1
|
Huang W, Hua MZ, Li S, Chen K, Lu X, Wu D. Application of atomic force microscopy in the characterization of fruits and vegetables and associated substances toward improvement in quality, preservation, and processing: nanoscale structure and mechanics perspectives. Crit Rev Food Sci Nutr 2024; 64:11672-11700. [PMID: 37585698 DOI: 10.1080/10408398.2023.2242944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Fruits and vegetables are essential horticultural crops for humans. The quality of fruits and vegetables is critical in determining their nutritional value and edibility, which are decisive to their commercial value. Besides, it is also important to understand the changes in key substances involved in the preservation and processing of fruits and vegetables. Atomic force microscopy (AFM), a powerful technique for investigating biological surfaces, has been widely used to characterize the quality of fruits and vegetables and the substances involved in their preservation and processing from the perspective of nanoscale structure and mechanics. This review summarizes the applications of AFM to investigate the texture, appearance, and nutrients of fruits and vegetables based on structural imaging and force measurements. Additionally, the review highlights the application of AFM in characterizing the morphological and mechanical properties of nanomaterials involved in preserving and processing fruits and vegetables, including films and coatings for preservation, bioactive compounds for processing purposes, nanofiltration membrane for concentration, and nanoencapsulation for delivery of bioactive compounds. Furthermore, the strengths and weaknesses of AFM for characterizing the quality of fruits and vegetables and the substances involved in their preservation and processing are examined, followed by a discussion on the prospects of AFM in this field.
Collapse
Affiliation(s)
- Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Shenmiao Li
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Zhai X, Li Q, Li B, Gao X, Liao X, Chen J, Kai W. Overexpression of the persimmon ABA receptor DkPYL3 gene alters fruit development and ripening in transgenic tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112287. [PMID: 39396616 DOI: 10.1016/j.plantsci.2024.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Abscisic acid (ABA) is a crucial plant hormone that regulates various aspects of plant development. However, the specific function of the ABA receptor PYL in fruit development has not been fully understood. In this study, we focused on DkPYL3, a member of the ABA receptor subfamily Ⅰ in persimmon, which exhibited high expression levels in fruit, particularly during the young fruit and turning stages. Through yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), protein inhibition assays, and RNA-seq techniques, we identified and characterized the DkPYL3 protein, which was found to inhibit the activity of protein phosphatase type 2 C (PP2C). By heterologous overexpressing (OE) persimmon DkPYL3 in tomatoes, we investigated the impact of the DkPYL3 gene on fruit development and ripening. DkPYL3-OE upregulated the expression of genes related to chlorophyll synthesis and development, leading to a significant increase in chlorophyll content in young fruit. Several fruit quality parameters were also affected by DkPYL3 expression, including sugar content, single fruit weight, and photosynthesis rate. Additionally, fruits overexpressing DkPYL3 exhibited earlier ripening and higher levels of carotenoids and flavonoids compared to wild-type fruits. These results demonstrate the pivotal role of DkPYL3 in ABA-mediated young fruit development, ripening onset, and fruit quality in transgenic tomatoes.
Collapse
Affiliation(s)
- Xiawan Zhai
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bao Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoqing Gao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingqiang Liao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Xu P, Yu J, Ma R, Ji Y, Hu Q, Mao Y, Ding C, Li Z, Ge S, Deng WW, Li X. Chlorophyll and Carotenoid Metabolism Varies with Growth Temperatures among Tea Genotypes with Different Leaf Colors in Camellia sinensis. Int J Mol Sci 2024; 25:10772. [PMID: 39409101 PMCID: PMC11477215 DOI: 10.3390/ijms251910772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The phenotype of albino tea plants (ATPs) is significantly influenced by temperature regimes and light conditions, which alter certain components of the tea leaves leading to corresponding phenotypic changes. However, the regulatory mechanism of temperature-dependent changes in photosynthetic pigment contents and the resultant leaf colors remain unclear. Here, we examined the chloroplast microstructure, shoot phenotype, photosynthetic pigment content, and the expression of pigment synthesis-related genes in three tea genotypes with different leaf colors under different temperature conditions. The electron microscopy results revealed that all varieties experienced the most severe chloroplast damage at 15 °C, particularly in albino cultivar Baiye 1 (BY), where chloroplast basal lamellae were loosely arranged, and some chloroplasts were even empty. In contrast, the chloroplast basal lamellae at 35 °C and 25 °C were neatly arranged and well-developed, outperforming those observed at 20 °C and 15 °C. Chlorophyll and carotenoid measurements revealed a significant reduction in chlorophyll content under low temperature treatment, peaking at ambient temperature followed by high temperatures. Interestingly, BY showed remarkable tolerance to high temperatures, maintaining relatively high chlorophyll content, indicating its sensitivity primarily to low temperatures. Furthermore, the trends in gene expression related to chlorophyll and carotenoid metabolism were largely consistent with the pigment content. Correlation analysis identified key genes responsible for temperature-induced changes in these pigments, suggesting that changes in their expression likely contribute to temperature-dependent leaf color variations.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingbo Yu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| | - Ruihong Ma
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Ji
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiang Hu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| | - Yihu Mao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| | - Changqing Ding
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| | - Zhengzhen Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (P.X.); (J.Y.); (R.M.); (Y.J.); (Q.H.); (Y.M.); (C.D.); (Z.L.); (S.G.)
