1
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
2
|
Huang Y, Gao Y, Ly K, Lin L, Lambooij JP, King EG, Janssen A, Wei KHC, Lee YCG. Varying recombination landscapes between individuals are driven by polymorphic transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613564. [PMID: 39345575 PMCID: PMC11429682 DOI: 10.1101/2024.09.17.613564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Meiotic recombination is a prominent force shaping genome evolution, and understanding the causes for varying recombination landscapes within and between species has remained a central, though challenging, question. Recombination rates are widely observed to negatively associate with the abundance of transposable elements (TEs), selfish genetic elements that move between genomic locations. While such associations are usually interpreted as recombination influencing the efficacy of selection at removing TEs, accumulating findings suggest that TEs could instead be the cause rather than the consequence. To test this prediction, we formally investigated the influence of polymorphic, putatively active TEs on recombination rates. We developed and benchmarked a novel approach that uses PacBio long-read sequencing to efficiently, accurately, and cost-effectively identify crossovers (COs), a key recombination product, among large numbers of pooled recombinant individuals. By applying this approach to Drosophila strains with distinct TE insertion profiles, we found that polymorphic TEs, especially RNA-based TEs and TEs with local enrichment of repressive marks, reduce the occurrence of COs. Such an effect leads to different CO frequencies between homologous sequences with and without TEs, contributing to varying CO maps between individuals. The suppressive effect of TEs on CO is further supported by two orthogonal approaches-analyzing the distributions of COs in panels of recombinant inbred lines in relation to TE polymorphism and applying marker-assisted estimations of CO frequencies to isogenic strains with and without transgenically inserted TEs. Our investigations reveal how the constantly changing mobilome can actively modify recombination landscapes, shaping genome evolution within and between species.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yi Gao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Kayla Ly
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jan Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | | | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | - Kevin H.-C. Wei
- Department of Zoology, University of British Columbia, Canada
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
4
|
Hunter CT, McCarty DR, Koch KE. Independent evolution of transposase and TIRs facilitated by recombination between Mutator transposons from divergent clades in maize. Proc Natl Acad Sci U S A 2023; 120:e2305298120. [PMID: 37490540 PMCID: PMC10401008 DOI: 10.1073/pnas.2305298120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/27/2023] Open
Abstract
Nearly all eukaryotes carry DNA transposons of the Robertson's Mutator (Mu) superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of MuDR transposase genes and TIRs. To address the extent of this relationship and its impact, we compared separate phylogenies of TIRs and MuDR gene sequences from Mu elements in the maize genome. Five major clades were identified. As expected, most Mu elements were bound by highly similar TIRs from the same clade (homomorphic type). However, a subset of elements contained dissimilar TIRs derived from divergent clades. These "heteromorphs" typically occurred in multiple copies indicating active transposition in the genome. In addition, analysis of internal sequences showed that exchanges between elements having divergent TIRs produced new mudra and mudrb gene combinations. In several instances, TIR homomorphs had been regenerated within a heteromorph clade with retention of distinctive internal MuDR sequence combinations. Results reveal that recombination between divergent clades facilitates independent evolution of transposase (mudra), transposase-binding targets (TIRs), and capacity for insertion (mudrb) of active Mu elements. This mechanism would be enhanced by the preference of Mu insertions for recombination-rich regions near the 5' ends of genes. We suggest that cycles of recombination give rise to alternating homo- and heteromorph forms that enhance the diversity on which selection for Mu fitness can operate.
Collapse
Affiliation(s)
- Charles T. Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture - Agricultural Research Service, Gainesville, FL32608
| | - Donald R. McCarty
- Horticultural Sciences Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL32611
| | - Karen E. Koch
- Horticultural Sciences Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL32611
| |
Collapse
|
5
|
Cai C, Pelé A, Bucher J, Finkers R, Bonnema G. Fine mapping of meiotic crossovers in Brassica oleracea reveals patterns and variations depending on direction and combination of crosses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1192-1210. [PMID: 36626115 DOI: 10.1111/tpj.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Meiotic recombination is crucial for assuring proper segregation of parental chromosomes and generation of novel allelic combinations. As this process is tightly regulated, identifying factors influencing rate, and distribution of meiotic crossovers (COs) is of major importance, notably for plant breeding programs. However, high-resolution recombination maps are sparse in most crops including the Brassica genus and knowledge about intraspecific variation and sex differences is lacking. Here, we report fine-scale resolution recombination landscapes for 10 female and 10 male crosses in Brassica oleracea, by analyzing progenies of five large four-way-cross populations from two reciprocally crossed F1s per population. Parents are highly diverse inbred lines representing major crops, including broccoli, cauliflower, cabbage, kohlrabi, and kale. We produced approximately 4.56T Illumina data from 1248 progenies and identified 15 353 CO across the 10 reciprocal crosses, 51.13% of which being mapped to <10 kb. We revealed fairly similar Mb-scale recombination landscapes among all cross combinations and between the sexes, and provided evidence that these landscapes are largely independent of sequence divergence. We evidenced strong influence of gene density and large structural variations on CO formation in B. oleracea. Moreover, we found extensive variations in CO number depending on the direction and combination of the initial parents crossed with, for the first time, a striking interdependency between these factors. These data improve our current knowledge on meiotic recombination and are important for Brassica breeders.
Collapse
Affiliation(s)
- Chengcheng Cai
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Gennovation B.V., Agro Business Park 10, 6708 PW, Wageningen, The Netherlands
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
7
|
Cauret CMS, Mortimer SME, Roberti MC, Ashman TL, Liston A. Chromosome-scale assembly with a phased sex-determining region resolves features of early Z and W chromosome differentiation in a wild octoploid strawberry. G3 (BETHESDA, MD.) 2022; 12:6603112. [PMID: 35666193 PMCID: PMC9339316 DOI: 10.1093/g3journal/jkac139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
When sex chromosomes stop recombining, they start to accumulate differences. The sex-limited chromosome (Y or W) especially is expected to degenerate via the loss of nucleotide sequence and the accumulation of repetitive sequences. However, how early signs of degeneration can be detected in a new sex chromosome is still unclear. The sex-determining region of the octoploid strawberries is young, small, and dynamic. Using PacBio HiFi reads, we obtained a chromosome-scale assembly of a female (ZW) Fragaria chiloensis plant carrying the youngest and largest of the known sex-determining region on the W in strawberries. We fully characterized the previously incomplete sex-determining region, confirming its gene content, genomic location, and evolutionary history. Resolution of gaps in the previous characterization of the sex-determining region added 10 kb of sequence including a noncanonical long terminal repeat-retrotransposon; whereas the Z sequence revealed a Harbinger transposable element adjoining the sex-determining region insertion site. Limited genetic differentiation of the sex chromosomes coupled with structural variation may indicate an early stage of W degeneration. The sex chromosomes have a similar percentage of repeats but differ in their repeat distribution. Differences in the pattern of repeats (transposable element polymorphism) apparently precede sex chromosome differentiation, thus potentially contributing to recombination cessation as opposed to being a consequence of it.
Collapse
Affiliation(s)
- Caroline M S Cauret
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sebastian M E Mortimer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marcelina C Roberti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Boideau F, Richard G, Coriton O, Huteau V, Belser C, Deniot G, Eber F, Falentin C, Ferreira de Carvalho J, Gilet M, Lodé-Taburel M, Maillet L, Morice J, Trotoux G, Aury JM, Chèvre AM, Rousseau-Gueutin M. Epigenomic and structural events preclude recombination in Brassica napus. THE NEW PHYTOLOGIST 2022; 234:545-559. [PMID: 35092024 DOI: 10.1111/nph.18004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Meiotic recombination is a major evolutionary process generating genetic diversity at each generation in sexual organisms. However, this process is highly regulated, with the majority of crossovers lying in the distal chromosomal regions that harbor low DNA methylation levels. Even in these regions, some islands without recombination remain, for which we investigated the underlying causes. Genetic maps were established in two Brassica napus hybrids to detect the presence of such large nonrecombinant islands. The role played by DNA methylation and structural variations in this local absence of recombination was determined by performing bisulfite sequencing and whole genome comparisons. Inferred structural variations were validated using either optical mapping or oligo fluorescence in situ hybridization. Hypermethylated or inverted regions between Brassica genomes were associated with the absence of recombination. Pairwise comparisons of nine B. napus genome assemblies revealed that such inversions occur frequently and may contain key agronomic genes such as resistance to biotic stresses. We conclude that such islands without recombination can have different origins, such as DNA methylation or structural variations in B. napus. It is thus essential to take into account these features in breeding programs as they may hamper the efficient combination of favorable alleles in elite varieties.
