannabis and Humulus, including medicinal and industrial applications. We demonstrate that current Cannabis genome assemblies are incomplete, with ∼10% missing, 10-25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.
Collapse
Affiliation(s)
- I Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - M Pellino
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - P Rigault
- Gydle Inc., Québec, Québec G1S 1E7, Canada
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - R van Velzen
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
- Bedrocan International, 9640 CA Veendam, The Netherlands
| | - J Ebersbach
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - J R Ashnest
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M Mau
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M E Schranz
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
| | - J Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - R B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - J K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - C Burbridge
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Schneider
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Vergara
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - N C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - T F Sharbel
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| |
Collapse
|
28
|
Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:167-194. [PMID: 32383121 DOI: 10.1007/978-3-030-41283-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sugar beet is used not only in the sugar production, but also in a wide range of industries including the production of bioethanol as a source of renewable energy, extraction of pectin and production of molasses. The red beetroot has attracted much attention as health-promoting and disease-preventing functional food. The negative effects of environmental stresses, including abiotic and biotic ones, significantly decrease the cash crop sugar beet productivity. In this paper, we outline the mechanisms of sugar beet response to biotic and abiotic stresses at the levels of physiological change, the genes' functions, transcription and translation. Regarding the physiological changes, most research has been carried out on salt and drought stress. The functions of genes from sugar beet in response to salt, cold and heavy metal stresses were mainly investigated by transgenic technologies. At the transcriptional level, the transcriptome analysis of sugar beet in response to salt, cold and biotic stresses were conducted by RNA-Seq or SSH methods. At the translational level, more than 800 differentially expressed proteins in response to salt, K+/Na+ ratio, iron deficiency and resupply and heavy metal (zinc) stress were identified by quantitative proteomics techniques. Understanding how sugar beet respond and tolerate biotic and abiotic stresses is important for boosting sugar beet productivity under these challenging conditions. In order to minimize the negative impact of these stresses, studying how the sugar beet has evolved stress coping mechanisms will provide new insights and lead to novel strategies for improving the breeding of stress-resistant sugar beet and other crops.
Collapse
|
29
|
Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop ( Humulus lupulus L.). Int J Mol Sci 2019; 21:ijms21010233. [PMID: 31905722 PMCID: PMC6981390 DOI: 10.3390/ijms21010233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
Collapse
|
30
|
Rea KA, Casaretto JA, Al-Abdul-Wahid MS, Sukumaran A, Geddes-McAlister J, Rothstein SJ, Akhtar TA. Biosynthesis of cannflavins A and B from Cannabis sativa L. PHYTOCHEMISTRY 2019; 164:162-171. [PMID: 31151063 DOI: 10.1016/j.phytochem.2019.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.
Collapse
Affiliation(s)
- Kevin A Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
31
|
Lin M, Xiang D, Chen X, Huo H. Role of Characteristic Components of Humulus lupulus in Promoting Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8291-8302. [PMID: 31287692 DOI: 10.1021/acs.jafc.9b03780] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the next 50 years, the prevention and control of chronic diseases, such as obesity, cardiovascular disease, Alzheimer's disease, and many cancers, will be one of the most critical challenges in human health. Plant biochemistry and phytonutrient supplements are a promising complementary therapy for the management of chronic disease. Among them, Humulus lupulus has attracted special attention throughout the world because it contains numerous dietary phytochemicals that not only contribute to the aroma and flavor of beer but may also be used for medicinal purposes, as its properties include antiseptic, (an)aphrodisiac, anticancer, antiplatelet, antibacterial, antidiuretic, anti-inflammatory, sedative, hypnotic, and stomachic properties. This review sought to identify and understand the risk factors for chronic disease with a focus on two types of phytochemicals, bitter acids and xanthohumol. The goal was to understand how their metabolites promote human health and reduce the risk of chronic disease.
