1
|
Kitashova A, Lehmann M, Schwenkert S, Münch M, Leister D, Nägele T. Insights into physiological roles of flavonoids in plant cold acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39453687 DOI: 10.1111/tpj.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids represent a diverse group of plant specialised metabolites which are also discussed in the context of dietary health and inflammatory response. Numerous studies have revealed that flavonoids play a central role in plant acclimation to abiotic factors like low temperature or high light, but their structural and functional diversity frequently prevents a detailed mechanistic understanding. Further complexity in analysing flavonoid metabolism arises from the different subcellular compartments which are involved in biosynthesis and storage. In the present study, non-aqueous fractionation of Arabidopsis leaf tissue was combined with metabolomics and proteomics analysis to reveal the effects of flavonoid deficiencies on subcellular metabolism during cold acclimation. During the first 3 days of a 2-week cold acclimation period, flavonoid deficiency was observed to affect pyruvate, citrate and glutamate metabolism which indicated a role in stabilising C/N metabolism and photosynthesis. Also, tetrahydrofolate metabolism was found to be affected, which had significant effects on the proteome of the photorespiratory pathway. In the late stage of cold acclimation, flavonoid deficiency was found to affect protein stability, folding and proteasomal degradation, which resulted in a significant decrease in total protein amounts in both mutants. In summary, these findings suggest that flavonoid metabolism plays different roles in the early and late stages of plant cold acclimation and significantly contributes to establishing a new protein homeostasis in a changing environment.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
- Faculty of Biology, MSBioLMU, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
| | - Serena Schwenkert
- Faculty of Biology, Plant Molecular Biology, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
- Faculty of Biology, MSBioLMU, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
| | - Maximilian Münch
- Faculty of Biology, Plant Molecular Biology, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
- Faculty of Biology, MSBioLMU, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
- Faculty of Biology, MSBioLMU, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, LMU München, Großhaderner Str. 2-4, 82152, Planegg, Germany
| |
Collapse
|
2
|
Ma X, Feng L, Tao A, Zenda T, He Y, Zhang D, Duan H, Tao Y. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:259. [PMID: 38038768 DOI: 10.1007/s00122-023-04495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
KEY MESSAGE Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.
Collapse
Affiliation(s)
- Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yuan He
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Daxiao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
5
|
Li X, Meng H, Liu L, Hong C, Zhang C. Metabolic network changes during skotomorphogenesis in Arabidopsis thaliana mutant ( atdfb-3). PLANT DIRECT 2022; 6:e00467. [PMID: 36438611 PMCID: PMC9684686 DOI: 10.1002/pld3.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The metabolic networks underlying skotomorphogenesis in seedlings remain relatively unknown. On the basis of our previous study on the folate metabolism in seedlings grown in darkness, the plastidial folylpolyglutamate synthetase gene (AtDFB) T-DNA insertion Arabidopsis thaliana mutant (atdfb-3) was examined. Under the nitrate-sufficient condition, the mutant exhibited deficient folate metabolism and hypocotyl elongation, which affected skotomorphogenesis. Further analyses revealed changes to multiple intermediate metabolites related to carbon and nitrogen metabolism in the etiolated atdfb-3 seedlings. Specifically, the sugar, polyol, and fatty acid contents decreased in the atdfb-3 mutant under the nitrate-sufficient condition, whereas the abundance of various organic acids and amino acids increased. In response to nitrate-limited stress, multiple metabolites, including sugars, polyols, fatty acids, organic acids, and amino acids, accumulated more in the mutant than in the wild-type control. The differences in the contents of multiple metabolites between the atdfb-3 and wild-type seedlings decreased following the addition of exogenous 5-F-THF under both nitrogen conditions. Additionally, the mutant accumulated high levels of one-carbon metabolites, such as Cys, S-adenosylmethionine, and S-adenosylhomocysteine, under both nitrogen conditions. Thus, our data demonstrated that the perturbed folate metabolism in the atdfb-3 seedlings, which was caused by the loss-of-function mutation to AtDFB, probably altered carbon and nitrogen metabolism, thereby modulating skotomorphogenesis. Furthermore, the study findings provide new evidence of the links among folate metabolism, metabolic networks, and skotomorphogenesis.
Collapse
Affiliation(s)
- Xingjuan Li
- College of BioengineeringBeijing PolytechnicBeijingChina
| | - Hongyan Meng
- Fujian Provincial Key Laboratory of Subtropical Plant Physiology and BiochemistryFujian Institute of Subtropical BotanyXiamenChina
| | - Liqing Liu
- Fujian Provincial Key Laboratory of Subtropical Plant Physiology and BiochemistryFujian Institute of Subtropical BotanyXiamenChina
| | - Cuiyun Hong
- Fujian Provincial Key Laboratory of Subtropical Plant Physiology and BiochemistryFujian Institute of Subtropical BotanyXiamenChina
| | - Chunyi Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
6
|
Liu X, Luo M, Li M, Wei J. Transcriptomic Analysis Reveals LncRNAs Associated with Flowering of Angelica sinensis during Vernalization. Curr Issues Mol Biol 2022; 44:1867-1888. [PMID: 35678657 PMCID: PMC9164074 DOI: 10.3390/cimb44050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Angelica sinensis is a “low-temperature and long-day” perennial plant that produces bioactive compounds such as phthalides, organic acids, and polysaccharides for various types of clinical agents, including those with cardio-cerebrovascular, hepatoprotective, and immunomodulatory effects. To date, the regulatory mechanism of flowering under the photoperiod has been revealed, while the regulatory network of flowering genes during vernalization, especially in the role of lncRNAs, has yet to be identified. Here, lncRNAs associated with flowering were identified based on the full-length transcriptomic analysis of A. sinensis at vernalization and freezing temperatures, and the coexpressed mRNAs of lncRNAs were validated by qRT-PCR. We obtained a total of 2327 lncRNAs after assessing the protein-coding potential of coexpressed mRNAs, with 607 lncRNAs aligned against the TAIR database of model plant Arabidopsis, 345 lncRNAs identified, and 272 lncRNAs characterized on the SwissProt database. Based on the biological functions of coexpressed mRNAs, the 272 lncRNAs were divided into six categories: (1) chromatin, DNA/RNA and protein modification; (2) flowering; (3) stress response; (4) metabolism; (5) bio-signaling; and (6) energy and transport. The differential expression levels of representatively coexpressed mRNAs were almost consistent with the flowering of A. sinensis. It can be concluded that the flowering of A. sinensis is positively or negatively regulated by lncRNAs, which provides new insights into the regulation mechanism of the flowering of A. sinensis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
- Correspondence: (M.L.); (J.W.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| |
Collapse
|
7
|
Lian T, Wang X, Li S, Jiang H, Zhang C, Wang H, Jiang L. Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains. Int J Mol Sci 2022; 23:ijms23031708. [PMID: 35163628 PMCID: PMC8836222 DOI: 10.3390/ijms23031708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification.