Collapse
Affiliation(s)
- Franz Boideau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Gwenaelle Deniot
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | | | - Marie Gilet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | | | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, 35653, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | | | | |
Collapse
|
9
|
Zhao S, Li X, Song J, Li H, Zhao X, Zhang P, Li Z, Tian Z, Lv M, Deng C, Ai T, Chen G, Zhang H, Hu J, Xu Z, Chen J, Ding J, Song W, Chang Y. Genetic dissection of maize plant architecture using a novel nested association mapping population. THE PLANT GENOME 2022; 15:e20179. [PMID: 34859966 DOI: 10.1002/tpg2.20179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The leaf angle (LA), plant height (PH), and ear height (EH) are key plant architectural traits influencing maize (Zea mays L.) yield. However, their genetic determinants have not yet been well-characterized. Here, we developed a maize advanced backcross-nested association mapping population in Henan Agricultural University (HNAU-NAM1) comprised of 1,625 BC1 F4 /BC2 F4 lines. These were obtained by crossing a diverse set of 12 representative inbred lines with the common GEMS41 line, which were then genotyped using the MaizeSNP9.4K array. Genetic diversity and phenotypic distribution analyses showed considerable levels of genetic variation. We obtained 18-88 quantitative trait loci (QTLs) associated with LA, PH, and EH by using three complementary mapping methods, named as separate linkage mapping, joint linkage mapping, and genome-wide association studies. Our analyses enabled the identification of ten QTL hot-spot regions associated with the three traits, which were distributed on nine different chromosomes. We further selected 13 major QTLs that were simultaneously detected by three methods and deduced the candidate genes, of which eight were not reported before. The newly constructed HNAU-NAM1 population in this study will further broaden our insights into understanding of genetic regulation of plant architecture, thus will help to improve maize yield and provide an invaluable resource for maize functional genomics and breeding research.
Collapse
Affiliation(s)
- Sheng Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xueying Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Junfeng Song
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural Univ., Beijing, 100193, China
| | - Huimin Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Xiaodi Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Peng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Life Science and Technology, Guangxi Univ., Nanning, 530004, China
| | - Zhimin Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Zhiqiang Tian
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Meng Lv
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Ce Deng
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Tangshun Ai
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Gengshen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural Univ., Wuhan, 430070, China
| | - Hui Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jianlin Hu
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhijun Xu
- Zhanjiang Experiment Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jiafa Chen
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Junqiang Ding
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural Univ., Zhengzhou, 450002, China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural Univ., Beijing, 100193, China
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
10
|
Catlin NS, Josephs EB. The important contribution of transposable elements to phenotypic variation and evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102140. [PMID: 34883307 DOI: 10.1016/j.pbi.2021.102140] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Transposable elements (TEs) are responsible for significant genomic variation in plants. Our understanding of the evolutionary forces shaping TE polymorphism has lagged behind other mutations because of the difficulty of accurately identifying TE polymorphism in short-read population genomic data. However, new approaches allow us to quantify TE polymorphisms in population datasets and address fundamental questions about the evolution of these polymorphisms. Here, we discuss how insertional biases shape where, when, and how often TEs insert throughout the genome. Next, we examine mechanisms by which TEs can affect phenotype. Finally, we evaluate current evidence for selection on TE polymorphisms. All together, it is clear that TEs are important, but underappreciated, contributors to intraspecific phenotypic variation, and that understanding the dynamics governing TE polymorphism is crucial for evolutionary biologists interested in the maintenance of variation.
Collapse
Affiliation(s)
- Nathan S Catlin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
11
|
Hanif U, Alipour H, Gul A, Jing L, Darvishzadeh R, Amir R, Munir F, Ilyas MK, Ghafoor A, Siddiqui SU, St Amand P, Bernado A, Bai G, Sonder K, Rasheed A, He Z, Li H. Characterization of the genetic basis of local adaptation of wheat landraces from Iran and Pakistan using genome-wide association study. THE PLANT GENOME 2021; 14:e20096. [PMID: 34275212 DOI: 10.1002/tpg2.20096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/31/2021] [Indexed: 05/21/2023]
Abstract
Characterization of genomic regions underlying adaptation of landraces can reveal a quantitative genetics framework for local wheat (Triticum aestivum L.) adaptability. A collection of 512 wheat landraces from the eastern edge of the Fertile Crescent in Iran and Pakistan were genotyped using genome-wide single nucleotide polymorphism markers generated by genotyping-by-sequencing. The minor allele frequency (MAF) and the heterozygosity (H) of Pakistani wheat landraces (MAF = 0.19, H = 0.008) were slightly higher than the Iranian wheat landraces (MAF = 0.17, H = 0.005), indicating that Pakistani landraces were slightly more genetically diverse. Population structure analysis clearly separated the Pakistani landraces from Iranian landraces, which indicates two separate adaptability trajectories. The large-scale agro-climatic data of seven variables were quite dissimilar between Iran and Pakistan as revealed by the correlation coefficients. Genome-wide association study identified 91 and 58 loci using agroclimatic data, which likely underpin local adaptability of the wheat landraces from Iran and Pakistan, respectively. Selective sweep analysis identified significant hits on chromosomes 4A, 4B, 6B, 7B, 2D, and 6D, which were colocalized with the loci associated with local adaptability and with some known genes related to flowering time and grain size. This study provides insight into the genetic diversity with emphasis on the genetic architecture of loci involved in adaptation to local environments, which has breeding implications.
Collapse
Affiliation(s)
- Uzma Hanif
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Hadi Alipour
- Dep. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia Univ., Urmia, Iran
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Li Jing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| | - Reza Darvishzadeh
- Dep. of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia Univ., Urmia, Iran
| | - Rabia Amir
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Atta-ur-Rahman School of Applied Biosciences, National Univ. of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Kashif Ilyas
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Abdul Ghafoor
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Sadar Uddin Siddiqui
- Plant Genetic Resource Program, Bioresource Conservation Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Paul St Amand
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernado
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Kai Sonder
- International Wheat and Maize Improvement Center (CIMMYT), Texcoco, Mexico
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
- Dep. of Plant Sciences, Quaid-i-Azam Univ., Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), & CIMMYT-China office, 12 Zhongguancun South St., Beijing, 100081, China
| |
Collapse
|
12
|
Zhang L, Ma X, Zhang X, Xu Y, Ibrahim AK, Yao J, Huang H, Chen S, Liao Z, Zhang Q, Niyitanga S, Yu J, Liu Y, Xu X, Wang J, Tao A, Xu J, Chen S, Yang X, He Q, Lin L, Fang P, Zhang L, Ming R, Qi J, Zhang L. Reference genomes of the two cultivated jute species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2235-2248. [PMID: 34170619 PMCID: PMC8541789 DOI: 10.1111/pbi.13652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Cultivated jute, which comprises the two species Corchorus capsularis and C. olitorius, is the second most important natural fibre source after cotton. Here we describe chromosome-level assemblies of the genomes of both cultivated species. The C. capsularis and C. olitorius assemblies are each comprised of seven pseudo-chromosomes, with the C. capsularis assembly consisting of 336 Mb with 25,874 genes and the C. olitorius assembly containing 361 Mb with 28 479 genes. Although the two Corchorus genomes exhibit collinearity, the genome of C. olitorius contains 25 Mb of additional sequences than that of C. capsularis with 13 putative inversions, which might give a hint to the difference of phenotypic variants between the two cultivated jute species. Analysis of gene expression in isolated fibre tissues reveals candidate genes involved in fibre development. Our analysis of the population structures of 242 cultivars from C. capsularis and 57 cultivars from C. olitorius by whole-genome resequencing resulted in post-domestication bottlenecks occurred ~2000 years ago in these species. We identified hundreds of putative significant marker-trait associations (MTAs) controlling fibre fineness, cellulose content and lignin content of fibre by integrating data from genome-wide association studies (GWAS) with data from analyses of selective sweeps due to natural and artificial selection in these two jute species. Among them, we further validated that CcCOBRA1 and CcC4H1 regulate fibre quality in transgenic plants via improving the biosynthesis of the secondary cell wall. Our results yielded important new resources for functional genomics research and genetic improvement in jute and allied fibre crops.