Collapse
Affiliation(s)
- Mengfei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou 510642 , China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm , Guangzhou 510642 , China
- Mid-Florida Research & Education Center , IFAS, University of Florida , Apopka , Florida 32703 , United States
| | - Diying Xiang
- College of Horticulture , Hebei Agricultural University , Hebei 071066 , China
- Mid-Florida Research & Education Center , IFAS, University of Florida , Apopka , Florida 32703 , United States
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou 510642 , China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm , Guangzhou 510642 , China
| | - Heqiang Huo
- Mid-Florida Research & Education Center , IFAS, University of Florida , Apopka , Florida 32703 , United States
| |
Collapse
|
32
|
Abstract
Sulfur assimilation and the biosynthesis of methionine, cysteine and S-adenosylmethionine (SAM) are critical to life. As a cofactor, SAM is required for the activity of most methyltransferases (MTases) and as such has broad impact on diverse cellular processes. Assigning function to MTases remains a challenge however, as many MTases are partially redundant, they often have multiple cellular roles and these activities can be condition-dependent. To address these challenges, we performed a systematic synthetic genetic analysis of all pairwise MTase double mutations in normal and stress conditions (16°C, 37°C, and LiCl) resulting in an unbiased comprehensive overview of the complexity and plasticity of the methyltransferome. Based on this network, we performed biochemical analysis of members of the histone H3K4 COMPASS complex and the phospholipid methyltransferase OPI3 to reveal a new role for a phospholipid methyltransferase in mediating histone methylation (H3K4) which underscores a potential link between lipid homeostasis and histone methylation. Our findings provide a valuable resource to study methyltransferase function, the dynamics of the methyltransferome, genetic crosstalk between biological processes and the dynamics of the methyltransferome in response to cellular stress.
Collapse
Affiliation(s)
- Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Elena Lissina
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
33
|
Holt S, Miks MH, de Carvalho BT, Foulquié-Moreno MR, Thevelein JM. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 2019; 43:193-222. [PMID: 30445501 PMCID: PMC6524682 DOI: 10.1093/femsre/fuy041] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marta H Miks
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10–726 Olsztyn, Poland
| | - Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
34
|
Guo X, Shen H, Liu Y, Wang Q, Wang X, Peng C, Liu W, Zhao ZK. Enabling Heterologous Synthesis of Lupulones in the Yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 2019; 188:787-797. [PMID: 30684240 DOI: 10.1007/s12010-019-02957-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
Abstract
Lupulones, naturally produced by glandular trichomes of hop (Humulus lupulus), are prenylated phloroglucinol derivatives that contribute the bitter flavor of beer and demonstrate antimicrobial and anticancer activities. It is appealing to develop microbial cell factories such that lupulones may be produced via fermentation technology in lieu of extraction from limited plant resources. In this study, the yeast Saccharomyces cerevisiae transformants harboring a synthetic lupulone pathway that consisted of five genes from hop were constructed. The transformants accumulated several precursors but failed to accumulate lupulones. Overexpression of 3-hydroxy-3-methyl glutaryl co-enzyme A reductase, the key enzyme in precursor formation in the mevalonate pathway, also failed to achieve a detectable level of lupulones. To decrease the consumption of the precursors, the ergosterol biosynthesis pathway was chemically downregulated by a small molecule ketoconazole, leading to successful production of lupulones. Our study demonstrated a combination of molecular biology and chemical biology to regulate the metabolism for heterologous production of lupulones. The strategy may be valuable for future engineering microbial process for other prenylated natural products.
Collapse
Affiliation(s)
- Xiaojia Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxue Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chang Peng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
35
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
36
|
Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop ( Humulus lupulus L.). Viruses 2018; 10:v10100570. [PMID: 30340328 PMCID: PMC6212812 DOI: 10.3390/v10100570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.