Collapse
Affiliation(s)
- Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xuxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
- National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (L.J.)
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Correspondence: (H.W.); (L.J.)
| |
Collapse
|
8
|
Peixoto B, Moraes TA, Mengin V, Margalha L, Vicente R, Feil R, Höhne M, Sousa AGG, Lilue J, Stitt M, Lunn JE, Baena-González E. Impact of the SnRK1 protein kinase on sucrose homeostasis and the transcriptome during the diel cycle. PLANT PHYSIOLOGY 2021; 187:1357-1373. [PMID: 34618060 PMCID: PMC8566312 DOI: 10.1093/plphys/kiab350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
SNF1-related Kinase 1 (SnRK1) is an evolutionarily conserved protein kinase with key functions in energy management during stress responses in plants. To address a potential role of SnRK1 under favorable conditions, we performed a metabolomic and transcriptomic characterization of rosettes of 20-d-old Arabidopsis (Arabidopsis thaliana) plants of SnRK1 gain- and loss-of-function mutants during the regular diel cycle. Our results show that SnRK1 manipulation alters the sucrose and trehalose 6-phosphate (Tre6P) relationship, influencing how the sucrose content is translated into Tre6P accumulation and modulating the flux of carbon to the tricarboxylic acid cycle downstream of Tre6P signaling. On the other hand, daily cycles of Tre6P accumulation were accompanied by changes in SnRK1 signaling, leading to a maximum in the expression of SnRK1-induced genes at the end of the night, when Tre6P levels are lowest, and to a minimum at the end of the day, when Tre6P levels peak. The expression of SnRK1-induced genes was strongly reduced by transient Tre6P accumulation in an inducible Tre6P synthase (otsA) line, further suggesting the involvement of Tre6P in the diel oscillations in SnRK1 signaling. Transcriptional profiling of wild-type plants and SnRK1 mutants also uncovered defects that are suggestive of an iron sufficiency response and of a matching induction of sulfur acquisition and assimilation when SnRK1 is depleted. In conclusion, under favorable growth conditions, SnRK1 plays a role in sucrose homeostasis and transcriptome remodeling in autotrophic tissues and its activity is influenced by diel fluctuations in Tre6P levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Thiago A Moraes
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Present address: Crop Science Centre, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Present address: University of Essex, School of Life Sciences, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Leonor Margalha
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Rubén Vicente
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - António G G Sousa
- Instituto Gulbenkian de Ciência, Bioinformatics Unit, 2780-156 Oeiras, Portugal
| | - Jingtao Lilue
- Instituto Gulbenkian de Ciência, Bioinformatics Unit, 2780-156 Oeiras, Portugal
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
- Author for communication:
| |
Collapse
|
9
|
Xiong E, Zhang C, Ye C, Jiang Y, Zhang Y, Chen F, Dong G, Zeng D, Yu Y, Wu L. iTRAQ-based proteomic analysis provides insights into the molecular mechanisms of rice formyl tetrahydrofolate deformylase in salt response. PLANTA 2021; 254:76. [PMID: 34533642 DOI: 10.1007/s00425-021-03723-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
A new molecular mechanism of tetrahydrofolate deformylase involved in the salt response presumably affects mitochondrial and chloroplast function by regulating energy metabolism and accumulation of reactive oxygen species. High salinity severely restrains plant growth and development, consequently leading to a reduction in grain yield. It is therefore critical to identify the components involved in plant salt resistance. In our previous study, we identified a rice leaf early-senescence mutant hpa1, which encodes a formyl tetrahydrofolate deformylase (Xiong et al. in Sci China Life Sci 64(5):720-738, 2021). Here, we report that HPA1 also plays a role in the salt response. To explore the molecular mechanism of HPA1 in salt resistance, we attempted to identify the differentially expressed proteins between wild type and hpa1 mutant for salinity treatment using an iTRAQ-based comparative protein quantification approach. A total of 4598 proteins were identified, of which 279 were significantly altered, including 177 up- and 102 down-regulated proteins. A functional analysis suggested that the 279 differentially expressed proteins are involved mainly in the regulation of oxidative phosphorylation, phenylpropanoid biosynthesis, photosynthesis, posttranslational modifications, protein turnover and energy metabolism. Moreover, a deficiency in HPA1 impaired chlorophyll metabolism and photosynthesis in chloroplasts and affected the electron flow of the electron transport chain in mitochondria. These changes led to abnormal energy metabolism and accumulation of reactive oxygen species, which may affect the permeability and integrity of cell membranes, leading to cell death. In addition, the results were verified by transcriptional or physiological experiments. Our results provide an insight into a new molecular mechanism of the tetrahydrofolate cycle protein formyl tetrahydrofolate deformylase, which is involved in the salt response, presumably by affecting mitochondrial and chloroplast function regulating energy metabolism and accumulation of reactive oxygen species under salt stress.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chen Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenxi Ye
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
10
|
The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 2021; 48:2495-2504. [PMID: 33300978 DOI: 10.1042/bst20200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Photorespiration is an inevitable trait of all oxygenic phototrophs, being the only known metabolic route that converts the inhibitory side-product of Rubisco's oxygenase activity 2-phosphoglycolate (2PG) back into the Calvin-Benson (CB) cycle's intermediate 3-phosphoglycerate (3PGA). Through this function of metabolite repair, photorespiration is able to protect photosynthetic carbon assimilation from the metabolite intoxication that would occur in the present-day oxygen-rich atmosphere. In recent years, much plant research has provided compelling evidence that photorespiration safeguards photosynthesis and engages in cross-talk with a number of subcellular processes. Moreover, the potential of manipulating photorespiration to increase the photosynthetic yield potential has been demonstrated in several plant species. Considering this multifaceted role, it is tempting to presume photorespiration itself is subject to a suite of regulation mechanisms to eventually exert a regulatory impact on other processes, and vice versa. The identification of potential pathway interactions and underlying regulatory aspects has been facilitated via analysis of the photorespiratory mutant phenotype, accompanied by the emergence of advanced omics' techniques and biochemical approaches. In this mini-review, I focus on the identification of enzymatic steps which control the photorespiratory flux, as well as levels of transcriptional, posttranslational, and metabolic regulation. Most importantly, glycine decarboxylase (GDC) and 2PG are identified as being key photorespiratory determinants capable of controlling photorespiratory flux and communicating with other branches of plant primary metabolism.