Collapse
Affiliation(s)
- Lilan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaokai Ma
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xingtan Zhang
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yi Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Aminu Kurawa Ibrahim
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiayu Yao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huaxing Huang
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shuai Chen
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhenyang Liao
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing Zhang
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sylvain Niyitanga
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaxin Yu
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yi Liu
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiuming Xu
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jingjing Wang
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Siyuan Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qingyao He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liemei Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ray Ming
- Department of Plant Biologythe University of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsFujian Provincial Key Laboratory of Crop Breeding by DesignFujian Agriculture and Forestry UniversityFuzhouChina
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast ChinaFujian Public Platform for Germplasm Resources of Bast Fibre CropsFujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Center for Genomics and BiotechnologyHaixia Institue of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
13
|
|
14
|
DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology. Int J Mol Sci 2021; 22:ijms22115840. [PMID: 34072515 PMCID: PMC8198497 DOI: 10.3390/ijms22115840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Today, agricultural productivity is essential to meet the needs of a growing population, and is also a key tool in coping with climate change. Innovative plant breeding technologies such as molecular markers, phenotyping, genotyping, the CRISPR/Cas method and next-generation sequencing can help agriculture meet the challenges of the 21st century more effectively. Therefore, the aim of the research was to identify single-nucleotide polymorphisms (SNPs) and SilicoDArT markers related to select morphological features determining the yield in maize. The plant material consisted of ninety-four inbred lines of maize of various origins. These lines were phenotyped under field conditions. A total of 14 morphological features was analyzed. The DArTseq method was chosen for genotyping because this technique reduces the complexity of the genome by restriction enzyme digestion. Subsequently, short fragment sequencing was used. The choice of a combination of restrictases allowed the isolation of highly informative low copy fragments of the genome. Thanks to this method, 90% of the obtained DArTseq markers are complementary to the unique sequences of the genome. All the observed features were normally distributed. Analysis of variance indicated that the main effect of lines was statistically significant (p < 0.001) for all 14 traits of study. Thanks to the DArTseq analysis with the use of next-generation sequencing (NGS) in the studied plant material, it was possible to identify 49,911 polymorphisms, of which 33,452 are SilicoDArT markers and the remaining 16,459 are SNP markers. Among those mentioned, two markers associated with four analyzed traits deserved special attention: SNP (4578734) and SilicoDArT (4778900). SNP marker 4578734 was associated with the following features: anthocyanin coloration of cob glumes, number of days from sowing to anthesis, number of days from sowing to silk emergence and anthocyanin coloration of internodes. SilicoDArT marker 4778900 was associated with the following features: number of days from sowing to anthesis, number of days from sowing to silk emergence, tassel: angle between the axis and lateral branches and plant height. Sequences with a length of 71 bp were used for physical mapping. The BLAST and EnsemblPlants databases were searched against the maize genome to identify the positions of both markers. Marker 4578734 was localized on chromosome 7, the closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin 3-O-glucosyltransferase. Marker 4778900 was located on chromosome 7, at a distance of 45 Kb from the gene Zm00001d045261 encoding starch synthase I. The latter observation indicated that these flanking SilicoDArT and SNP markers were not in a state of linkage disequilibrium.
Collapse
|
15
|
Song Y, Bu C, Chen P, Liu P, Zhang D. Miniature inverted repeat transposable elements cis-regulate circular RNA expression and promote ethylene biosynthesis, reducing heat tolerance in Populus tomentosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1978-1994. [PMID: 33258949 DOI: 10.1093/jxb/eraa570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Transposable elements (TEs) and their reverse complementary sequence pairs (RCPs) are enriched around loci that produce circular RNAs (circRNAs) in plants. However, the function of these TE-RCP pairs in modulating circRNA expression remains elusive. Here, we identified 4609 circRNAs in poplar (Populus tomentosa) and showed that miniature inverted repeat transposable elements (MITEs)-RCPs were enriched in circRNA flanking regions. Moreover, we used expression quantitative trait nucleotide (eQTN) mapping to decipher the cis-regulatory role of MITEs. eQTN results showed that 14 single-nucleotide polymorphisms (SNPs) were significantly associated with Circ_0000408 and Circ_0003418 levels and the lead associated SNPs were located in MITE-RCP regions, indicating that MITE-RCP sequence variations affect exon circularization. Overexpression and knockdown analysis showed that Circ_0003418 positively modulated its parental gene, which encodes the RING-type E3 ligase XBAT32, and specifically increased the expression of the PtoXBAT32.5 transcript variant, which lacks the E3 ubiquitin ligase domain. Under heat stress, PtoXBAT32.5 expression was induced with up-regulation of Circ_0003418, resulting in increased production of ethylene and peroxidation of membrane lipids. Our findings thus reveal the cis-regulatory mechanism by which a MITE-RCP pair affects circRNA abundance in poplar and indicate that Circ_0003418 is a negative regulator of poplar heat tolerance via the ubiquitin-mediated protein modification pathway.
Collapse
Affiliation(s)
- Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
16
|
Linkage disequilibrium vs. pedigree: Genomic selection prediction accuracy in conifer species. PLoS One 2020; 15:e0232201. [PMID: 32520936 PMCID: PMC7286500 DOI: 10.1371/journal.pone.0232201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The presupposition of genomic selection (GS) is that predictive accuracies should be based on population-wide linkage disequilibrium (LD). However, in species with large, highly complex genomes the limitation of marker density may preclude the ability to resolve LD accurately enough for GS. Here we investigate such an effect in two conifer species with ~ 20 Gbp genomes, Douglas-fir (Pseudotsuga menziesii Mirb. (Franco)) and Interior spruce (Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm.). Random sampling of markers was performed to obtain SNP sets with totals in the range of 200-50,000, this was replicated 10 times. Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) was deployed as the GS method to test these SNP sets, and 10-fold cross-validation was performed on 1,321 Douglas-fir trees, representing 37 full-sib F1 families and on 1,126 Interior spruce trees, representing 25 open-pollinated (half-sib) families. Both trials are located on 3 sites in British Columbia, Canada. RESULTS As marker number increased, so did GS predictive accuracy for both conifer species. However, a plateau in the gain of accuracy became apparent around 10,000-15,000 markers for both Douglas-fir and Interior spruce. Despite random marker selection, little variation in predictive accuracy was observed across replications. On average, Douglas-fir prediction accuracies were higher than those of Interior spruce, reflecting the difference between full- and half-sib families for Douglas-fir and Interior spruce populations, respectively, as well as their respective effective population size. CONCLUSIONS Although possibly advantageous within an advanced breeding population, reducing marker density cannot be recommended for carrying out GS in conifers. Significant LD between markers and putative causal variants was not detected using 50,000 SNPS, and GS was enabled only through the tracking of relatedness in the populations studied. Dramatically increasing marker density would enable said markers to better track LD with causal variants in these large, genetically diverse genomes; as well as providing a model that could be used across populations, breeding programs, and traits.