| |
Collapse
|
4
|
Huang W, Tan C, Guo H. Ethylene in fruits: beyond ripening control. HORTICULTURE RESEARCH 2024; 11:uhae229. [PMID: 39415973 PMCID: PMC11480664 DOI: 10.1093/hr/uhae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Abstract
Fruits are a rich source of nutrients, minerals, and dietary fibers for both humans and animals. While the gaseous phytohormone ethylene is well-known for its role in controlling fruit ripening, there is growing evidence that ethylene also plays crucial roles in regulating other developmental processes of fruits, such as sex determination, fruit set, and fruit growth. In this review, we aim to revisit these findings from various species like cucumber, melon, tomato, rice, maize, and more. These studies not only enhance our understanding of ethylene's function in fruits but also highlight the potential for manipulating ethylene to improve crops. Furthermore, we discuss recent studies that show the ethylene precursor ACC (1-AMINOCYCLOPROPANE-1-CARBOXYLATE), and the ethylene signaling components EIN2 (ETHYLENE INSENSITIVE2) and EIN3 (ETHYLENE INSENSITIVE3) have ethylene-independent function in specific conditions. This phenomenon, combined with findings of dosage-dependent ethylene functions in certain conditions, highlights the importance of analyzing mutants with completely blocked ethylene pathways in different species at specific developmental stages and tissue types. Overall, this review offers a timely and essential summary of ethylene's role in sex determination, fruit formation, and fruit growth, which could be beneficial for horticulture crop breeding.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agricultural, BGI Research, Shenzhen 518083, China
- BGI Bioverse, Shenzhen 518083, China
| | - Cong Tan
- BGI Bioverse, Shenzhen 518083, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
5
|
Muhammad N, Liu Z, Wang L, Yang M, Liu M. The underlying molecular mechanisms of hormonal regulation of fruit color in fruit-bearing plants. PLANT MOLECULAR BIOLOGY 2024; 114:104. [PMID: 39316226 DOI: 10.1007/s11103-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which also play a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.
Collapse
Grants
- (HBCT2024190201) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (CARS-30-2-07) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- (2020YFD1000705 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2019YFD1001605 Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
- 2018YFD1000607) Hebei Provincial Program, China Agriculture Research System, Hebei Agricultural University, and the programs under "National Key R&D Program Project Funding.
Collapse
Affiliation(s)
- Noor Muhammad
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lixin Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Minsheng Yang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
6
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
7
|
Santo Domingo M, Orduña L, Navarro D, Mayobre C, Santiago A, Valverde L, Alexiou KG, Matus JT, Pujol M, Garcia-Mas J. The ethylene-responsive transcription factor ERF024 is a novel regulator of climacteric fruit ripening in melon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1844-1858. [PMID: 38900073 DOI: 10.1111/tpj.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Fruit ripening is an essential developmental stage in Angiosperms triggered by hormonal signals such as ethylene, a major player in climacteric ripening. Melon is a unique crop showing both climacteric and non-climacteric cultivars, offering an ideal model for dissecting the genetic mechanisms underpinning this process. The major quantitative trait locus ETHQV8.1 was previously identified as a key regulator of melon fruit ripening. Here, we narrowed down ETHQV8.1 to a precise genomic region containing a single gene, the transcription factor CmERF024. Functional validation using CRISPR/Cas9 knock-out plants unequivocally identified CmERF024 as the causal gene governing ETHQV8.1. The erf024 mutants exhibited suppression of ethylene production, leading to a significant delay and attenuation of fruit ripening. Integrative multi-omic analyses encompassing RNA-seq, DAP-seq, and DNase-seq revealed the association of CmERF024 with chromatin accessibility and gene expression dynamics throughout fruit ripening. Our data suggest CmERF024 as a novel regulator of climacteric fruit ripening in melon.
Collapse
Affiliation(s)
- Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - David Navarro
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Konstantinos G Alexiou
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
8
|
Huerga-Fernández S, Detry N, Orman-Ligeza B, Bouché F, Hanikenne M, Périlleux C. JOINTLESS Maintains Inflorescence Meristem Identity in Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:1197-1211. [PMID: 38635460 PMCID: PMC11287206 DOI: 10.1093/pcp/pcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.
Collapse
Affiliation(s)
- Samuel Huerga-Fernández
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Nathalie Detry
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Beata Orman-Ligeza
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Marc Hanikenne
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| |
Collapse
|
9
|
He X, Liu K, Wu Y, Xu W, Wang R, Pirrello J, Bouzayen M, Wu M, Liu M. A transcriptional cascade mediated by two APETALA2 family members orchestrates carotenoid biosynthesis in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1227-1241. [PMID: 38546046 DOI: 10.1111/jipb.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body. Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding. In this study, we determined that SlAP2c, an APETALA2 (AP2) family member, acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato (Solanum lycopersicum). Knockout of SlAP2c in both the "MicroTom" and "Ailsa Craig" backgrounds resulted in greater lycopene accumulation, whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type. We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters. Moreover, SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS (TPL)2/4 and forms a complex with histone deacetylase (had)1/3, thereby reducing the histone acetylation levels of lycopene biosynthesis genes. Furthermore, SlAP2a, a homolog of SlAP2c, acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening. Therefore, we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato, laying the foundation for the manipulation of carotenoid metabolism in plants.