Collapse
|
11
|
Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021; 11:metabo11060391. [PMID: 34203750 PMCID: PMC8232240 DOI: 10.3390/metabo11060391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Photorespiration is an integral component of plant primary metabolism. Accordingly, it has been often observed that impairing the photorespiratory flux negatively impacts other cellular processes. In this study, the metabolic acclimation of the Arabidopsisthaliana wild type was compared with the hydroxypyruvate reductase 1 (HPR1; hpr1) mutant, displaying only a moderately reduced photorespiratory flux. Plants were analyzed during development and under varying photoperiods with a combination of non-targeted and targeted metabolome analysis, as well as 13C- and 14C-labeling approaches. The results showed that HPR1 deficiency is more critical for photorespiration during the vegetative compared to the regenerative growth phase. A shorter photoperiod seems to slowdown the photorespiratory metabolite conversion mostly at the glycerate kinase and glycine decarboxylase steps compared to long days. It is demonstrated that even a moderate impairment of photorespiration severely reduces the leaf-carbohydrate status and impacts on sulfur metabolism. Isotope labeling approaches revealed an increased CO2 release from hpr1 leaves, most likely occurring from enhanced non-enzymatic 3-hydroxypyruvate decarboxylation and a higher flux from serine towards ethanolamine through serine decarboxylase. Collectively, the study provides evidence that the moderate hpr1 mutant is an excellent tool to unravel the underlying mechanisms governing the regulation of metabolic linkages of photorespiration with plant primary metabolism.
Collapse
|
12
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Ye J, Chen W, Feng L, Liu G, Wang Y, Li H, Ye Z, Zhang Y. The chaperonin 60 protein SlCpn60α1 modulates photosynthesis and photorespiration in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7224-7240. [PMID: 32915204 DOI: 10.1093/jxb/eraa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis, an indispensable biological process of plants, produces organic substances for plant growth, during which photorespiration occurs to oxidize carbohydrates to achieve homeostasis. Although the molecular mechanism underlying photosynthesis and photorespiration has been widely explored, the crosstalk between the two processes remains largely unknown. In this study, we isolated and characterized a T-DNA insertion mutant of tomato (Solanum lycopersicum) named yellow leaf (yl) with yellowish leaves, retarded growth, and chloroplast collapse that hampered both photosynthesis and photorespiration. Genetic and expression analyses demonstrated that the phenotype of yl was caused by a loss-of-function mutation resulting from a single-copy T-DNA insertion in chaperonin 60α1 (SlCPN60α1). SlCPN60α1 showed high expression levels in leaves and was located in both chloroplasts and mitochondria. Silencing of SlCPN60α1using virus-induced gene silencing and RNA interference mimicked the phenotype of yl. Results of two-dimensional electrophoresis and yeast two-hybrid assays suggest that SlCPN60α1 potentially interacts with proteins that are involved in chlorophyll synthesis, photosynthetic electron transport, and the Calvin cycle, and further affect photosynthesis. Moreover, SlCPN60α1 directly interacted with serine hydroxymethyltransferase (SlSHMT1) in mitochondria, thereby regulating photorespiration in tomato. This study outlines the importance of SlCPN60α1 for both photosynthesis and photorespiration, and provides molecular insights towards plant genetic improvement.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Longwei Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
15
|
Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:720-738. [DOI: 10.1007/s11427-020-1773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
16
|
Song S, Timm S, Lindner SN, Reimann V, Hess WR, Hagemann M, Brouwer EM. Expression of Formate-Tetrahydrofolate Ligase Did Not Improve Growth but Interferes With Nitrogen and Carbon Metabolism of Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:1650. [PMID: 32760387 PMCID: PMC7372957 DOI: 10.3389/fmicb.2020.01650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
The introduction of alternative CO2-fixing pathways in photoautotrophic organism may improve the efficiency of biological carbon fixation such as minimizing the carbon loss due to photorespiration. Here, we analyzed the effects of creating a formate entry point into the primary metabolism of the cyanobacterium Synechocystis sp. PCC 6803. The formate-tetrahydrofolate ligase (FTL) from Methylobacterium extorquens AM1 was expressed in Synechocystis to enable formate assimilation and reducing the loss of fixed carbon in the photorespiratory pathway. Transgenic strains accumulated serine and 3-phosphoglycerate, and consumed more 2-phosphoglycolate and glycine, which seemed to reflect an efficient utilization of formate. However, labeling experiments showed that the serine accumulation was not due to the expected incorporation of formate. Subsequent DNA-microarray analysis revealed profound changes in transcript abundance due to ftl expression. Transcriptome changes were observed in relation to serine and glycine metabolism, C1-metabolism and particularly nitrogen assimilation. The data implied that ftl expression interfered with the signaling the carbon/nitrogen ratio in Synechocystis. Our results indicate that the expression of new enzymes could have a severe impact on the cellular regulatory network, which potentially hinders the establishment of newly designed pathways.
Collapse
Affiliation(s)
- Shanshan Song
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molekular Plant Physiology, Potsdam-Golm, Germany
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Eva-Maria Brouwer
- Plant Physiology Department, Institute of Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
17
|
Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:666-677. [PMID: 31904886 DOI: 10.1111/tpj.14669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 05/08/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is a metabolic repair system that enables the CO2 fixation enzyme Rubisco to sustainably operate in the presence of oxygen, that is, during oxygenic photosynthesis of plants and cyanobacteria. Photorespiration is necessary because an auto-inhibitory metabolite, 2-phosphoglycolate (2PG), is produced when Rubisco binds oxygen instead of CO2 as a substrate and must be removed, to avoid collapse of metabolism, and recycled as efficiently as possible. The basic principle of recycling 2PG very likely evolved several billion years ago in connection with the evolution of oxyphotobacteria. It comprises the multi-step combination of two molecules of 2PG to form 3-phosphoglycerate. The biochemistry of this process dictates that one out of four 2PG carbons is lost as CO2 , which is a long-standing plant breeders' concern because it represents by far the largest fraction of respiratory processes that reduce gross-photosynthesis of major crops down to about 50% and less, lowering potential yields. In addition to the ATP needed for recycling of the 2PG carbon, extra energy is needed for the refixation of liberated equal amounts of ammonia. It is thought that the energy costs of photorespiration have an additional negative impact on crop yields in at least some environments. This paper discusses recent advances concerning the origin and evolution of photorespiration, and gives an overview of contemporary and envisioned strategies to engineer the biochemistry of, or even avoid, photorespiration.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051, Rostock, Germany
| |
Collapse
|
18
|
Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochem Soc Trans 2020; 47:1805-1813. [PMID: 31754693 DOI: 10.1042/bst20190322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
Current crop yields will not be enough to sustain today's diets for a growing global population. As plant photosynthetic efficiency has not reached its theoretical maximum, optimizing photosynthesis is a promising strategy to enhance plant productivity. The low productivity of C3 plants is caused in part by the substantial energetic investments necessary to maintain a high flux through the photorespiratory pathway. Accordingly, lowering the energetic costs of photorespiration to enhance the productivity of C3 crops has been a goal of synthetic plant biology for decades. The use of synthetic bypasses to photorespiration in different plants showed an improvement of photosynthetic performance and growth under laboratory and field conditions, even though in silico predictions suggest that the tested synthetic pathways should confer a minimal or even negative energetic advantage over the wild type photorespiratory pathway. Current strategies increasingly utilize theoretical modeling and new molecular techniques to develop synthetic biochemical pathways that bypass photorespiration, representing a highly promising approach to enhance future plant productivity.