Collapse
|
37
|
Mishra AK, Duraisamy GS, Khare M, Kocábek T, Jakse J, Bříza J, Patzak J, Sano T, Matoušek J. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics 2018; 19:739. [PMID: 30305019 PMCID: PMC6180420 DOI: 10.1186/s12864-018-5125-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. Results The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. Conclusions Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop. Electronic supplementary material The online version of this article (10.1186/s12864-018-5125-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 43846, Žatec, Czech Republic
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Department of Applied Biosciences, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Molecular Genetics, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
38
|
Niinemets Ü. Storage of defense metabolites in the leaves of Myrtaceae: news of the eggs in different baskets. TREE PHYSIOLOGY 2018; 38:1445-1450. [PMID: 30307578 DOI: 10.1093/treephys/tpy115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia
| |
Collapse
|
39
|
Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E5223-E5232. [PMID: 29760092 PMCID: PMC5984530 DOI: 10.1073/pnas.1802223115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here, we identify two noncatalytic chalcone isomerase-fold proteins, which are critical for high-efficiency prenylchalcone production in Humulus lupulus. Our results provide insights into their evolutionary development from the ancestral noncatalytic fatty acid-binding chalcone isomerase-fold proteins to specialized auxiliary proteins supporting flavonoid biosynthesis in plants, and open up the possibility of producing high-value plant prenylchalcones using heterologous systems. Xanthohumol (XN) and demethylxanthohumol (DMX) are specialized prenylated chalconoids with multiple pharmaceutical applications that accumulate to high levels in the glandular trichomes of hops (Humulus lupulus L.). Although all structural enzymes in the XN pathway have been functionally identified, biochemical mechanisms underlying highly efficient production of XN have not been fully resolved. In this study, we characterized two noncatalytic chalcone isomerase (CHI)-like proteins (designated as HlCHIL1 and HlCHIL2) using engineered yeast harboring all genes required for DMX production. HlCHIL2 increased DMX production by 2.3-fold, whereas HlCHIL1 significantly decreased DMX production by 30%. We show that CHIL2 is part of an active DMX biosynthetic metabolon in hop glandular trichomes that encompasses a chalcone synthase (CHS) and a membrane-bound prenyltransferase, and that type IV CHI-fold proteins of representative land plants contain conserved function to bind with CHS and enhance its activity. Binding assays and structural docking uncover a function of HlCHIL1 to bind DMX and naringenin chalcone to stabilize the ring-open configuration of these chalconoids. This study reveals the role of two HlCHILs in DMX biosynthesis in hops, and provides insight into their evolutionary development from the ancestral fatty acid-binding CHI-fold proteins to specialized auxiliary proteins supporting flavonoid biosynthesis in plants.
Collapse
|
40
|
Kocábek T, Mishra AK, Matoušek J, Patzak J, Lomnická A, Khare M, Krofta K. The R2R3 transcription factor HlMYB8 and its role in flavonoid biosynthesis in hop (Humulus lupulus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:32-46. [PMID: 29606215 DOI: 10.1016/j.plantsci.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 05/25/2023]
Abstract
Hop is an important source of medicinally valuable secondary metabolites including bioactive prenylated chalcones. To gain in-depth knowledge of the regulatory mechanisms of hop flavonoids biosynthesis, full-length cDNA of HlMyb8 transcription factor gene was isolated from lupulin glands. The deduced amino acid sequence of HlMyb8 showed high similarity to a flavonol-specific regulator of phenylpropanoid biosynthesis AtMYB12 from Arabidopsis thaliana. Transient expression studies and qRT-PCR analysis of transgenic hop plants overexpressing HlMyb8 revealed that HlMYB8 activates expression of chalcone synthase HlCHS_H1 as well as other structural genes from the flavonoid pathway branch leading to the production of flavonols (F3H, F'3H, FLS) but not prenylflavonoids (PT1, OMT1) or bitter acids (VPS, PT1). HlMyb8 could cross-activate Arabidopsis flavonol-specific genes but to a much lesser extent than AtMyb12. Reciprocally, AtMyb12 could cross-activate hop flavonol-specific genes. Transcriptome sequence analysis of hop leaf tissue overexpressing HlMyb8 confirmed the modulation of several other genes related to flavonoid biosynthesis pathways (PAL, 4CL, ANR, DFR, LDOX). Analysis of metabolites in hop female cones confirmed that overexpression of HlMyb8 does not increase prenylflavonoid or bitter acids content in lupulin glands. It follows from our results that HlMYB8 plays role in a competition between flavonol and prenylflavonoid or bitter acid pathways by diverting the flux of CHS_H1 gene product and thus, may influence the level of these metabolites in hop lupulin.