Collapse
|
17
|
Ou S, Liu J, Chougule KM, Fungtammasan A, Seetharam AS, Stein JC, Llaca V, Manchanda N, Gilbert AM, Wei S, Chin CS, Hufnagel DE, Pedersen S, Snodgrass SJ, Fengler K, Woodhouse M, Walenz BP, Koren S, Phillippy AM, Hannigan BT, Dawe RK, Hirsch CN, Hufford MB, Ware D. Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nat Commun 2020; 11:2288. [PMID: 32385271 PMCID: PMC7211024 DOI: 10.1038/s41467-020-16037-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/09/2020] [Indexed: 01/23/2023] Open
Abstract
Improvements in long-read data and scaffolding technologies have enabled rapid generation of reference-quality assemblies for complex genomes. Still, an assessment of critical sequence depth and read length is important for allocating limited resources. To this end, we have generated eight assemblies for the complex genome of the maize inbred line NC358 using PacBio datasets ranging from 20 to 75 × genomic depth and with N50 subread lengths of 11-21 kb. Assemblies with ≤30 × depth and N50 subread length of 11 kb are highly fragmented, with even low-copy genic regions showing degradation at 20 × depth. Distinct sequence-quality thresholds are observed for complete assembly of genes, transposable elements, and highly repetitive genomic features such as telomeres, heterochromatic knobs, and centromeres. In addition, we show high-quality optical maps can dramatically improve contiguity in even our most fragmented base assembly. This study provides a useful resource allocation reference to the community as long-read technologies continue to mature.
Collapse
Affiliation(s)
- Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Jianing Liu
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Kapeel M Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
- Genome Informatics Facility, Iowa State University, Ames, Iowa, 50011, USA
| | - Joshua C Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Victor Llaca
- Genomics Technologies, Applied Science and Technology, Corteva Agriscience TM, Johnston, Iowa, 50131, USA
| | - Nancy Manchanda
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Amanda M Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Chen-Shan Chin
- DNAnexus, Inc., Mountain View, San Francisco, California, 94040, USA
| | - David E Hufnagel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Sarah Pedersen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Samantha J Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Kevin Fengler
- Genomics Technologies, Applied Science and Technology, Corteva Agriscience TM, Johnston, Iowa, 50131, USA
| | - Margaret Woodhouse
- USDA ARS Corn Insects and Crop Genetics Research Unit, Ames, Iowa, 50011, USA
| | - Brian P Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Brett T Hannigan
- DNAnexus, Inc., Mountain View, San Francisco, California, 94040, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA.
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA.
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA.
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- USDA ARS Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA.
| |
Collapse
|
18
|
Lee K, Kim MS, Lee JS, Bae DN, Jeong N, Yang K, Lee JD, Park JH, Moon JK, Jeong SC. Chromosomal features revealed by comparison of genetic maps of Glycine max and Glycine soja. Genomics 2020; 112:1481-1489. [PMID: 31461668 DOI: 10.1016/j.ygeno.2019.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/18/2022]
Abstract
Recombination is a crucial component of evolution and breeding. New combinations of variation on chromosomes are shaped by recombination. Recombination is also involved in chromosomal rearrangements. However, recombination rates vary tremendously among chromosome segments. Genome-wide genetic maps are one of the best tools to study variation of recombination. Here, we describe high density genetic maps of Glycine max and Glycine soja constructed from four segregating populations. The maps were used to identify chromosomal rearrangements and find the highly predictable pattern of cross-overs on the broad scale in soybean. Markers on these genetic maps were used to evaluate assembly quality of the current soybean reference genome sequence. We find a strong inversion candidate larger than 3 Mb based on patterns of cross-overs. We also identify quantitative trait loci (QTL) that control number of cross-overs. This study provides fundamental insights relevant to practical strategy for breeding programs and for pan-genome researches.
Collapse
Affiliation(s)
- Kwanghee Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Myung-Shin Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Ju Seok Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Dong Nyuk Bae
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Namhee Jeong
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk 55365, Republic of Korea
| | - Kiwoung Yang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; Present address, Geolim Pharmaceutical Co., Ltd, QB e centum, 2307, Centumjunggang-ro 90, Heaundae-gu, Busan, Republic of Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jung-Kyung Moon
- Agricultural Genome Center, National Academy of Agricultural Sciences, Rural Development Administration, Jeonju, Jeonbuk 55365, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
19
|
Liu H, Huang Y, Li X, Wang H, Ding Y, Kang C, Sun M, Li F, Wang J, Deng Y, Yang X, Huang X, Gao X, Yuan L, An D, Wang W, Holding DR, Wu Y. High frequency DNA rearrangement at qγ27 creates a novel allele for Quality Protein Maize breeding. Commun Biol 2019; 2:460. [PMID: 31840105 PMCID: PMC6904753 DOI: 10.1038/s42003-019-0711-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Copy number variation (CNV) is a major source of genetic variation and often contributes to phenotypic variation in maize. The duplication at the 27-kDa γ-zein locus (qγ27) is essential to convert soft endosperm into hard endosperm in quality protein maize (QPM). This duplication is unstable and generally produces CNV at this locus. We conducted genetic experiments designed to directly measure DNA rearrangement frequencies occurring in males and females of different genetic backgrounds. The average frequency with which the duplication rearranges to single copies is 1.27 × 10-3 and varies among different lines. A triplication of γ27 gene was screened and showed a better potential than the duplication for the future QPM breeding. Our results highlight a novel approach to directly determine the frequency of DNA rearrangements, in this case resulting in CNV at the qγ27 locus. Furthermore, this provides a highly effective way to test suitable parents in QPM breeding.
Collapse
Affiliation(s)
- Hongjun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yahui Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Congbin Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Mingfei Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Fangyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yiting Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoyan Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Lingling Yuan
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665 USA
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - David R. Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665 USA
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
20
|
Spontaneous mutations in maize pollen are frequent in some lines and arise mainly from retrotranspositions and deletions. Proc Natl Acad Sci U S A 2019; 116:10734-10743. [PMID: 30992374 DOI: 10.1073/pnas.1903809116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While studying spontaneous mutations at the maize bronze (bz) locus, we made the unexpected discovery that specific low-copy number retrotransposons are mobile in the pollen of some maize lines, but not of others. We conducted large-scale genetic experiments to isolate new bz mutations from several Bz stocks and recovered spontaneous stable mutations only in the pollen parent in reciprocal crosses. Most of the new stable bz mutations resulted from either insertions of low-copy number long terminal repeat (LTR) retrotransposons or deletions, the same two classes of mutations that predominated in a collection of spontaneous wx mutations [Wessler S (1997) The Mutants of Maize, pp 385-386]. Similar mutations were recovered at the closely linked sh locus. These events occurred with a frequency of 2-4 × 10-5 in two lines derived from W22 and in 4Co63, but not at all in B73 or Mo17, two inbreds widely represented in Corn Belt hybrids. Surprisingly, the mutagenic LTR retrotransposons differed in the active lines, suggesting differences in the autonomous element make-up of the lines studied. Some active retrotransposons, like Hopscotch, Magellan, and Bs2, a Bs1 variant, were described previously; others, like Foto and Focou in 4Co63, were not. By high-throughput sequencing of retrotransposon junctions, we established that retrotranposition of Hopscotch, Magellan, and Bs2 occurs genome-wide in the pollen of active lines, but not in the female germline or in somatic tissues. We discuss here the implications of these results, which shed light on the source, frequency, and nature of spontaneous mutations in maize.