Collapse
|
19
|
Kuhnert F, Stefanski A, Overbeck N, Drews L, Reichert AS, Stühler K, Weber APM. Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria. PLANT PHYSIOLOGY 2020; 182:692-706. [PMID: 31818904 PMCID: PMC6997695 DOI: 10.1104/pp.19.00732] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/22/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.
Collapse
Affiliation(s)
- Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Zhou F, Zuo J, Gao L, Sui Y, Wang Q, Jiang A, Shi J. An untargeted metabolomic approach reveals significant postharvest alterations in vitamin metabolism in response to LED irradiation in pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Metabolomics 2019; 15:155. [PMID: 31773368 DOI: 10.1007/s11306-019-1617-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022]
Abstract
The main objective of this study was to investigate the effect of low-level light emitting diode (LED) irradiation on the metabolite profile of pak-choi. A total of 633 different molecular features (MFs) were identified among sample groups (initial, dark-treated, light-treated) using an untargeted metabolomic approach. The identified metabolites were associated with 24 different metabolic pathways. Four of the pathways including carbon pool by folate, folate biosynthesis, thiamine metabolism, and glutathione metabolism, all of which are associated with vitamin biosynthesis, changed significantly. Metabolites in four of the pathways exhibited significant differences from the control in response to LED irradiation. Additionally, porphyrin and chlorophyll metabolism, as well as glucosinolate biosynthesis, riboflavin metabolism, and carotenoid biosynthesis were positively induced by LED irradiation. These results indicate that postharvest LED illumination represents a potential tool for modifying the metabolic profile of pak-choi to maintain quality and nutritional levels.
Collapse
Affiliation(s)
- Fuhui Zhou
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Aili Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
21
|
Abadie C, Tcherkez G. Plant sulphur metabolism is stimulated by photorespiration. Commun Biol 2019; 2:379. [PMID: 31633070 PMCID: PMC6795801 DOI: 10.1038/s42003-019-0616-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/08/2022] Open
Abstract
Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photosynthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2, O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition.
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
- Present Address: IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, 49071 Angers, Beaucouzé France
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
22
|
Eisenhut M, Roell MS, Weber APM. Mechanistic understanding of photorespiration paves the way to a new green revolution. THE NEW PHYTOLOGIST 2019; 223:1762-1769. [PMID: 31032928 DOI: 10.1111/nph.15872] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 05/25/2023]
Abstract
Photorespiration is frequently considered a wasteful and inefficient process. However, mutant analysis demonstrated that photorespiration is essential for recycling of 2-phosphoglycolate in C3 and C4 land plants, in algae, and even in cyanobacteria operating carboxysome-based carbon (C) concentrating mechanisms. Photorespiration links photosynthetic C assimilation with other metabolic processes, such as nitrogen and sulfur assimilation, as well as C1 metabolism, and it may contribute to balancing the redox poise between chloroplasts, peroxisomes, mitochondria and cytoplasm. The high degree of metabolic interdependencies and the pleiotropic phenotypes of photorespiratory mutants impedes the distinction between core and accessory functions. Newly developed synthetic bypasses of photorespiration, beyond holding potential for significant yield increases in C3 crops, will enable us to differentiate between essential and accessory functions of photorespiration.
Collapse
Affiliation(s)
- Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, 40225, Germany
| | - Marc-Sven Roell
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, 40225, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, 40225, Germany
| |
Collapse
|
23
|
Harper J, De Vega J, Swain S, Heavens D, Gasior D, Thomas A, Evans C, Lovatt A, Lister S, Thorogood D, Skøt L, Hegarty M, Blackmore T, Kudrna D, Byrne S, Asp T, Powell W, Fernandez-Fuentes N, Armstead I. Integrating a newly developed BAC-based physical mapping resource for Lolium perenne with a genome-wide association study across a L. perenne European ecotype collection identifies genomic contexts associated with agriculturally important traits. ANNALS OF BOTANY 2019; 123:977-992. [PMID: 30715119 PMCID: PMC6589518 DOI: 10.1093/aob/mcy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/28/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Lolium perenne (perennial ryegrass) is the most widely cultivated forage and amenity grass species in temperate areas worldwide and there is a need to understand the genetic architectures of key agricultural traits and crop characteristics that deliver wider environmental services. Our aim was to identify genomic regions associated with agriculturally important traits by integrating a bacterial artificial chromosome (BAC)-based physical map with a genome-wide association study (GWAS). METHODS BAC-based physical maps for L. perenne were constructed from ~212 000 high-information-content fingerprints using Fingerprint Contig and Linear Topology Contig software. BAC clones were associated with both BAC-end sequences and a partial minimum tiling path sequence. A panel of 716 L. perenne diploid genotypes from 90 European accessions was assessed in the field over 2 years, and genotyped using a Lolium Infinium SNP array. The GWAS was carried out using a linear mixed model implemented in TASSEL, and extended genomic regions associated with significant markers were identified through integration with the physical map. KEY RESULTS Between ~3600 and 7500 physical map contigs were derived, depending on the software and probability thresholds used, and integrated with ~35 k sequenced BAC clones to develop a resource predicted to span the majority of the L. perenne genome. From the GWAS, eight different loci were significantly associated with heading date, plant width, plant biomass and water-soluble carbohydrate accumulation, seven of which could be associated with physical map contigs. This allowed the identification of a number of candidate genes. CONCLUSIONS Combining the physical mapping resource with the GWAS has allowed us to extend the search for candidate genes across larger regions of the L. perenne genome and identified a number of interesting gene model annotations. These physical maps will aid in validating future sequence-based assemblies of the L. perenne genome.