Collapse
Affiliation(s)
- Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute Co. Ltd., Kadaňská 2525, 438 46 Žatec, Czech Republic
| | - Anna Lomnická
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Mudra Khare
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Karel Krofta
- Hop Research Institute Co. Ltd., Kadaňská 2525, 438 46 Žatec, Czech Republic
| |
Collapse
|
41
|
An Overview of the Antimicrobial Properties of Hop. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2018. [DOI: 10.1007/978-3-319-67045-4_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Arczewska M, Kamiński DM, Gieroba B, Gagoś M. Acid-Base Properties of Xanthohumol: A Computational and Experimental Investigation. JOURNAL OF NATURAL PRODUCTS 2017; 80:3194-3202. [PMID: 29148787 DOI: 10.1021/acs.jnatprod.7b00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UV-vis spectrophotometry has been applied to determine acid dissociation constants of the prenylated chalcone xanthohumol. The pKa values were compared with those derived from pH-metric titrations. The order of the deprotonation site in the xanthohumol molecule was estimated by quantum mechanical calculations as 2'-OH, 4'-OH, and 4-OH. Furthermore, the electronic and spectroscopic properties of xanthohumol have been investigated on the basis of the time-dependent density functional theory (TDDFT). The TDDFT method, combined with a hybrid exchange-correlation functional using the B3LYP and CAM-B3LYP levels of theory in conjunction with the SMD solvation model, was used to optimize all geometries and predict the excitation energies of the neutral form and ionized species of the chalcone depending on pH value. The computed results were in good agreement with the experimental data. Consideration of the acid-base profile in conjunction with other molecular properties has a great importance and has the potential to be used to further improve the bioavailability of xanthohumol.
Collapse
Affiliation(s)
- Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin , Akademicka 13, 20-950 Lublin, Poland
| | - Daniel M Kamiński
- Department of Chemistry, Maria Curie-Skłodowska University , pl. Marii Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Barbara Gieroba
- Department of Cell Biology, Maria Curie-Skłodowska University , Akademicka 19, 20-033 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University , Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
43
|
Tian N, Liu F, Wang P, Zhang X, Li X, Wu G. The molecular basis of glandular trichome development and secondary metabolism in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Zhang D, Easterling KA, Pitra NJ, Coles MC, Buckler ES, Bass HW, Matthews PD. Non-Mendelian Single-Nucleotide Polymorphism Inheritance and Atypical Meiotic Configurations are Prevalent in Hop. THE PLANT GENOME 2017; 10. [PMID: 29293819 DOI: 10.3835/plantgenome2017.04.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hop ( L.) breeding programs seek to exploit genetic resources for bitter flavor, aroma, and disease resistance. However, these efforts have been thwarted by segregation distortion including female-biased sex ratios. To better understand the transmission genetics of hop, we genotyped 4512 worldwide accessions of hop, including cultivars, landraces, and over 100 wild accessions using a genotyping-by-sequencing (GBS) approach. From the resulting ∼1.2 million single-nucleotide polymorphisms (SNPs), prequalified GBS markers were validated by inferences in population structures and phylogeny. Analysis of pseudo-testcross (Pt) mapping data from F families revealed mixed patterns of Mendelian and non-Mendelian segregation. Three-dimensional (3D) cytogenetic analysis of late meiotic prophase nuclei from two wild and two cultivated hop revealed conspicuous and prevalent occurrences of multiple, atypical, nondisomic chromosome complexes including autosomes. We used genome-wide association studies (GWAS) and fixation index (F) analysis to demonstrate selection mapping of genetic loci for key traits including sex, bitter acids, and drought tolerance. Among the possible mechanisms underlying the observed segregation distortion from the genomic data analysis, the cytogenetic analysis points to meiotic chromosome behavior as one of the contributing factors. The findings shed light on long-standing questions on the unusual transmission genetics and phenotypic variation in hop, with major implications for breeding, cultivation, and the natural history of .