Collapse
Affiliation(s)
- Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31013, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31013, France
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Zhou J, Zhou S, Chen B, Sangsoy K, Luengwilai K, Albornoz K, Beckles DM. Integrative analysis of the methylome and transcriptome of tomato fruit ( Solanum lycopersicum L.) induced by postharvest handling. HORTICULTURE RESEARCH 2024; 11:uhae095. [PMID: 38840937 PMCID: PMC11151332 DOI: 10.1093/hr/uhae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Tomato fruit ripening is triggered by the demethylation of key genes, which alters their transcriptional levels thereby initiating and propagating a cascade of physiological events. What is unknown is how these processes are altered when fruit are ripened using postharvest practices to extend shelf-life, as these practices often reduce fruit quality. To address this, postharvest handling-induced changes in the fruit DNA methylome and transcriptome, and how they correlate with ripening speed, and ripening indicators such as ethylene, abscisic acid, and carotenoids, were assessed. This study comprehensively connected changes in physiological events with dynamic molecular changes. Ripening fruit that reached 'Turning' (T) after dark storage at 20°C, 12.5°C, or 5°C chilling (followed by 20°C rewarming) were compared to fresh-harvest fruit 'FHT'. Fruit stored at 12.5°C had the biggest epigenetic marks and alterations in gene expression, exceeding changes induced by postharvest chilling. Fruit physiological and chronological age were uncoupled at 12.5°C, as the time-to-ripening was the longest. Fruit ripening to Turning at 12.5°C was not climacteric; there was no respiratory or ethylene burst, rather, fruit were high in abscisic acid. Clear differentiation between postharvest-ripened and 'FHT' was evident in the methylome and transcriptome. Higher expression of photosynthetic genes and chlorophyll levels in 'FHT' fruit pointed to light as influencing the molecular changes in fruit ripening. Finally, correlative analyses of the -omics data putatively identified genes regulated by DNA methylation. Collectively, these data improve our interpretation of how tomato fruit ripening patterns are altered by postharvest practices, and long-term are expected to help improve fruit quality.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| | - Sitian Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Biostatistics, School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Bixuan Chen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Germains Seed Technology, 8333 Swanston Lane, Gilroy, CA 95020, USA
| | - Kamonwan Sangsoy
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kietsuda Luengwilai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Karin Albornoz
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| |
Collapse
|
11
|
Li C, Hou X, Zhao Z, Liu H, Huang P, Shi M, Wu X, Gao R, Liu Z, Wei L, Li Y, Liao W. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening. Cell Mol Biol Lett 2024; 29:57. [PMID: 38649857 PMCID: PMC11036752 DOI: 10.1186/s11658-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning, 530004, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Meimei Shi
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Huo J, Zhang N, Gong Y, Bao Y, Li Y, Zhang L, Nie S. Effects of different light intensity on leaf color changes in a Chinese cabbage yellow cotyledon mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1371451. [PMID: 38689838 PMCID: PMC11058996 DOI: 10.3389/fpls.2024.1371451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Leaf color is one of the most important phenotypic features in horticultural crops and directly related to the contents of photosynthetic pigments. Most leaf color mutants are determined by the altered chlorophyll or carotenoid, which can be affected by light quality and intensity. Our previous study obtained a Chinese cabbage yellow cotyledon mutant that exhibited obvious yellow phenotypes in the cotyledons and the new leaves. However, the underlying mechanisms in the formation of yellow cotyledons and leaves remain unclear. In this study, the Chinese cabbage yellow cotyledon mutant 19YC-2 exhibited obvious difference in leaf color and abnormal chloroplast ultrastructure compared to the normal green cotyledon line 19GC-2. Remarkably, low-intensity light treatment caused turn-green leaves and a significant decrease in carotenoid content in 19YC-2. RNA-seq analysis revealed that the pathways of photosynthesis antenna proteins and carotenoid biosynthesis were significantly enriched during the process of leaf color changes, and many differentially expressed genes related to the two pathways were identified to respond to different light intensities. Remarkably, BrPDS and BrLCYE genes related to carotenoid biosynthesis showed significantly higher expression in 19YC-2 than that in 19GC-2, which was positively related to the higher carotenoid content in 19YC-2. In addition, several differentially expressed transcription factors were also identified and highly correlated to the changes in carotenoid content, suggesting that they may participate in the regulatory pathway of carotenoid biosynthesis. These findings provide insights into the molecular mechanisms of leaf color changes in yellow cotyledon mutant 19YC-2 of Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | - Lugang Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanshan Nie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Jiang G, Li Z, Ding X, Zhou Y, Lai H, Jiang Y, Duan X. WUSCHEL-related homeobox transcription factor SlWOX13 regulates tomato fruit ripening. PLANT PHYSIOLOGY 2024; 194:2322-2337. [PMID: 37995308 DOI: 10.1093/plphys/kiad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established importance of WUSCHEL-related homeobox (WOX) TFs in plant development, the involvement of WOX and its underlying mechanism in the regulation of fruit ripening remain unclear. Here, we demonstrate that SlWOX13 regulates fruit ripening in tomato (Solanum lycopersicum). Overexpression of SlWOX13 accelerates fruit ripening, whereas loss-of-function mutation in SlWOX13 delays this process. Moreover, ethylene synthesis and carotenoid accumulation are significantly inhibited in slwox13 mutant fruit but accelerated in SlWOX13 transgenic fruit. Integrated analyses of RNA-seq and chromatin immunoprecipitation (ChIP)-seq identified 422 direct targets of SlWOX13, of which 243 genes are negatively regulated and 179 are positively regulated by SlWOX13. Electrophoretic mobility shift assay, RT-qPCR, dual-luciferase reporter assay, and ChIP-qPCR analyses demonstrated that SlWOX13 directly activates the expression of several genes involved in ethylene synthesis and signaling and carotenoid biosynthesis. Furthermore, SlWOX13 modulates tomato fruit ripening through key ripening-related TFs, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), and NAM, ATAF1, 2, and CUC2 4 (NAC4). Consequently, these effects promote fruit ripening. Taken together, these results demonstrate that SlWOX13 positively regulates tomato fruit ripening via both ethylene synthesis and signaling and by transcriptional regulation of key ripening-related TFs.
Collapse
Affiliation(s)
- Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Hongmei Lai
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
Zhang J, Hu Z, Xie Q, Dong T, Li J, Chen G. Two SEPALLATA MADS-Box Genes, SlMBP21 and SlMADS1, Have Cooperative Functions Required for Sepal Development in Tomato. Int J Mol Sci 2024; 25:2489. [PMID: 38473738 PMCID: PMC10931843 DOI: 10.3390/ijms25052489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Tingting Dong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| |
Collapse
|
16
|
Ma L, Zheng Y, Zhou Z, Deng Z, Tan J, Bai C, Fu A, Wang Q, Zuo J. Dissection of mRNA ac 4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. MOLECULAR HORTICULTURE 2024; 4:5. [PMID: 38369544 PMCID: PMC10875755 DOI: 10.1186/s43897-024-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
N4-acetylcytidine (ac4C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac4C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, β-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.