Collapse
Affiliation(s)
- J Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J De Vega
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - S Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Heavens
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - D Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Evans
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - A Lovatt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S Lister
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - L Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - M Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - T Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - D Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - S Byrne
- Teagasc, Department of Crop Science, Carlow, Ireland
| | - T Asp
- Department of Molecular Biology and Genetics, Crop Genetics and Biotechnology, Aarhus University, Slagelse, Denmark
| | - W Powell
- Scotland’s Rural College, Edinburgh, UK
| | - N Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - I Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
24
|
Xie H, Engle NL, Venketachalam S, Yoo CG, Barros J, Lecoultre M, Howard N, Li G, Sun L, Srivastava AC, Pattathil S, Pu Y, Hahn MG, Ragauskas AJ, Nelson RS, Dixon RA, Tschaplinski TJ, Blancaflor EB, Tang Y. Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL- COA 3- O- METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:108. [PMID: 31073332 PMCID: PMC6498598 DOI: 10.1186/s13068-019-1446-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/20/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Downregulation of genes involved in lignin biosynthesis and related biochemical pathways has been used as a strategy to improve biofuel production. Plant C1 metabolism provides the methyl units used for the methylation reactions carried out by two methyltransferases in the lignin biosynthetic pathway: caffeic acid 3-O-methyltransferase (COMT) and caffeoyl-CoA 3-O-methyltransferase (CCoAOMT). Mutations in these genes resulted in lower lignin levels and altered lignin compositions. Reduced lignin levels can also be achieved by mutations in the C1 pathway gene, folylpolyglutamate synthetase1 (FPGS1), in both monocotyledons and dicotyledons, indicating a link between the C1 and lignin biosynthetic pathways. To test if lignin content can be further reduced by combining genetic mutations in C1 metabolism and the lignin biosynthetic pathway, fpgs1ccoaomt1 double mutants were generated and functionally characterized. RESULTS Double fpgs1ccoaomt1 mutants had lower thioacidolysis lignin monomer yield and acetyl bromide lignin content than the ccoaomt1 or fpgs1 mutants and the plants themselves displayed no obvious long-term negative growth phenotypes. Moreover, extracts from the double mutants had dramatically improved enzymatic polysaccharide hydrolysis efficiencies than the single mutants: 15.1% and 20.7% higher than ccoaomt1 and fpgs1, respectively. The reduced lignin and improved sugar release of fpgs1ccoaomt1 was coupled with changes in cell-wall composition, metabolite profiles, and changes in expression of genes involved in cell-wall and lignin biosynthesis. CONCLUSION Our observations demonstrate that additional reduction in lignin content and improved sugar release can be achieved by simultaneous downregulation of a gene in the C1 (FPGS1) and lignin biosynthetic (CCOAOMT) pathways. These improvements in sugar accessibility were achieved without introducing unwanted long-term plant growth and developmental defects.
Collapse
Affiliation(s)
- Hongli Xie
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Sivasankari Venketachalam
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Jaime Barros
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Mitch Lecoultre
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Nikki Howard
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Guifen Li
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - Liang Sun
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - Avinash C. Srivastava
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Arthur J. Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Richard S. Nelson
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Elison B. Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Yuhong Tang
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| |
Collapse
|
25
|
Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci Rep 2019; 9:5731. [PMID: 30952916 PMCID: PMC6451014 DOI: 10.1038/s41598-019-42146-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/25/2019] [Indexed: 11/09/2022] Open
Abstract
Tetrahydrofolate and its derivatives, commonly known as folates, are essential for almost all living organisms. Besides acting as one-carbon donors and acceptors in reactions producing various important biomolecules such as nucleic and amino acids, as well as pantothenate, they also supply one-carbon units for methylation reactions. Plants along with bacteria, yeast and fungi synthesize folates de novo and therefore constitute a very important dietary source of folates for animals. All the major steps of folate biosynthesis and metabolism have been identified but only few have been genetically characterized in a handful of model plant species. The possible differences in the folate pathway between various plant and algal species have never been explored. In this study we present a comprehensive comparative study of folate biosynthesis and metabolism of all major land plant lineages as well as green and red algae. The study identifies new features of plant folate metabolism that might open new directions to folate research in plants.
Collapse
Affiliation(s)
- V Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.,Department of Botany and Plant Biology, Laboratory of Plant Biochemistry and Physiology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - O Bastien
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - O De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - S Lespinats
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - F Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - D Van Der Straeten
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
26
|
Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana. Methods Mol Biol 2018; 1653:227-242. [PMID: 28822137 DOI: 10.1007/978-1-4939-7225-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Photorespiration is an essential pathway in photosynthetic organisms and is particularly important to detoxify and recycle 2-phosphoglycolate (2-PG), a by-product of oxygenic photosynthesis. The enzymes that catalyze the reactions in the photorespiratory core cycle and closely associated pathways have been identified; however, open questions remain concerning the metabolic network in which photorespiration is embedded. The amino acid serine represents one of the major intermediates in the photorespiratory pathway and photorespiration is thought to be the major source of serine in plants. The restriction of photorespiration to autotrophic cells raises questions concerning the source of serine in heterotrophic tissues. Recently, the phosphorylated pathway of serine biosynthesis has been found to be extremely important for plant development and metabolism. In this protocol, we describe a detailed methodological workflow to analyze the generative and vegetative phenotypes of plants deficient in the phosphorylated pathway of serine biosynthesis, which together allow a better understanding of its function in plants.
Collapse
|
27
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
28
|
Igamberdiev AU, Kleczkowski LA. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:318. [PMID: 29593770 PMCID: PMC5861185 DOI: 10.3389/fpls.2018.00318] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 05/03/2023]
Abstract
Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.