Collapse
|
45
|
Pokorn T, Radišek S, Javornik B, Štajner N, Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS One 2017; 12:e0184528. [PMID: 28886174 PMCID: PMC5590963 DOI: 10.1371/journal.pone.0184528] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Viroids, the smallest known pathogens, unable to encode any proteins, can cause severe diseases in their host plants. One of the proposed mechanisms of their pathogenicity includes silencing the host's genes via viroid-derived small RNAs, which are products of the host's immune response to the viroid's double stranded RNA. Humulus lupulus (hop) plants are hosts to several viroids; two of them, HLVd and CBCVd, are interesting models for studying host-viroid interactions, due to the symptomless infection of the former and severe stunting disease caused by the latter. To study these interactions, we constructed a deep hop NGS transcriptome based on 35 Gb paired-end sequencing data assembled into over 74 Mb of contigs. These transcripts were used for in-silico prediction of target transcripts of vd-sRNA of the two aforementioned viroids, using two different software tools. Prediction models revealed that 1062 and 1387 hop transcripts share nucleotide similarities with HLVd- and CBCVd-derived small RNAs, respectively, so they could be silenced in an RNA interference process. Furthermore, we selected 17 transcripts from 4 groups of targets involved in the metabolism of plant hormones, small RNA biogenesis, transcripts with high complementarity with viroid-derived small RNAs and transcripts targeted by CBCVd-derived small RNAs with high cellular concentrations. Their expression was monitored by reverse transcription quantitative PCR performed using leaf, flower and cone samples. Additionally, the expression of 5 pathogenesis related genes was monitored. Expression analysis confirmed high expression levels of four pathogenesis related genes in leaves of HLVd and CBCVd infected hop plants. Expression fluctuations were observed for the majority of targets, with possible evidence of downregulation of GATA transcription factor by CBCVd- and of linoleate 13S-lipoxygenase by HLVd-derived small RNAs. These results provide a deep transcriptome of hop and the first insights into complex viroid-hop plant interactions.
Collapse
Affiliation(s)
- Tine Pokorn
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Radišek
- Department of Plant Protection, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Branka Javornik
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Štajner
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Flythe MD, Kagan IA, Wang Y, Narvaez N. Hops ( Humulus lupulus L.) Bitter Acids: Modulation of Rumen Fermentation and Potential As an Alternative Growth Promoter. Front Vet Sci 2017; 4:131. [PMID: 28871284 PMCID: PMC5566628 DOI: 10.3389/fvets.2017.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Antibiotics can improve ruminant growth and efficiency by altering rumen fermentation via selective inhibition of microorganisms. However, antibiotic use is increasingly restricted due to concerns about the spread of antibiotic-resistance. Plant-based antimicrobials are alternatives to antibiotics in animal production. The hops plant (Humulus lupulus L.) produces a range of bioactive secondary metabolites, including antimicrobial prenylated phloroglucinols, which are commonly called alpha- and beta-acids. These latter compounds can be considered phyto-ionophores, phytochemicals with a similar antimicrobial mechanism of action to ionophore antibiotics (e.g., monensin, lasalocid). Like ionophores, the hop beta-acids inhibit rumen bacteria possessing a classical Gram-positive cell envelope. This selective inhibition causes several effects on rumen fermentation that are beneficial to finishing cattle, such as decreased proteolysis, ammonia production, acetate: propionate ratio, and methane production. This article reviews the effects of hops and hop secondary metabolites on rumen fermentation, including the physiological mechanisms on specific rumen microorganisms, and consequences for the ruminant host and ruminant production. Further, we propose that hop beta-acids are useful model natural products for ruminants because of (1) the ionophore-like mechanism of action and spectrum of activity and (2) the literature available on the plant due to its use in brewing.