Collapse
Affiliation(s)
- Lili Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Zhongjing Zhou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhiping Deng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunmei Bai
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Anzhen Fu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| |
Collapse
|
17
|
Wu M, Liu K, Li H, Li Y, Zhu Y, Su D, Zhang Y, Deng H, Wang Y, Liu M. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. HORTICULTURE RESEARCH 2024; 11:uhad275. [PMID: 38344652 PMCID: PMC10857933 DOI: 10.1093/hr/uhad275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/06/2023] [Indexed: 04/10/2024]
Abstract
The phytohormone ethylene is well known for its important role in the ripening of climacteric fruit, such as tomato (Solanum lycopersicum). However, the role and mode of action of other plant hormones in climacteric fruit ripening regulation are not fully understood. Here, we showed that exogenous GA treatment or increasing endogenous gibberellin content by overexpressing the gibberellin synthesis gene SlGA3ox2 specifically in fruit tissues delayed tomato fruit ripening, whereas treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) accelerated fruit ripening. Moreover, exogenous ethylene treatment cannot completely reverse the delayed fruit ripening phenotype. Furthermore, exogenous GA treatment of ethylene signalling mutant Never ripe (Nr) or SlEBF3-overexpressing lines still delayed fruit ripening, suggesting that GA involved in fruit ripening partially depends on ethylene. Transcriptome profiling showed that gibberellin affect the ripening of fruits by modulating the metabolism and signal transduction of multiple plant hormones, such as auxin and abscisic acid, in addition to ethylene. Overall, the results of this study provide new insight into the regulation of gibberellin in fruit ripening through mediating multiple hormone signals.
Collapse
Affiliation(s)
- Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Honghai Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Ying Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
18
|
Yang R, Sun Y, Zhu X, Jiao B, Sun S, Chen Y, Li L, Wang X, Zeng Q, Liang Q, Huang B. The tuber-specific StbHLH93 gene regulates proplastid-to-amyloplast development during stolon swelling in potato. THE NEW PHYTOLOGIST 2024; 241:1676-1689. [PMID: 38044709 DOI: 10.1111/nph.19426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023]
Abstract
In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yuan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xiaoling Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Baozhen Jiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Sifan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Lizhu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qian Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qiqi Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| |
Collapse
|
19
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
20
|
Sharma D, Koul A, Bhushan S, Gupta S, Kaul S, Dhar MK. Insights into microRNA-mediated interaction and regulation of metabolites in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1142-1153. [PMID: 37681459 DOI: 10.1111/plb.13572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023]
Abstract
microRNAs direct regulation of various metabolic pathways in plants and animals. miRNAs may be useful in developing novel/elite genotypes, with enhanced metabolites and disease resistance. We examined miRNAs in tomato. In tomato, miRNAs in the carotenoid pathway have not been fully elucidated. We examined the potential role of miRNAs in biosynthesis of carotenoids, transcript profiling of miRNAs and their possible targets (genes and transcription factors) at different development stages of tomato using stem-loop PCR and RT-qPCR. We also identified miRNAs targeting key flavonoid genes, such as chalcone isomerase (CHI), and dihydroflavonol-4-reductase (DFR). Distinct expression profiles of miRNAs and their targets were found in fruits of three tomato accessions, suggesting carotenoid regulation by miRNAs at various stages of fruit development. This was also confirmed using HPLC of the carotenoids. The present study may help in understanding possible regulation of carotenoid biosynthesis. The identified miRNAs can be exploited to enhance biosynthesis of different carotenoids in plants.
Collapse
Affiliation(s)
- D Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - A Koul
- Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - S Bhushan
- Department of Botany, Central University of Jammu, Bagla (Rahya Suchani), Samba, Jammu, India
| | - S Gupta
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - S Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - M K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
21
|
Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, Lu WJ, Shan W. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J Adv Res 2023; 53:33-47. [PMID: 36529351 PMCID: PMC10658243 DOI: 10.1016/j.jare.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTIONS Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Caldana C, Carrari F, Fernie AR, Sampathkumar A. How metabolism and development are intertwined in space and time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:347-359. [PMID: 37433681 DOI: 10.1111/tpj.16391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.
Collapse
Affiliation(s)
- Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fernando Carrari
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
23
|
Qiao Y, Li YG, Wei TL, Liu HN, Pei MS, Zhu XJ, Zhu ZH, Guo DL. Identification of watermelon H3K4 and H3K27 genes and their expression profiles during watermelon fruit development. Mol Biol Rep 2023; 50:8259-8270. [PMID: 37572210 DOI: 10.1007/s11033-023-08727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.