Collapse
Affiliation(s)
- Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Watanabe M, Tohge T, Fernie AR, Hoefgen R. The Effect of Single and Multiple SERAT Mutants on Serine and Sulfur Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:702. [PMID: 29892307 PMCID: PMC5985473 DOI: 10.3389/fpls.2018.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 05/08/2023]
Abstract
The gene family of serine acetyltransferases (SERATs) constitutes an interface between the plant pathways of serine and sulfur metabolism. SERATs provide the activated precursor, O-acetylserine for the fixation of reduced sulfur into cysteine by exchanging the serine hydroxyl moiety by a sulfhydryl moiety, and subsequently all organic compounds containing reduced sulfur moieties. We investigate here, how manipulation of the SERAT interface results in metabolic alterations upstream or downstream of this boundary and the extent to which the five SERAT isoforms exert an effect on the coupled system, respectively. Serine is synthesized through three distinct pathways while cysteine biosynthesis is distributed over the three compartments cytosol, mitochondria, and plastids. As the respective mutants are viable, all necessary metabolites can obviously cross various membrane systems to compensate what would otherwise constitute a lethal failure in cysteine biosynthesis. Furthermore, given that cysteine serves as precursor for multiple pathways, cysteine biosynthesis is highly regulated at both, the enzyme and the expression level. In this study, metabolite profiles of a mutant series of the SERAT gene family displayed that levels of the downstream metabolites in sulfur metabolism were affected in correlation with the reduction levels of SERAT activities and the growth phenotypes, while levels of the upstream metabolites in serine metabolism were unchanged in the serat mutants compared to wild-type plants. These results suggest that despite of the fact that the two metabolic pathways are directly connected, there seems to be no causal link in metabolic alterations. This might be caused by the difference of their pool sizes or the tight regulation by homeostatic mechanisms that control the metabolite concentration in plant cells. Additionally, growth conditions exerted an influence on metabolic compositions.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Mutsumi Watanabe, Rainer Hoefgen,
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Mutsumi Watanabe, Rainer Hoefgen,
| |
Collapse
|
30
|
Keech O, Gardeström P, Kleczkowski LA, Rouhier N. The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. PLANT, CELL & ENVIRONMENT 2017; 40:553-569. [PMID: 26791824 DOI: 10.1111/pce.12713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Photorespiration is a complex and tightly regulated process occurring in photosynthetic organisms. This process can alter the cellular redox balance, notably via the production and consumption of both reducing and oxidizing equivalents. Under certain circumstances, these equivalents, as well as reactive oxygen or nitrogen species, can become prominent in subcellular compartments involved in the photorespiratory process, eventually promoting oxidative post-translational modifications of proteins. Keeping these changes under tight control should therefore be of primary importance. In order to review the current state of knowledge about the redox control of photorespiration, we primarily performed a careful description of the known and potential redox-regulated or oxidation sensitive photorespiratory proteins, and examined in more details two interesting cases: the glycerate kinase and the glycine cleavage system. When possible, the potential impact and subsequent physiological regulations associated with these changes have been discussed. In the second part, we reviewed the extent to which photorespiration contributes to cellular redox homeostasis considering, in particular, the set of peripheral enzymes associated with the canonical photorespiratory pathway. Finally, some recent biotechnological strategies to circumvent photorespiration for future growth improvements are discussed in the light of these redox regulations.
Collapse
Affiliation(s)
- Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | - Per Gardeström
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | | | - Nicolas Rouhier
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
31
|
Abadie C, Carroll A, Tcherkez G. Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 2016; 35:109-116. [PMID: 27693890 DOI: 10.1016/j.cbpa.2016.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is an essential metabolite repair pathway that allows the photosynthetic CO2 fixation of plants to occur in the presence of oxygen. It is necessary because oxygen is a competing substrate of the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase, forming 2-phosphoglycolate that negatively interferes with photosynthesis. Photorespiration very efficiently recycles 2-phosphoglycolate into 3-phosphoglycerate, which re-enters the Calvin-Benson cycle to drive sustainable photosynthesis. Photorespiration however requires extra energy and re-oxidises one quarter of the 2-phosphoglycolate carbon to CO2, lowering potential maximum rates of photosynthesis in most plants including food and energy crops. This review discusses natural and artificial strategies to reduce the undesired impact of air oxygen on photosynthesis and in turn plant growth.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18051 Rostock, Germany.
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
33
|
Waditee-Sirisattha R, Kageyama H, Tanaka Y, Fukaya M, Takabe T. Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance. Arch Microbiol 2016; 199:29-35. [PMID: 27443667 DOI: 10.1007/s00203-016-1271-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the conversion of serine to glycine and provides activated one-carbon units required for synthesis of nucleic acids, proteins and numerous biological compounds. SHMT is involved in photorespiratory pathway of oxygenic photosynthetic organisms. Accumulating evidence revealed that SHMT plays vital role for abiotic stresses such as low CO2 and high salinity in plants, but its role in cyanobacteria remains to be clarified. In this study, we examined to overexpress the SHMT from halotolerant cyanobacterium Aphanothece halophytica in freshwater cyanobacterium, Synechococcus elongatus PCC7942. The transformed cells did not show an obvious phenotype under non-stress condition, but exhibited more tolerance to salinity than the control cells harboring vector only under high salinity. Elevated levels of enzymes in phosphorylated serine biosynthetic pathway and photorespiration pathway were observed in the transformed cells. Glycine level was also increased in the transformed cells. Physiological roles of SHMT for salt tolerance were discussed.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Research Institute of Meijo University, Nagoya, 468-8502, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Minoru Fukaya
- Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Research Institute of Meijo University, Nagoya, 468-8502, Japan.
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
34
|
Abstract
DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.
Collapse
|
35
|
Foflonker F, Ananyev G, Qiu H, Morrison A, Palenik B, Dismukes GC, Bhattacharya D. The unexpected extremophile: Tolerance to fluctuating salinity in the green alga Picochlorum. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sew YS, Ströher E, Fenske R, Millar AH. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis. PLANT PHYSIOLOGY 2016; 171:849-63. [PMID: 27208265 PMCID: PMC4902577 DOI: 10.1104/pp.16.01654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 05/22/2023]
Abstract
Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis.