Collapse
|
21
|
Lunde C, Kimberlin A, Leiboff S, Koo AJ, Hake S. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun Biol 2019; 2:114. [PMID: 30937397 PMCID: PMC6433927 DOI: 10.1038/s42003-019-0354-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Maize is monecious, with separate male and female inflorescences. Maize flowers are initially bisexual but achieve separate sexual identities through organ arrest. Loss-of-function mutants in the jasmonic acid (JA) pathway have only female flowers due to failure to abort silks in the tassel. Tasselseed5 (Ts5) shares this phenotype but is dominant. Positional cloning and transcriptomics of tassels identified an ectopically expressed gene in the CYP94B subfamily, Ts5 (ZmCYP94B1). CYP94B enzymes are wound inducible and inactivate bioactive jasmonoyl-L-isoleucine (JA-Ile). Consistent with this result, tassels and wounded leaves of Ts5 mutants displayed lower JA and JA-lle precursors and higher 12OH-JA-lle product than the wild type. Furthermore, many wounding and jasmonate pathway genes were differentially expressed in Ts5 tassels. We propose that the Ts5 phenotype results from the interruption of JA signaling during sexual differentiation via the upregulation of ZmCYP94B1 and that its proper expression maintains maize monoecy.
Collapse
Affiliation(s)
- China Lunde
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Samuel Leiboff
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| | - Abraham J. Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Sarah Hake
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| |
Collapse
|
22
|
Su W, Gu X, Peterson T. TIR-Learner, a New Ensemble Method for TIR Transposable Element Annotation, Provides Evidence for Abundant New Transposable Elements in the Maize Genome. MOLECULAR PLANT 2019; 12:447-460. [PMID: 30802553 DOI: 10.1016/j.molp.2019.02.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
Transposable elements (TEs) make up a large and rapidly evolving proportion of plant genomes. Among Class II DNA TEs, TIR elements are flanked by characteristic terminal inverted repeat sequences (TIRs). TIR TEs may play important roles in genome evolution, including generating allelic diversity, inducing structural variation, and regulating gene expression. However, TIR TE identification and annotation has been hampered by the lack of effective tools, resulting in erroneous TE annotations and a significant underestimation of the proportion of TIR elements in the maize genome. This problem has largely limited our understanding of the impact of TIR elements on plant genome structure and evolution. In this paper, we propose a new method of TIR element detection and annotation. This new pipeline combines the advantages of current homology-based annotation methods with powerful de novo machine-learning approaches, resulting in greatly increased efficiency and accuracy of TIR element annotation. The results show that the copy number and genome proportion of TIR elements in maize is much larger than that of current annotations. In addition, the distribution of some TIR superfamily elements is reduced in centromeric and pericentromeric positions, while others do not show a similar bias. Finally, the incorporation of machine-learning techniques has enabled the identification of large numbers of new DTA (hAT) family elements, which have all the hallmarks of bona fide TEs yet which lack high homology with currently known DTA elements. Together, these results provide new tools for TE research and new insight into the impact of TIR elements on maize genome diversity.
Collapse
Affiliation(s)
- Weijia Su
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Thomas Peterson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011-3260, USA; Department of Agronomy, Iowa State University, Ames, IA 50011-3260, USA.
| |
Collapse
|
23
|
Dluzewska J, Szymanska M, Ziolkowski PA. Where to Cross Over? Defining Crossover Sites in Plants. Front Genet 2018; 9:609. [PMID: 30619450 PMCID: PMC6299014 DOI: 10.3389/fgene.2018.00609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
It is believed that recombination in meiosis serves to reshuffle genetic material from both parents to increase genetic variation in the progeny. At the same time, the number of crossovers is usually kept at a very low level. As a consequence, many organisms need to make the best possible use from the one or two crossovers that occur per chromosome in meiosis. From this perspective, the decision of where to allocate rare crossover events becomes an important issue, especially in self-pollinating plant species, which experience limited variation due to inbreeding. However, the freedom in crossover allocation is significantly limited by other, genetic and non-genetic factors, including chromatin structure. Here we summarize recent progress in our understanding of those processes with a special emphasis on plant genomes. First, we focus on factors which influence the distribution of recombination initiation sites and discuss their effects at both, the single hotspot level and at the chromosome scale. We also briefly explain the aspects of hotspot evolution and their regulation. Next, we analyze how recombination initiation sites translate into the development of crossovers and their location. Moreover, we provide an overview of the sequence polymorphism impact on crossover formation and chromosomal distribution.
Collapse
Affiliation(s)
- Julia Dluzewska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr A Ziolkowski
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
24
|
Liu S, Schnable JC, Ott A, Yeh CTE, Springer NM, Yu J, Muehlbauer G, Timmermans MCP, Scanlon MJ, Schnable PS. Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Mol Biol Evol 2018; 35:2762-2772. [PMID: 30184112 PMCID: PMC6231493 DOI: 10.1093/molbev/msy174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5′ ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10−5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.
Collapse
Affiliation(s)
- Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS.,Department of Agronomy, Iowa State University, Ames, IA
| | - James C Schnable
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | - Alina Ott
- Department of Agronomy, Iowa State University, Ames, IA.,Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI
| | | | - Nathan M Springer
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | | | | | | |
Collapse
|
25
|
Okagaki RJ, Dukowic-Schulze S, Eggleston WB, Muehlbauer GJ. A Critical Assessment of 60 Years of Maize Intragenic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:1560. [PMID: 30420864 PMCID: PMC6215864 DOI: 10.3389/fpls.2018.01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Until the mid-1950s, it was believed that genetic crossovers did not occur within genes. Crossovers occurred between genes, the "beads on a string" model. Then in 1956, Seymour Benzer published his classic paper describing crossing over within a gene, intragenic recombination. This result from a bacteriophage gene prompted Oliver Nelson to study intragenic recombination in the maize Waxy locus. His studies along with subsequent work by others working with maize and other organisms described the outcomes of intragenic recombination and provided some of the earliest evidence that genes, not intergenic regions, were recombination hotspots. High-throughput genotyping approaches have since replaced single gene intragenic studies for characterizing the outcomes of recombination. These large-scale studies confirm that genes, or more generally genic regions, are the most active recombinogenic regions, and suggested a pattern of crossovers similar to the budding yeast Saccharomyces cerevisiae. In S. cerevisiae recombination is initiated by double-strand breaks (DSBs) near transcription start sites (TSSs) of genes producing a polarity gradient where crossovers preferentially resolve at the 5' end of genes. Intragenic studies in maize yielded less evidence for either polarity or for DSBs near TSSs initiating recombination and in certain respects resembled Schizosaccharomyces pombe or mouse. These different perspectives highlight the need to draw upon the strengths of different approaches and caution against relying on a single model system or approach for understanding recombination.
Collapse
Affiliation(s)
- Ron J. Okagaki
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | | | - William B. Eggleston
- Department of Biology, Virginia Commonwealth University, St. Paul, MN, United States
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
26
|
Shen Y, Liu J, Geng H, Zhang J, Liu Y, Zhang H, Xing S, Du J, Ma S, Tian Z. De novo assembly of a Chinese soybean genome. SCIENCE CHINA. LIFE SCIENCES 2018; 61:871-884. [PMID: 30062469 DOI: 10.1007/s11427-018-9360-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding. Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome (cv. Williams 82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiying Geng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | - Shilai Xing
- Berry Genomics Corporation, Beijing, 100015, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
27
|
The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet 2018; 50:1282-1288. [PMID: 30061736 DOI: 10.1038/s41588-018-0158-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/17/2018] [Indexed: 11/08/2022]
Abstract
The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.