Collapse
Affiliation(s)
- Yang Qiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yan-Ge Li
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Xue-Jie Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Zhong-Hou Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
24
|
Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111820. [PMID: 37549738 DOI: 10.1016/j.plantsci.2023.111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Dinesh Kumar Srivastava
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mani Kant Choudhary
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
25
|
Mellidou I, Koukounaras A, Frusciante S, Rambla JL, Patelou E, Ntoanidou S, Pons C, Kostas S, Nikoloudis K, Granell A, Diretto G, Kanellis AK. A metabolome and transcriptome survey to tap the dynamics of fruit prolonged shelf-life and improved quality within Greek tomato germplasm. FRONTIERS IN PLANT SCIENCE 2023; 14:1267340. [PMID: 37818313 PMCID: PMC10560995 DOI: 10.3389/fpls.2023.1267340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023]
Abstract
Introduction Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored. Methods Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits. Results The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential. Discussion The pathways towards cell wall synthesis, polyamine synthesis, ABA catabolism, and steroidal alkaloids synthesis were mostly induced in the LSL accession, whereas those related to ethylene biosynthesis, cell wall degradation, isoprenoids, phenylpropanoids, ascorbic acid and aroma (TomloxC) were stimulated in the SSL accession. Overall, these data would provide valuable insights into the molecular mechanism towards enhancing shelf-life and improving flavor and aroma of modern tomato cultivars.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization – DEMETER, Thessaloniki, Greece
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Koukounaras
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Rome, Italy
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Efstathia Patelou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Symela Ntoanidou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Stefanos Kostas
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Biotechnology Laboratory, Casaccia Research Center, Rome, Italy
| | - Angelos K. Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Di Giacomo M, Vega TA, Cambiaso V, Picardi LA, Rodríguez GR, Pereira da Costa JH. An Integrative Transcriptomics and Proteomics Approach to Identify Putative Genes Underlying Fruit Ripening in Tomato near Isogenic Lines with Long Shelf Life. PLANTS (BASEL, SWITZERLAND) 2023; 12:2812. [PMID: 37570966 PMCID: PMC10421356 DOI: 10.3390/plants12152812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
The elucidation of the ripening pathways of climacteric fruits helps to reduce postharvest losses and improve fruit quality. Here, we report an integrative study on tomato ripening for two near-isogenic lines (NIL115 and NIL080) with Solanum pimpinellifolium LA0722 introgressions. A comprehensive analysis using phenotyping, molecular, transcript, and protein data were performed. Both NILs show improved fruit firmness and NIL115 also has longer shelf life compared to the cultivated parent. NIL115 differentially expressed a transcript from the APETALA2 ethylene response transcription factor family (AP2/ERF) with a potential role in fruit ripening. E4, another ERF, showed an upregulated expression in NIL115 as well as in the wild parent, and it was located physically close to a wild introgression. Other proteins whose expression levels changed significantly during ripening were identified, including an ethylene biosynthetic enzyme (ACO3) and a pectate lyase (PL) in NIL115, and an alpha-1,4 glucan phosphorylase (Pho1a) in NIL080. In this study, we provide insights into the effects of several genes underlying tomato ripening with potential impact on fruit shelf life. Data integration contributed to unraveling ripening-related genes, providing opportunities for assisted breeding.
Collapse
Affiliation(s)
- Melisa Di Giacomo
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Tatiana Alejandra Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
| | - Vladimir Cambiaso
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Liliana Amelia Picardi
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Gustavo Rubén Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| | - Javier Hernán Pereira da Costa
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Experimental Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (M.D.G.); (T.A.V.); (V.C.); (G.R.R.)
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina;
| |
Collapse
|
27
|
Zahn IE, Roelofsen C, Angenent GC, Bemer M. TM3 and STM3 Promote Flowering Together with FUL2 and MBP20, but Act Antagonistically in Inflorescence Branching in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2754. [PMID: 37570908 PMCID: PMC10420972 DOI: 10.3390/plants12152754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The moment at which a plant transitions to reproductive development is paramount to its life cycle and is strictly controlled by many genes. The transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) plays a central role in this process in Arabidopsis. However, the role of SOC1 in tomato (Solanum lycopersicum) has been sparsely studied. Here, we investigated the function of four tomato SOC1 homologs in the floral transition and inflorescence development. We thoroughly characterized the SOC1-like clade throughout the Solanaceae and selected four tomato homologs that are dynamically expressed upon the floral transition. We show that of these homologs, TOMATO MADS 3 (TM3) and SISTER OF TM3 (STM3) promote the primary and sympodial transition to flowering, while MADS-BOX PROTEIN 23 (MBP23) and MBP18 hardly contribute to flowering initiation in the indeterminate cultivar Moneyberg. Protein-protein interaction assays and whole-transcriptome analysis during reproductive meristem development revealed that TM3 and STM3 interact and share many targets with FRUITFULL (FUL) homologs, including cytokinin regulators. Furthermore, we observed that mutating TM3/STM3 affects inflorescence development, but counteracts the inflorescence-branching phenotype of ful2 mbp20. Collectively, this indicates that TM3/STM3 promote the floral transition together with FUL2/MBP20, while these transcription factors have opposite functions in inflorescence development.
Collapse
Affiliation(s)
- Iris E. Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Chris Roelofsen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
28
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
29
|
Deng L, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li CB, Zhong S, Li C. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. THE PLANT CELL 2023; 35:1038-1057. [PMID: 36471914 PMCID: PMC10015170 DOI: 10.1093/plcell/koac349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Edris S, Abulfaraj AA, Makki RM, Abo-Aba S, Algandaby MM, Sabir J, Jansen RK, El Domyati FM, Bahieldin A. Early Fruit Development Regulation-Related Genes Concordantly Expressed with TCP Transcription Factors in Tomato (Solanum lycopersicum). Curr Issues Mol Biol 2023; 45:2372-2380. [PMID: 36975523 PMCID: PMC10099719 DOI: 10.3390/cimb45030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The tomato (Solanum lycopersicum L.) is considered one of the most important vegetable crops globally, both agronomically and economically; however, its fruit development regulation network is still unclear. The transcription factors serve as master regulators, activating many genes and/or metabolic pathways throughout the entire plant life cycle. In this study, we identified the transcription factors that are coordinated with TCP gene family regulation in early fruit development by making use of the high-throughput sequencing of RNA (RNAseq) technique. A total of 23 TCP-encoding genes were found to be regulated at various stages during the growth of the fruit. The expression patterns of five TCPs were consistent with those of other transcription factors and genes. There are two unique subgroups of this larger family: class I and class II TCPs. Others were directly associated with the growth and/or ripening of fruit, while others were involved in the production of the hormone auxin. Moreover, it was discovered that TCP18 had an expression pattern that was similar to that of the ethylene-responsive transcription factor 4 (ERF4). Tomato fruit set and overall development are under the direction of a gene called auxin response factor 5 (ARF5). TCP15 revealed an expression that was in sync with this gene. This study provides insight into the potential processes that help in acquiring superior fruit qualities by accelerating fruit growth and ripening.