Collapse
Affiliation(s)
- Yun Shin Sew
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ricarda Fenske
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
37
|
Obata T, Florian A, Timm S, Bauwe H, Fernie AR. On the metabolic interactions of (photo)respiration. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3003-14. [PMID: 27029352 DOI: 10.1093/jxb/erw128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Given that photorespiration is inextricably linked to the process of photosynthesis by virtue of sharing the common first enzyme Rubisco, the photorespiratory pathway has been less subject to study in isolation than many other metabolic pathways. That said, despite often being described to be linked to reactions of ammonia assimilation, C1 metabolism and respiratory metabolism, the precise molecular mechanisms governing these linkages in land plants remain partially obscure. The application of broad metabolite profiling on mutants with altered levels of metabolic enzymes has facilitated the identification of common and distinct metabolic responses among them. Here we provide an update of the recent findings from such studies, focusing particularly on the interplay between photorespiration and the metabolic reactions of mitochondrial respiration. In order to do so we evaluated (i) changes in organic acids following environmental perturbation of metabolism, (ii) changes in organic acid levels in a wide range of photorespiratory mutants, (iii) changes in levels of photorespiratory metabolites in transgenic tomato lines deficient in the expression of enzymes of the tricarboxylic acid cycle. In addition, we estimated the rates of photorespiration in a complete set of tricarboxylic acid cycle transgenic tomato lines. Finally, we discuss insight concerning the interaction between photorespiration and other pathways that has been attained following the development of (13)CO2-based flux profiling methods.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alexandra Florian
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
38
|
Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu XG, Allen DK, Weber APM. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3015-26. [PMID: 27053720 DOI: 10.1093/jxb/erw145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Michael Hodges
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Younès Dellero
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, 141012 Sevilla, Spain
| | - Agepati S Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Xin-Guang Zhu
- CAS-MPG Partner Institutes for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Yue H, Liang Q, Zhang W, Cao Z, Tan G, Zhang C, Wang B. A Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for 5-Formyltetrahydrofolate Detection in Maize Kernels. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Singh D, Balota M, Collakova E, Isleib T, Welbaum G, Tallury S. Heat Stress Related Physiological and Metabolic Traits in Peanut Seedlings. ACTA ACUST UNITED AC 2016. [DOI: 10.3146/0095-3679-43.1.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ABSTRACT
To maintain high yields under an increasingly hotter climate, high temperature resilient peanut cultivars would have to be developed. Therefore, the mechanisms of plant response to heat need to be understood. The objective of this study was to explore the physiological and metabolic mechanisms developed by virginia-type peanut at early growth stages in response to high temperature stress. Peanut seedlings were exposed to 40/35 C (heat) and 30/25 C (optimum temperature) in a growth chamber. Membrane injury (MI), the Fv/Fm ratio, and several metabolites were evaluated in eight genotypes at four time-points (day 1, 2, 4, and 7) after the heat stress treatment initiation. Even though we were able to highlight some metabolites, e.g., hydroxyproline, galactinol, and unsaturated fatty acid, explaining specific differential physiological (MI) responses in peanut seedlings, overall our data suggested general stress responses rather than adaptive mechanisms to heat. Rather than individual metabolites, a combination of several metabolites better explained (41 to 61%) the MI variation in heat stressed peanut seedlings. The genotype SPT 06-07 exhibited lower MI, increased galactinol, reduced hydroxyproline, and higher saturated vs. unsaturated fatty acid ratio under heat stress compared to other genotypes. SPT 06-07 was also separated from the other genotypes during hierarchical clustering and, based on this and previous fieldwork, SPT 06-07 is proposed as a potential source for heat tolerance improvement of virginia-type peanut.
Collapse
Affiliation(s)
- D. Singh
- Genetics Department, Kansas State University, Manhattan, KS 66506
| | - M. Balota
- Tidewater Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Suffolk, VA 23437
| | - E. Collakova
- Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - T.G. Isleib
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695
| | - G.E. Welbaum
- Horticulture Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - S.P. Tallury
- Plant Genetic Resources Conservation Unit, Griffin, GA, 30223
| |
Collapse
|
41
|
Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP. Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants. THE PLANT CELL 2016; 28:466-84. [PMID: 26813621 PMCID: PMC4790864 DOI: 10.1105/tpc.15.00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 05/09/2023]
Abstract
C4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localized malate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the loss of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ∼ 25% of the photosynthetic activity. The results emphasize the importance of malate transport during C4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize.
Collapse
Affiliation(s)
- Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Fangfang Ma
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Koki Furuyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - James Gierse
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 U.S. Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132
| | - Howard Berg
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Ying Shao
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 U.S. Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132
| | | |
Collapse
|
42
|
Schneider A, Aghamirzaie D, Elmarakeby H, Poudel AN, Koo AJ, Heath LS, Grene R, Collakova E. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:305-19. [PMID: 26678037 DOI: 10.1111/tpj.13106] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 05/06/2023]
Abstract
Developing Arabidopsis seeds accumulate oils and seed storage proteins synthesized by the pathways of primary metabolism. Seed development and metabolism are positively regulated by transcription factors belonging to the LAFL (LEC1, AB13, FUSCA3 and LEC2) regulatory network. The VAL gene family encodes repressors of the seed maturation program in germinating seeds, although they are also expressed during seed maturation. The possible regulatory role of VAL1 in seed development has not been studied to date. Reverse genetics revealed that val1 mutant seeds accumulated elevated levels of proteins compared with the wild type, suggesting that VAL1 functions as a repressor of seed metabolism; however, in the absence of VAL1, the levels of metabolites, ABA, auxin and jasmonate derivatives did not change significantly in developing embryos. Two VAL1 splice variants were identified through RNA sequencing analysis: a full-length form and a truncated form lacking the plant homeodomain-like domain associated with epigenetic repression. None of the transcripts encoding the core LAFL network transcription factors were affected in val1 embryos. Instead, activation of VAL1 by FUSCA3 appears to result in the repression of a subset of seed maturation genes downstream of core LAFL regulators, as 39% of transcripts in the FUSCA3 regulon were derepressed in the val1 mutant. The LEC1 and LEC2 regulons also responded, but to a lesser extent. Additional 832 transcripts that were not LAFL targets were derepressed in val1 mutant embryos. These transcripts are candidate targets of VAL1, acting through epigenetic and/or transcriptional repression.
Collapse
Affiliation(s)
- Andrew Schneider
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Haitham Elmarakeby
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Arati N Poudel
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
43
|
Proteomic Analysis of Isogenic Rice Reveals Proteins Correlated with Aroma Compound Biosynthesis at Different Developmental Stages. Mol Biotechnol 2015; 58:117-29. [DOI: 10.1007/s12033-015-9906-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Carroll AJ, Zhang P, Whitehead L, Kaines S, Tcherkez G, Badger MR. PhenoMeter: A Metabolome Database Search Tool Using Statistical Similarity Matching of Metabolic Phenotypes for High-Confidence Detection of Functional Links. Front Bioeng Biotechnol 2015; 3:106. [PMID: 26284240 PMCID: PMC4518198 DOI: 10.3389/fbioe.2015.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 12/14/2022] Open
Abstract
This article describes PhenoMeter (PM), a new type of metabolomics database search that accepts metabolite response patterns as queries and searches the MetaPhen database of reference patterns for responses that are statistically significantly similar or inverse for the purposes of detecting functional links. To identify a similarity measure that would detect functional links as reliably as possible, we compared the performance of four statistics in correctly top-matching metabolic phenotypes of Arabidopsis thaliana metabolism mutants affected in different steps of the photorespiration metabolic pathway to reference phenotypes of mutants affected in the same enzymes by independent mutations. The best performing statistic, the PM score, was a function of both Pearson correlation and Fisher's Exact Test of directional overlap. This statistic outperformed Pearson correlation, biweight midcorrelation and Fisher's Exact Test used alone. To demonstrate general applicability, we show that the PM reliably retrieved the most closely functionally linked response in the database when queried with responses to a wide variety of environmental and genetic perturbations. Attempts to match metabolic phenotypes between independent studies were met with varying success and possible reasons for this are discussed. Overall, our results suggest that integration of pattern-based search tools into metabolomics databases will aid functional annotation of newly recorded metabolic phenotypes analogously to the way sequence similarity search algorithms have aided the functional annotation of genes and proteins. PM is freely available at MetabolomeExpress (https://www.metabolome-express.org/phenometer.php).