Collapse
Affiliation(s)
- Michael D Flythe
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States.,Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Isabelle A Kagan
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States.,Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Nelmy Narvaez
- SGS Canada Inc., Agricultural Services, Guelph, ON, Canada
| |
Collapse
|
47
|
Matoušek J, Siglová K, Jakše J, Radišek S, Brass JRJ, Tsushima T, Guček T, Duraisamy GS, Sano T, Steger G. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). JOURNAL OF PLANT PHYSIOLOGY 2017; 213:166-177. [PMID: 28395198 DOI: 10.1016/j.jplph.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
The hop metabolome important for the brewing industry and for medical purposes is endangered worldwide due to multiple viroid infections affecting hop physiology. Combinatorial biolistic hop inoculation with Citrus bark cracking viroid (CBCVd), Apple fruit crinkle viroid (AFCVd), Hop latent viroid, and Hop stunt viroid (HSVd) showed a low CBCVd compatibility with HSVd, while all other viroid combinations were highly compatible. Unlike to other viroids, single CBCVd propagation showed a significant excess of (-) over (+) strands in hop, tomato, and Nicotiana benthamiana, but not in citruses. Inoculation of hop with all viroids led to multiple infections with unstable viroid levels in individual plants in the pre- and post-dormancy periods, and to high plant mortality and morphological disorders. Hop isolates of CBCVd and AFCVd were highly stable, only minor quasispecies were detected. CBCVd caused a strong suppression of some crucial mRNAs related to the hop prenylflavonoid biosynthesis pathway, while AFCVd-caused effects were moderate. According to mRNA degradome analysis, this suppression was not caused by a direct viroid-specific small RNA-mediated degradation. CBCVd infection led to a strong induction of two hop transcription factors from WRKY family and to a disbalance of WRKY/WDR1 complexes important for activation of lupulin genes.
Collapse
Affiliation(s)
- J Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - K Siglová
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J Jakše
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - S Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Joseph R J Brass
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - T Tsushima
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - T Guček
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - G S Duraisamy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - T Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bubkyo-cho, Hirosaki 036-8561, Japan
| | - G Steger
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
48
|
Paasela T, Lim KJ, Pietiäinen M, Teeri TH. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine. THE NEW PHYTOLOGIST 2017; 214:1537-1550. [PMID: 28248427 DOI: 10.1111/nph.14480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1.
Collapse
Affiliation(s)
- Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
49
|
Champagne A, Boutry M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus
L.) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
50
|
Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress. Int J Mol Sci 2017; 18:ijms18040847. [PMID: 28420190 PMCID: PMC5412431 DOI: 10.3390/ijms18040847] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
The sugar beet monosomic addition line M14 is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss, and shows tolerance to salt stress. Our study focuses on exploring the molecular mechanism of the salt tolerance of the sugar beet M14. In order to identify differentially expressed genes in M14 under salt stress, a subtractive cDNA library was generated by suppression subtractive hybridization (SSH). A total of 36 unique sequences were identified in the library and their putative functions were analyzed. One of the genes, S-adenosylmethionine synthetase (SAMS), is the key enzyme involved in the biosynthesis of S-adenosylmethionine (SAM), a precursor of polyamines. To determine the potential role of SAMS in salt tolerance, we isolated BvM14-SAMS2 from the salt-tolerant sugar beet M14. The expression of BvM14-SAMS2 in leaves and roots was greatly induced by salt stress. Overexpression of BvM14-SAMS2 in Arabidopsis resulted in enhanced salt and H2O2 tolerance. Furthermore, we obtained a knock-down T-DNA insertion mutant of AtSAMS3, which shares the highest homology with BvM14-SAMS2. Interestingly, the mutant atsam3 showed sensitivity to salt and H2O2 stress. We also found that the antioxidant system and polyamine metabolism play an important role in salt and H2O2 tolerance in the BvM14-SAMS2-overexpressed plants. To our knowledge, the function of the sugar beet SAMS has not been reported before. Our results have provided new insights into SAMS functions in sugar beet.
Collapse
|