Collapse
Affiliation(s)
- Sherif Edris
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
- R&D Department, Al Borg Diagnostics, Jeddah 23514, Saudi Arabia
- Correspondence: ; Tel.: +966-59-366-2384
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Rania M. Makki
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salah Abo-Aba
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- National Research Centre, Department of Microbial Genetics, Genetic Engineering and Biotechnology Division, Giza 12622, Egypt
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fotouh M. El Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| |
Collapse
|
31
|
Salas-Sanjuán MDC, Rebolloso MDM, del Moral F, Valenzuela JL. Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito. Foods 2023; 12:1197. [PMID: 36981124 PMCID: PMC10048657 DOI: 10.3390/foods12061197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In this study, the feasibility of storing Marmande tomatoes (Solanum lycopersicum, cv Rojito) under hypobaric conditions was evaluated. The fruits were sorted into four lots of 72 fruits each. One lot was considered as a control, and the fruits were kept in the open box, while the fruits of the rest of the three remaining lots were enclosed in airtight containers and subjected to 101, 75 and 50 Kpa, respectively. Control fruits and airtight containers were kept at room temperature, and every three days from the beginning of the experiment the following main quality parameters were analysed: ethylene production rate, firmness, colour, total solids content, ascorbic acid, total phenolics and pigments, as well as a sensory analysis carried out by panellists. The results show that sub-atmospheric storage led a reduction in ethylene production, which was associated with a delay in ripening. The differences in the evolution of pigments were very significant, while a large degradation of chlorophylls was observed in the control fruits and in those kept at 101 kPa, in the fruits kept at 75 kPa and 50 kPa the degradation was much slower. In relation to carotenoid pigments, it was observed that sub-atmospheric treatments delayed their appearance compared to control and 101 kPa fruits. In relation to other quality parameters, it was found that control fruit and fruit held at 101 kPa softened more rapidly than fruit under sub-atmospheric conditions, whose loss of firmness was more gradual with differences found only at 9 and 12 days of storage with respect to fruit firmness at harvest. The appearance of these fruits was evaluated with the same score as at the time of harvesting, during 9 of the 12 days of the experiment, then a positive effect of sub-atmospheric treatments was also found in the sensory analysis. The results suggest that sub-atmospheric storage could be a suitable method of increasing the shelf-life of fruits.
Collapse
Affiliation(s)
- María del Carmen Salas-Sanjuán
- Department of Agronomy, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - María del Mar Rebolloso
- Department of Agronomy, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Fernando del Moral
- Department of Agronomy, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Juan Luis Valenzuela
- Department of Biology & Geology, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| |
Collapse
|
32
|
Zhu F, Wen W, Cheng Y, Alseekh S, Fernie AR. Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic pathways. ABIOTECH 2023; 4:47-56. [PMID: 37220537 PMCID: PMC10199974 DOI: 10.1007/s42994-022-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Plants are the most important sources of food for humans, as well as supplying many ingredients that are of great importance for human health. Developing an understanding of the functional components of plant metabolism has attracted considerable attention. The rapid development of liquid chromatography and gas chromatography, coupled with mass spectrometry, has allowed the detection and characterization of many thousands of metabolites of plant origin. Nowadays, elucidating the detailed biosynthesis and degradation pathways of these metabolites represents a major bottleneck in our understanding. Recently, the decreased cost of genome and transcriptome sequencing rendered it possible to identify the genes involving in metabolic pathways. Here, we review the recent research which integrates metabolomic with different omics methods, to comprehensively identify structural and regulatory genes of the primary and secondary metabolic pathways. Finally, we discuss other novel methods that can accelerate the process of identification of metabolic pathways and, ultimately, identify metabolite function(s).
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000 Bulgaria
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000 Bulgaria
| |
Collapse
|
33
|
Chirinos X, Ying S, Rodrigues MA, Maza E, Djari A, Hu G, Liu M, Purgatto E, Fournier S, Regad F, Bouzayen M, Pirrello J. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue. PLANT PHYSIOLOGY 2023; 191:610-625. [PMID: 36200876 PMCID: PMC9806557 DOI: 10.1093/plphys/kiac464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Ripening is the last stage of the developmental program in fleshy fruits. During this phase, fruits become edible and acquire their unique sensory qualities and post-harvest potential. Although our knowledge of the mechanisms that regulate fruit ripening has improved considerably over the past decades, the processes that trigger the transition to ripening remain poorly deciphered. While transcriptomic profiling of tomato (Solanum lycopersicum L.) fruit ripening to date has mainly focused on the changes occurring in pericarp tissues between the Mature Green and Breaker stages, our study addresses the changes between the Early Mature Green and Late Mature Green stages in the gel and pericarp separately. The data showed that the shift from an inability to initiate ripening to the capacity to undergo full ripening requires extensive transcriptomic reprogramming that takes place first in the locular tissues before extending to the pericarp. Genome-wide transcriptomic profiling revealed the wide diversity of transcription factor (TF) families engaged in the global reprogramming of gene expression and identified those specifically regulated at the Mature Green stage in the gel but not in the pericarp, thereby providing potential targets toward deciphering the initial factors and events that trigger the transition to ripening. The study also uncovered an extensive reformed homeostasis for most plant hormones, highlighting the multihormonal control of ripening initiation. Our data unveil the antagonistic roles of ethylene and auxin during the onset of ripening and show that auxin treatment delays fruit ripening via impairing the expression of genes required for System-2 autocatalytic ethylene production that is essential for climacteric ripening. This study unveils the detailed features of the transcriptomic reprogramming associated with the transition to ripening of tomato fruit and shows that the first changes occur in the locular gel before extending to pericarp and that a reformed auxin homeostasis is essential for the ripening to proceed.