Collapse
|
28
|
Chen L, Zhang P, Fan Y, Lu Q, Li Q, Yan J, Muehlbauer GJ, Schnable PS, Dai M, Li L. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. THE NEW PHYTOLOGIST 2018; 217:1292-1306. [PMID: 29155438 DOI: 10.1111/nph.14901] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/18/2017] [Indexed: 05/21/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules. Recent studies have shown that circRNAs can arise from the transcripts of transposons. Given the prevalence of transposons in the maize genome and dramatic genomic variation driven by transposons, we hypothesize that transposons in maize may be involved in the formation of circRNAs and further modulate phenotypic variation. We performed circRNA-Seq on B73 seedling leaves and uncovered 2804 high-confidence maize circRNAs, which show distinct genomic features. Comprehensive analyses demonstrated that sequences related to LINE1-like elements (LLEs) and their Reverse Complementary Pairs (LLERCPs) are significantly enriched in the flanking regions of circRNAs. Interestingly, as the number of LLERCPs increase, the accumulation of circRNAs varies, whereas that of linear transcripts decreases. Furthermore, genes with LLERCP-mediated circRNAs are enriched among loci that are associated with phenotypic variation. These results suggest that circRNAs are likely to be involved in the modulation of phenotypic variation by LLERCPs. Further, we showed that the presence/absence variation of LLERCPs was associated with expression variation of circRNA-circ1690 and was related to ear height, potentially through the interplay between circRNAs and functional linear transcripts. Our first study of maize circRNAs uncovers a potential new way for transposons to modulate transcriptomic and phenotypic variations.
Collapse
Affiliation(s)
- Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | | | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
29
|
Wang W, Ashby R, Ying H, Maleszka R, Forêt S. Contrasting Sex-and Caste-Dependent piRNA Profiles in the Transposon Depleted Haplodiploid Honeybee Apis mellifera. Genome Biol Evol 2018; 9:1341-1356. [PMID: 28472327 PMCID: PMC5452642 DOI: 10.1093/gbe/evx087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Protecting genome integrity against transposable elements is achieved by intricate molecular mechanisms involving PIWI proteins, their associated small RNAs (piRNAs), and epigenetic modifiers such as DNA methylation. Eusocial bees, in particular the Western honeybee, Apis mellifera, have one of the lowest contents of transposable elements in the animal kingdom, and, unlike other animals with a functional DNA methylation system, appear not to methylate their transposons. This raises the question of whether the PIWI machinery has been retained in this species. Using comparative genomics, mass spectrometry, and expressional profiling, we present seminal evidence that the piRNA system is conserved in honeybees. We show that honey bee piRNAs contain a 2'-O-methyl modification at the 3' end, and have a bias towards a 5' terminal U, which are signature features of their biogenesis. Both piRNA repertoire and expression levels are greater in reproductive individuals than in sterile workers. Haploid males, where the detrimental effects of transposons are dominant, have the greatest piRNA levels, but surprisingly, the highest expression of transposons. These results show that even in a transposon-depleted species, the piRNA system is required to guard the vulnerable haploid genome and reproductive castes against transposon-associated genomic instability. This also suggests that dosage plays an important role in the regulation of transposons and piRNAs expression in haplo-diploid systems.
Collapse
Affiliation(s)
- Weiwen Wang
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Regan Ashby
- Research School of Biology, Australian National University, Acton, ACT, Australia.,Centre for Research in Therapeutic Solutions, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, ACT, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Acton, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
30
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
31
|
Marand AP, Jansky SH, Zhao H, Leisner CP, Zhu X, Zeng Z, Crisovan E, Newton L, Hamernik AJ, Veilleux RE, Buell CR, Jiang J. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biol 2017; 18:203. [PMID: 29084572 PMCID: PMC5663088 DOI: 10.1186/s13059-017-1326-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Background Meiotic recombination is the foundation for genetic variation in natural and artificial populations of eukaryotes. Although genetic maps have been developed for numerous plant species since the late 1980s, few of these maps have provided the necessary resolution needed to investigate the genomic and epigenomic features underlying meiotic crossovers. Results Using a whole genome sequencing-based approach, we developed two high-density reference-based haplotype maps using diploid potato clones as parents. The vast majority (81%) of meiotic crossovers were mapped to less than 5 kb. The fine-scale accuracy of crossover detection was validated by Sanger sequencing for a subset of ten crossover events. We demonstrate that crossovers reside in genomic regions of “open chromatin”, which were identified based on hypersensitivity to DNase I digestion and association with H3K4me3-modified nucleosomes. The genomic regions spanning crossovers were significantly enriched with the Stowaway family of miniature inverted-repeat transposable elements (MITEs). The occupancy of Stowaway elements in gene promoters is concomitant with an increase in recombination rate. A generalized linear model identified the presence of Stowaway elements as the third most important genomic or chromatin feature behind genes and open chromatin for predicting crossover formation over 10-kb windows. Conclusions Collectively, our results suggest that meiotic crossovers in potato are largely determined by the local chromatin status, marked by accessible chromatin, H3K4me3-modified nucleosomes, and the presence of Stowaway transposons. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1326-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandre P Marand
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shelley H Jansky
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA. .,USDA-ARS, Vegetable Crops Research Unit, Madison, Wisconsin, 53706, USA.
| | - Hainan Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Courtney P Leisner
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Xiaobiao Zhu
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Emily Crisovan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Linsey Newton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Andy J Hamernik
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,USDA-ARS, Vegetable Crops Research Unit, Madison, Wisconsin, 53706, USA
| | | | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA. .,Current address: Departments of Plant Biology and Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA.
| |
Collapse
|
32
|
Muyle A, Shearn R, Marais GA. The Evolution of Sex Chromosomes and Dosage Compensation in Plants. Genome Biol Evol 2017; 9:627-645. [PMID: 28391324 PMCID: PMC5629387 DOI: 10.1093/gbe/evw282] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Rylan Shearn
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | - Gabriel Ab Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| |
Collapse
|
33
|
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D. Improved maize reference genome with single-molecule technologies. Nature 2017; 546:524-527. [PMID: 28605751 DOI: 10.1101/079004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/14/2017] [Indexed: 05/21/2023]
Abstract
Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.
Collapse
Affiliation(s)
- Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paul Peluso
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Jinghua Shi
- BioNano Genomics, San Diego, California 92121, USA
| | | | - Michelle C Stitzer
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, Davis, California 95616, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Joshua C Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Xuehong Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Katherine Guill
- USDA-ARS, Plant Genetics Research Unit, Columbia, Missouri 65211, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Kevin L Schneider
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Thomas K Wolfgruber
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Michael R May
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Eric Antoniou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Gernot G Presting
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Michael McMullen
- USDA-ARS, Plant Genetics Research Unit, Columbia, Missouri 65211, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology, and Genome Center, University of California, Davis, California 95616, USA
| | - R Kelly Dawe
- University of Georgia, Athens, Georgia 30602, USA
| | - Alex Hastie
- BioNano Genomics, San Diego, California 92121, USA
| | - David R Rank
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- USDA-ARS, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
34
|
Improved maize reference genome with single-molecule technologies. Nature 2017; 546:524-527. [PMID: 28605751 PMCID: PMC7052699 DOI: 10.1038/nature22971] [Citation(s) in RCA: 741] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/14/2017] [Indexed: 01/01/2023]
Abstract
An improved reference genome for maize, using single-molecule sequencing and high-resolution optical mapping, enables characterization of structural variation and repetitive regions, and identifies lineage expansions of transposable elements that are unique to maize. The maize genome was initially reported in 2009 but with some accuracy limitations. Doreen Ware and colleagues report a new reference genome for maize using single-molecule sequencing and high-resolution optical mapping. The technique shows improvements in the gene space including resolution of gaps and misassemblies and correction of order and orientation of genes. The authors characterize structural variation and repetitive regions, and identify transposable element lineage expansions unique to maize. Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation1. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions2. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome3, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing4. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.