Collapse
Affiliation(s)
- Adam J. Carroll
- College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peng Zhang
- College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Lynne Whitehead
- College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Sarah Kaines
- College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Guillaume Tcherkez
- College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Murray R. Badger
- College of Medicine, Biology and Environment, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
45
|
Kerchev P, Mühlenbock P, Denecker J, Morreel K, Hoeberichts FA, Van Der Kelen K, Vandorpe M, Nguyen L, Audenaert D, Van Breusegem F. Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. PLANT, CELL & ENVIRONMENT 2015; 38:253-265. [PMID: 26317137 DOI: 10.1111/pce.12250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The high metabolic flux through photorespiration constitutes a significant part of the carbon cycle. Although the major enzymatic steps of the photorespiratory pathway are well characterized, little information is available on the functional significance of photorespiration beyond carbon recycling. Particularly important in this respect is the peroxisomal catalase activity which removes photorespiratory H2O2 generated during the oxidation of glycolate to glyoxylate, thus maintaining the cellular redox homeostasis governing the perception, integration and execution of stress responses. By performing a chemical screen, we identified 34 small molecules that alleviate the negative effects of photorespiration in Arabidopsis thaliana mutants lacking photorespiratory catalase (cat2). The chlorophyll fluorescence parameter photosystem II maximum efficiency (Fv′/Fm′) was used as a high-throughput readout. The most potent chemical that could rescue the photorespiratory phenotype of cat2 is a pro-auxin that contains a synthetic auxin-like substructure belonging to the phenoxy herbicide family, which can be released in planta. The naturally occurring indole-3-acetic acid (IAA) and other chemically distinct synthetic auxins also inhibited the photorespiratory-dependent cell death in cat2 mutants, implying a role for auxin signalling in stress tolerance.
Collapse
|
46
|
Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci U S A 2014; 111:16967-72. [PMID: 25368168 DOI: 10.1073/pnas.1319485111] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient (13)C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. We performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with (13)CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m(-2)s(-1) light were compared with plants acclimated for 9 d at an irradiance of 500 µmol⋅m(-2)⋅s(-1). Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). This study highlights the potential of (13)C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.
Collapse
|
47
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
48
|
Ros R, Muñoz-Bertomeu J, Krueger S. Serine in plants: biosynthesis, metabolism, and functions. TRENDS IN PLANT SCIENCE 2014; 19:564-9. [PMID: 24999240 DOI: 10.1016/j.tplants.2014.06.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 05/19/2023]
Abstract
Serine (Ser) has a fundamental role in metabolism and signaling in living organisms. In plants, the existence of different pathways of Ser biosynthesis has complicated our understanding of this amino acid homeostasis. The photorespiratory glycolate pathway has been considered to be of major importance, whereas the nonphotorespiratory phosphorylated pathway has been relatively neglected. Recent advances indicate that the phosphorylated pathway has an important function in plant metabolism and development. Plants deficient in this pathway display developmental defects in embryos, male gametophytes, and roots. We propose that the phosphorylated pathway is more important than was initially thought because it is the only Ser source for specific cell types involved in developmental events. Here, we discuss its importance as a link between metabolism and development in plants.
Collapse
Affiliation(s)
- Roc Ros
- ERI de Biotecnologia i Biomedicina, Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot (Valencia), Spain.
| | - Jesús Muñoz-Bertomeu
- ERI de Biotecnologia i Biomedicina, Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Stephan Krueger
- Botanical Institute II, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
49
|
Meng H, Jiang L, Xu B, Guo W, Li J, Zhu X, Qi X, Duan L, Meng X, Fan Y, Zhang C. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness. PLoS One 2014; 9:e101905. [PMID: 25000295 PMCID: PMC4084893 DOI: 10.1371/journal.pone.0101905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/12/2014] [Indexed: 01/16/2023] Open
Abstract
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3−. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3− conditions, and further enhanced under NO3− limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3− during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3− as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.
Collapse
Affiliation(s)
- Hongyan Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, People’s Republic of China
| | - Bosi Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wenzhu Guo
- Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jinglai Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiuqing Zhu
- Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiaoquan Qi
- Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lixin Duan
- Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xianbin Meng
- Institute of Botany, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, People’s Republic of China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Nourbakhsh A, Collakova E, Gillaspy GE. Characterization of the inositol monophosphatase gene family in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:725. [PMID: 25620968 PMCID: PMC4288329 DOI: 10.3389/fpls.2014.00725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/01/2014] [Indexed: 05/08/2023]
Abstract
Synthesis of myo-inositol is crucial in multicellular eukaryotes for production of phosphatidylinositol and inositol phosphate signaling molecules. The myo-inositol monophosphatase (IMP) enzyme is required for the synthesis of myo-inositol, breakdown of inositol (1,4,5)-trisphosphate, a second messenger involved in Ca(2+) signaling, and synthesis of L-galactose, a precursor of ascorbic acid. Two myo-inositol monophosphatase -like (IMPL) genes in Arabidopsis encode chloroplast proteins with homology to the prokaryotic IMPs and one of these, IMPL2, can complement a bacterial histidinol 1-phosphate phosphatase mutant defective in histidine synthesis, indicating an important role for IMPL2 in amino acid synthesis. To delineate how this small gene family functions in inositol synthesis and metabolism, we sought to compare recombinant enzyme activities, expression patterns, and impact of genetic loss-of-function mutations for each. Our data show that purified IMPL2 protein is an active histidinol-phosphate phosphatase enzyme in contrast to the IMPL1 enzyme, which has the ability to hydrolyze D-galactose 1-phosphate, and D-myo-inositol 1-phosphate, a breakdown product of D-inositol (1,4,5) trisphosphate. Expression studies indicated that all three genes are expressed in multiple tissues, however, IMPL1 expression is restricted to above-ground tissues only. Identification and characterization of impl1 and impl2 mutants revealed no viable mutants for IMPL1, while two different impl2 mutants were identified and shown to be severely compromised in growth, which can be rescued by histidine. Analyses of metabolite levels in impl2 and complemented mutants reveals impl2 mutant growth is impacted by alterations in the histidine biosynthesis pathway, but does not impact myo-inositol synthesis. Together, these data indicate that IMPL2 functions in the histidine biosynthetic pathway, while IMP and IMPL1 catalyze the hydrolysis of inositol- and galactose-phosphates in the plant cell.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Human and Molecular Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- *Correspondence: Glenda E. Gillaspy, Department of Biochemistry, Virginia Polytechnic Institute and State University, 542 Latham Hall, Blacksburg, VA 24061, USA e-mail:
| |
Collapse
|