Collapse
Affiliation(s)
| | | | - Maria Aurineide Rodrigues
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
- Institute of Biosciences, Department of Botany, Universidade de São Paulo, São Paulo, 11461 Brazil
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Guojian Hu
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sylvie Fournier
- Metatoul-AgromiX platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Farid Regad
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | | |
Collapse
|
34
|
Feng Z, Wu X, Wang J, Wu X, Wang B, Lu Z, Ye Z, Li G, Wang Y. Identification of Bottle Gourd ( Lagenaria siceraria) OVATE Family Genes and Functional Characterization of LsOVATE1. Biomolecules 2022; 13:biom13010085. [PMID: 36671470 PMCID: PMC9855390 DOI: 10.3390/biom13010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The OVATE gene family is a class of conserved transcription factors that play significant roles in plant growth, development, and abiotic stress, and also affect fruit shape in vegetable crops. Bottle gourd (Lagenaria siceraria), commonly known as calabash or gourd, is an annual climber belonging to the Cucurbitaceae family. Studies on bottle gourd OVATE genes are limited. In this study, we performed genome-wide identification of the OVATE gene family in bottle gourd, and identified a total of 20 OVATE family genes. The identified genes were unevenly distributed across 11 bottle gourd chromosomes. We also analyzed the gene homology, amino acid sequence conservation, and three-dimensional protein structure (via prediction) of the 20 OVATE family genes. We used RNA-seq data to perform expression analysis, which found 20 OVATE family genes to be differentially expressed based on spatial and temporal characteristics, suggesting that they have varying functions in the growth and development of bottle gourd. In situ hybridization and subcellular localization analysis showed that the expression characteristics of the LsOVATE1 gene, located on chromosome 7 homologous to OVATE, is a candidate gene for affecting the fruit shape of bottle gourd. In addition, RT-qPCR data from bottle gourd roots, stems, leaves, and flowers showed different spatial expression of the LsOVATE1 gene. The ectopic expression of LsOVATE1 in tomato generated a phenotype with a distinct fruit shape and development. Transgenic-positive plants that overexpressed LsOVATE1 had cone-shaped fruit, calyx hypertrophy, petal degeneration, and petal retention after flowering. Our results indicate that LsOVATE1 could serve important roles in bottle gourd development and fruit shape determination, and provide a basis for future research into the function of LsOVATE1.
Collapse
Affiliation(s)
- Zishan Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zihong Ye
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-0571-8640-3050
| |
Collapse
|
35
|
Sang K, Li J, Qian X, Yu J, Zhou Y, Xia X. The APETALA2a/DWARF/BRASSINAZOLE-RESISTANT 1 module contributes to carotenoid synthesis in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1238-1251. [PMID: 36271694 DOI: 10.1111/tpj.16009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Ethylene (ET) signaling plays a critical role in the ripening of climacteric fruits such as tomato. Brassinosteroids (BRs) were found to promote the ripening of both climacteric and non-climacteric fruits. However, the mechanism of interaction between ET and BRs during fruit ripening is unclear. Here, we found that BR synthesis and signaling increased after the onset of fruit ripening. Overexpression of the BR synthesis gene DWARF (DWF) promotedfruit softening, lycopene synthesis and ET production, whereas defect of DWF inhibited them. BRASSINAZOLE RESISTANT 1 (BZR1) as a key component of BR signaling, enhanced fruit lycopene content by directly activating the transcription of PSY1 gene. Interestingly, the increases in BR synthesis and BZR1 protein levels were dependent on ET signaling. Knocking out the ET-induced APETALA2a (AP2a) suppressed the expression of DWF and BR accumulation. Molecular assays demonstrated that AP2a was a positive regulator of DWF expression. Furthermore, 28-homobrassinolide, a bioactive BR, partially compensated the defects of lycopene accumulation and expression of PSY1 in ap2a mutant fruits. The results demonstrated that AP2a mediated ET signaling to regulate BR synthesis and signaling. BRs played critical roles in lycopene synthesis after onset of fruit ripening.