Collapse
|
35
|
High-Resolution Mapping of Crossover Events in the Hexaploid Wheat Genome Suggests a Universal Recombination Mechanism. Genetics 2017; 206:1373-1388. [PMID: 28533438 DOI: 10.1534/genetics.116.196014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/12/2017] [Indexed: 11/18/2022] Open
Abstract
During meiosis, crossovers (COs) create new allele associations by reciprocal exchange of DNA. In bread wheat (Triticum aestivum L.), COs are mostly limited to subtelomeric regions of chromosomes, resulting in a substantial loss of breeding efficiency in the proximal regions, though these regions carry ∼60-70% of the genes. Identifying sequence and/or chromosome features affecting recombination occurrence is thus relevant to improve and drive recombination. Using the recent release of a reference sequence of chromosome 3B and of the draft assemblies of the 20 other wheat chromosomes, we performed fine-scale mapping of COs and revealed that 82% of COs located in the distal ends of chromosome 3B representing 19% of the chromosome length. We used 774 SNPs to genotype 180 varieties representative of the Asian and European genetic pools and a segregating population of 1270 F6 lines. We observed a common location for ancestral COs (predicted through linkage disequilibrium) and the COs derived from the segregating population. We delineated 73 small intervals (<26 kb) on chromosome 3B that contained 252 COs. We observed a significant association of COs with genic features (73 and 54% in recombinant and nonrecombinant intervals, respectively) and with those expressed during meiosis (67% in recombinant intervals and 48% in nonrecombinant intervals). Moreover, while the recombinant intervals contained similar amounts of retrotransposons and DNA transposons (42 and 53%), nonrecombinant intervals had a higher level of retrotransposons (63%) and lower levels of DNA transposons (28%). Consistent with this, we observed a higher frequency of a DNA motif specific to the TIR-Mariner DNA transposon in recombinant intervals.
Collapse
|
36
|
Pelé A, Falque M, Trotoux G, Eber F, Nègre S, Gilet M, Huteau V, Lodé M, Jousseaume T, Dechaumet S, Morice J, Poncet C, Coriton O, Martin OC, Rousseau-Gueutin M, Chèvre AM. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet 2017; 13:e1006794. [PMID: 28493942 PMCID: PMC5444851 DOI: 10.1371/journal.pgen.1006794] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/25/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Matthieu Falque
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Frédérique Eber
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Sylvie Nègre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Virginie Huteau
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Maryse Lodé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Sylvain Dechaumet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Olivier Coriton
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Olivier C. Martin
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- * E-mail:
| |
Collapse
|
37
|
Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. Sci Rep 2017; 7:1205. [PMID: 28446764 PMCID: PMC5430679 DOI: 10.1038/s41598-017-01240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Recombinations occur nonuniformly across the maize genome. To dissect the genetic mechanisms underlying the nonuniformity of recombination, we performed quantitative trait locus (QTL) mapping using recombinant inbred line populations. Genome-wide QTL scan identified hundreds of QTLs with both cis-prone and trans- effects for recombination number variation. To provide detailed insights into cis- factors associated with recombination variation, we examined the genomic features around recombination hot regions, including density of genes, DNA transposons, retrotransposons, and some specific motifs. Compared to recombination variation in whole genome, more QTLs were mapped for variations in recombination hot regions. The majority QTLs for recombination hot regions are trans-QTLs and co-localized with genes from the recombination pathway. We also found that recombination variation was positively associated with the presence of genes and DNA transposons, but negatively related to the presence of long terminal repeat retrotransposons. Additionally, 41 recombination hot regions were fine-mapped. The high-resolution genotyping of five randomly selected regions in two F2 populations verified that they indeed have ultra-high recombination frequency, which is even higher than that of the well-known recombination hot regions sh1-bz and a1-sh2. Taken together, our results further our understanding of recombination variation in plants.
Collapse
|
38
|
Modliszewski JL, Copenhaver GP. Meiotic recombination gets stressed out: CO frequency is plastic under pressure. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:95-102. [PMID: 28258986 DOI: 10.1016/j.pbi.2016.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/13/2016] [Indexed: 05/02/2023]
Abstract
Meiotic recombination ensures the fertility of gametes and creates novel genetic combinations. Although meiotic crossover (CO) frequency is under homeostatic control, CO frequency is also plastic in nature and can respond to environmental conditions. Most investigations have focused on temperature and recombination, but other external and internal stimuli also have important roles in modulating CO frequency. Even less is understood about the molecular mechanisms that underly these phenomenon, but recent work has begun to advance our knowledge in this field. In this review, we identify and explore potential mechanisms including changes in: the synaptonemal complex, chromatin state, DNA methylation, and RNA splicing.
Collapse
Affiliation(s)
- Jennifer L Modliszewski
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States.
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
| |
Collapse
|
39
|
Detection of Edible Mushroom Species by Using Molecular Markers. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Senerchia N, Felber F, North B, Sarr A, Guadagnuolo R, Parisod C. Differential introgression and reorganization of retrotransposons in hybrid zones between wild wheats. Mol Ecol 2016; 25:2518-28. [DOI: 10.1111/mec.13515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Natacha Senerchia
- Laboratory of Evolutionary Botany; Institute of Biology; University of Neuchâtel; 2000 Neuchâtel Switzerland
| | - François Felber
- Laboratory of Evolutionary Botany; Institute of Biology; University of Neuchâtel; 2000 Neuchâtel Switzerland
- Musée et Jardins Botaniques Cantonaux; 1007 Lausanne Switzerland
| | - Béatrice North
- Laboratory of Evolutionary Botany; Institute of Biology; University of Neuchâtel; 2000 Neuchâtel Switzerland
| | - Anouk Sarr
- Laboratory of Evolutionary Botany; Institute of Biology; University of Neuchâtel; 2000 Neuchâtel Switzerland
| | - Roberto Guadagnuolo
- Laboratory of Evolutionary Botany; Institute of Biology; University of Neuchâtel; 2000 Neuchâtel Switzerland
| | - Christian Parisod
- Laboratory of Evolutionary Botany; Institute of Biology; University of Neuchâtel; 2000 Neuchâtel Switzerland
| |
Collapse
|
41
|
Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang B, Studer B. A Gene Encoding a DUF247 Domain Protein Cosegregates with the S Self-Incompatibility Locus in Perennial Ryegrass. Mol Biol Evol 2015; 33:870-84. [PMID: 26659250 DOI: 10.1093/molbev/msv335] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.) and provide multiple evidence that a domain of unknown function 247 (DUF247) gene is involved in its determination. Using a total of 10,177 individuals from seven different mapping populations segregating for S, we narrowed the S-locus to a genomic region containing eight genes, the closest recombinant marker mapping at a distance of 0.016 cM. Of the eight genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium temulentum L.), whereas all of the self-incompatible species of the Festuca-Lolium complex were predicted to encode functional proteins. Our results represent a major step forward toward understanding the gametophytic SI system in one of the most important plant families and will enable the identification of additional components interacting with the S-locus.
Collapse
Affiliation(s)
- Chloé Manzanares
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Susanne Barth
- Teagasc Crops, Environment and Land Use Programme, Oak Park Research Centre, Carlow, Ireland
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Stephen L Byrne
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Steven Yates
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Adrian Czaban
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Bicheng Yang
- BGI-Shenzhen, Building 1, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Structural Variation (SV) Markers in the Basidiomycete Volvariella volvacea and Their Application in the Construction of a Genetic Map. Int J Mol Sci 2015. [PMID: 26204838 PMCID: PMC4519972 DOI: 10.3390/ijms160716669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Molecular markers and genetic maps are useful tools in genetic studies. Novel molecular markers and their applications have been developed in recent years. With the recent advancements in sequencing technology, the genomic sequences of an increasingly great number of fungi have become available. A novel type of molecular marker was developed to construct the first reported linkage map of the edible and economically important basidiomycete Volvariella volvacea by using 104 structural variation (SV) markers that are based on the genomic sequences. Because of the special and simple life cycle in basidiomycete, SV markers can be effectively developed by genomic comparison and tested in single spore isolates (SSIs). This stable, convenient and rapidly developed marker may assist in the construction of genetic maps and facilitate genomic research for other species of fungi.
Collapse
|
43
|
Zheng L, McMullen MD, Bauer E, Schön CC, Gierl A, Frey M. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3917-30. [PMID: 25969552 PMCID: PMC4473990 DOI: 10.1093/jxb/erv192] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.
Collapse
MESH Headings
- Alleles
- Base Pairing/genetics
- Benzoxazines/metabolism
- Biosynthetic Pathways/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotype
- Inbreeding
- Multigene Family
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Quantitative Trait Loci
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Seedlings/metabolism
- Transcription, Genetic
- Zea mays/genetics
- Zea mays/growth & development
Collapse
Affiliation(s)
- Linlin Zheng
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | | | - Eva Bauer
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Monika Frey
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
44
|
Bitocchi E, Bellucci E, Rau D, Albertini E, Rodriguez M, Veronesi F, Attene G, Nanni L. European flint landraces grown in situ reveal adaptive introgression from modern maize. PLoS One 2015; 10:e0121381. [PMID: 25853809 PMCID: PMC4390310 DOI: 10.1371/journal.pone.0121381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/31/2015] [Indexed: 12/23/2022] Open
Abstract
We have investigated the role of selection in the determination of the detected levels of introgression from modern maize hybrid varieties into maize landraces still cultivated in situ in Italy. We exploited the availability of a historical collection of landraces undertaken before the introduction and widespread use of modern maize, to analyse genomic changes that have occurred in these maize landraces over 50 years of co-existence with hybrid varieties. We have combined a previously published SSR dataset (n=21) with an AFLP loci dataset (n=168) to provide higher resolution power and to obtain a more detailed picture. We show that selection pressures for adaptation have favoured new alleles introduced by migration from hybrids. This shows the potential for analysis of historical introgression even over this short period of 50 years, for an understanding of the evolution of the genome and for the identification of its functionally important regions. Moreover, this demonstrates that landraces grown in situ represent almost unique populations for use for such studies when the focus is on the domesticated plant. This is due to their adaptation, which has arisen from their dynamic evolution under a continuously changing agro-ecological environment, and their capture of new alleles from hybridisation. We have also identified loci for which selection has inhibited introgression from modern germplasm and has enhanced the distinction between landraces and modern maize. These loci indicate that selection acted in the past, during the formation of the flint and dent gene pools. In particular, the locus showing the strongest signals of selection is a Misfit transposable element. Finally, molecular characterisation of the same samples with two different molecular markers has allowed us to compare their performances. Although the genetic-diversity and population-structure analyses provide the same global qualitative pattern, which thus provides the same inferences, there are differences related to their natures and characteristics.
Collapse
Affiliation(s)
- Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Domenico Rau
- Department of Agriculture, Università degli Studi di Sassari, Sassari, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Monica Rodriguez
- Department of Agriculture, Università degli Studi di Sassari, Sassari, Italy
| | - Fabio Veronesi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanna Attene
- Department of Agriculture, Università degli Studi di Sassari, Sassari, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
45
|
Ziolkowski PA, Berchowitz LE, Lambing C, Yelina NE, Zhao X, Kelly KA, Choi K, Ziolkowska L, June V, Sanchez-Moran E, Franklin C, Copenhaver GP, Henderson IR. Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis. eLife 2015; 4:e03708. [PMID: 25815584 PMCID: PMC4407271 DOI: 10.7554/elife.03708] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference, and non-interfering repair is inefficient in heterozygous regions. As a consequence, heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Luke E Berchowitz
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Krystyna A Kelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Viviana June
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Chris Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gregory P Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB, Mitchell SE, Li C, Li Y, Buckler ES. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc Natl Acad Sci U S A 2015; 112:3823-8. [PMID: 25775595 PMCID: PMC4378432 DOI: 10.1073/pnas.1413864112] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.
Collapse
Affiliation(s)
| | - Peter J Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853; US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853; and
| | - Robert J Elshire
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
| | | | | | - Sharon E Mitchell
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853; US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853; and
| |
Collapse
|
47
|
Epigenetic control of meiotic recombination in plants. SCIENCE CHINA-LIFE SCIENCES 2015; 58:223-31. [PMID: 25651968 DOI: 10.1007/s11427-015-4811-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.
Collapse
|
48
|
Ancient homology underlies adaptive mimetic diversity across butterflies. Nat Commun 2014; 5:4817. [PMID: 25198507 PMCID: PMC4183220 DOI: 10.1038/ncomms5817] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022] Open
Abstract
Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demonstrate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged >65 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time. Little is known about the genetic basis of convergent evolution in deeply diverged species. Here, the authors show that variation in the WntA gene is associated with parallel wing pattern variation in two butterflies that diverged more than 65 million years ago.
Collapse
|
49
|
Abstract
Nucleotide diversity is greater in maize than in most organisms studied to date, so allelic pairs in a hybrid tend to be highly polymorphic. Most recombination events between such pairs of maize polymorphic alleles are crossovers. However, intragenic recombination events not associated with flanking marker exchange, corresponding to noncrossover gene conversions, predominate between alleles derived from the same progenitor. In these dimorphic heterozygotes, the two alleles differ only at the two mutant sites between which recombination is being measured. To investigate whether gene conversion at the bz locus is polarized, two large diallel crossing matrices involving mutant sites spread across the bz gene were performed and more than 2,500 intragenic recombinants were scored. In both diallels, around 90% of recombinants could be accounted for by gene conversion. Furthermore, conversion exhibited a striking polarity, with sites located within 150 bp of the start and stop codons converting more frequently than sites located in the middle of the gene. The implications of these findings are discussed with reference to recent data from genome-wide studies in other plants.
Collapse
|
50
|
Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics 2014. [PMID: 25109872 PMCID: PMC4148935 DOI: 10.2135/cropsci2014.01.0042 10.1186/1471-2164-15-674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Brown planthopper (BPH, Nilaparvata lugens Stål), is the most destructive phloem-feeding insect pest of rice (Oryza sativa). The BPH-resistance gene BPH15 has been proved to be effective in controlling the pest and widely applied in rice breeding programs. Nevertheless, molecular mechanism of the resistance remain unclear. In this study, we narrowed down the position of BPH15 on chromosome 4 and investigated the transcriptome of BPH15 rice after BPH attacked. RESULTS We analyzed 13,000 BC2F2 plants of cross between susceptible rice TN1 and the recombinant inbred line RI93 that carrying the BPH15 gene from original resistant donor B5. BPH15 was mapped to a 0.0269 cM region on chromosome 4, which is 210-kb in the reference genome of Nipponbare. Sequencing bacterial artificial chromosome (BAC) clones that span the BPH15 region revealed that the physical size of BPH15 region in resistant rice B5 is 580-kb, much bigger than the corresponding region in the reference genome of Nipponbare. There were 87 predicted genes in the BPH15 region in resistant rice. The expression profiles of predicted genes were analyzed. Four jacalin-related lectin proteins genes and one LRR protein gene were found constitutively expressed in resistant parent and considered the candidate genes of BPH15. The transcriptomes of resistant BPH15 introgression line and the susceptible recipient line were analyzed using high-throughput RNA sequencing. In total, 2,914 differentially expressed genes (DEGs) were identified. BPH-responsive transcript profiles were distinct between resistant and susceptible plants and between the early stage (6 h after infestation, HAI) and late stage (48 HAI). The key defense mechanism was related to jasmonate signaling, ethylene signaling, receptor kinase, MAPK cascades, Ca(2+) signaling, PR genes, transcription factors, and protein posttranslational modifications. CONCLUSIONS Our work combined BAC and RNA sequencing to identify candidate genes of BPH15 and revealed the resistance mechanism that it mediated. These results increase our understanding of plant-insect interactions and can be used to protect against this destructive agricultural pest.
Collapse
Affiliation(s)
- Wentang Lv
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ba Du
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinxin Shangguan
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Zhao
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yufang Pan
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangcun He
- />State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|