Collapse
Affiliation(s)
- Kangqi Sang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Junjie Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiangjie Qian
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| |
Collapse
|
36
|
Gambhir P, Singh V, Parida A, Raghuvanshi U, Kumar R, Sharma AK. Ethylene response factor ERF.D7 activates auxin response factor 2 paralogs to regulate tomato fruit ripening. PLANT PHYSIOLOGY 2022; 190:2775-2796. [PMID: 36130295 PMCID: PMC9706452 DOI: 10.1093/plphys/kiac441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Despite the obligatory role of ethylene in climacteric fruit ripening and the identification of 77 ethylene response factors (ERFs) in the tomato (Solanum lycopersicum) genome, the role of few ERFs has been validated in the ripening process. Here, using a comprehensive morpho-physiological, molecular, and biochemical approach, we demonstrate the regulatory role of ERF D7 (SlERF.D7) in tomato fruit ripening. SlERF.D7 expression positively responded to exogenous ethylene and auxin treatments, most likely in a ripening inhibitor-independent manner. SlERF.D7 overexpression (OE) promoted ripening, and its silencing had the opposite effect. Alterations in its expression modulated ethylene production, pigment accumulation, and fruit firmness. Consistently, genes involved in ethylene biosynthesis and signaling, lycopene biosynthesis, and cell wall loosening were upregulated in the OE lines and downregulated in RNAi lines. These transgenic lines also accumulated altered levels of indole-3-acetic acid at late-breaker stages. A positive association between auxin response factor 2 (ARF2) paralog's transcripts and SlERF.D7 mRNA levels and that SlARF2A and SlARF2B are direct targets of SlERF.D7 underpinned the perturbed auxin-ethylene crosstalk for the altered ripening program observed in the transgenic fruits. Overall, this study uncovers that SlERF.D7 positively regulates SlARF2A/B abundance to amalgamate auxin and ethylene signaling pathways for controlling tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
37
|
Cocetta G, Natalini A. Ethylene: Management and breeding for postharvest quality in vegetable crops. A review. FRONTIERS IN PLANT SCIENCE 2022; 13:968315. [PMID: 36452083 PMCID: PMC9702508 DOI: 10.3389/fpls.2022.968315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
Ethylene is a two-carbon gaseous plant growth regulator that involved in several important physiological events, including growth, development, ripening and senescence of fruits, vegetables, and ornamental crops. The hormone accelerates ripening of ethylene sensitive fruits, leafy greens and vegetables at micromolar concentrations, and its accumulation can led to fruit decay and waste during the postharvest stage. Several strategies of crops management and techniques of plant breeding have been attempted in the last decades to understand ethylene regulation pathways and ethylene-dependent biochemical and physiological processes, with the final aim to extend the produce shelf-life and improve the postharvest quality of fruits and vegetables. These investigation approaches involve the use of conventional and new breeding techniques, including precise genome-editing. This review paper aims to provide a relevant overview on the state of the art related to the use of modern breeding techniques focused on ethylene and ethylene-related metabolism, as well as on the possible postharvest technological applications for the postharvest management of ethylene-sensitive crops. An updated view and perspective on the implications of new breeding and management strategies to maintain the quality and the marketability of different crops during postharvest are given, with particular focus on: postharvest physiology (ethylene dependent) for mature and immature fruits and vegetables; postharvest quality management of vegetables: fresh and fresh cut products, focusing on the most important ethylene-dependent biochemical pathways; evolution of breeding technologies for facing old and new challenges in postharvest quality of vegetable crops: from conventional breeding and marker assisted selection to new breeding technologies focusing on transgenesis and gene editing. Examples of applied breeding techniques for model plants (tomato, zucchini and brocccoli) are given to elucidate ethylene metabolism, as well as beneficial and detrimental ethylene effects.
Collapse
Affiliation(s)
- Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Natalini
- Council for Agricultural Research and Economics – Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, Italy
| |
Collapse
|
38
|
Qi X, Dong Y, Liu C, Song L, Chen L, Li M. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). PHYSIOLOGIA PLANTARUM 2022; 174:e13834. [PMID: 36437693 DOI: 10.1111/ppl.13834] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The rapid softening of sweet cherry fruits during ripening results in the deterioration of fruit quality. However, few genes related to sweet cherry fruit ripening and softening have been identified, and the molecular regulatory mechanisms underlying this process are poorly understood. Here, we identified and functionally characterized PavNAC56, a NAC transcription factor that positively regulates sweet cherry fruit ripening and softening. Gene expression analyses showed that PavNAC56 was specifically and abundantly expressed in the fruit, and its transcript levels increased in response to abscisic acid (ABA). A subcellular localization analysis revealed that PavNAC56 is a nucleus-localized protein. Virus-induced gene silencing of PavNAC56 inhibited fruit ripening, enhanced fruit firmness, decreased the contents of ABA, anthocyanins, and soluble solids, and down-regulated several fruit ripening-related genes. Yeast one-hybrid and dual-luciferase assays showed that PavNAC56 directly binds to the promoters of several genes related to cell wall metabolism (PavPG2, PavEXPA4, PavPL18, and PavCEL8) and activates their expression. Overall, our findings show that PavNAC56 plays an indispensable role in controlling the ripening and softening of sweet cherry fruit and provides new insights into the regulatory mechanisms by which NAC transcription factors affect nonclimacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanxin Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
39
|
Li F, Fu M, Zhou S, Xie Q, Chen G, Chen X, Hu Z. A tomato HD-zip I transcription factor, VAHOX1, acts as a negative regulator of fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac236. [PMID: 36643762 PMCID: PMC9832867 DOI: 10.1093/hr/uhac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are only present in higher plants and are involved in plant development and stress responses. However, our understanding of their participation in the fruit ripening of economical plants, such as tomato (Solanum lycopersicum), remains largely unclear. Here, we report that VAHOX1, a member of the tomato HD-Zip I subfamily, was expressed in all tissues, was highly expressed in breaker+4 fruits, and could be induced by ethylene. RNAi repression of VAHOX1 (VAHOX1-RNAi) resulted in accelerated fruit ripening, enhanced sensitivity to ethylene, and increased total carotenoid content and ethylene production. Conversely, VAHOX1 overexpression (VAHOX1-OE) in tomato had the opposite effect. RNA-Seq results showed that altering VAHOX1 expression affected the transcript accumulation of a series of genes involved in ethylene biosynthesis and signal transduction and cell wall modification. Additionally, a dual-luciferase reporter assay, histochemical analysis of GUS activity and a yeast one-hybrid (Y1H) assay revealed that VAHOX1 could activate the expression of AP2a. Our findings may expand our knowledge about the physiological functions of HD-Zip transcription factors in tomato and highlight the diversities of transcriptional regulation during the fruit ripening process.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Mengjie Fu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xuqing Chen
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| | - Zongli Hu
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| |
Collapse
|
40
|
Tomato MicroRNAs and Their Functions. Int J Mol Sci 2022; 23:ijms231911979. [PMID: 36233279 PMCID: PMC9569937 DOI: 10.3390/ijms231911979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) define an essential class of non-coding small RNAs that function as posttranscriptional modulators of gene expression. They are coded by MIR genes, several hundreds of which exist in the genomes of Arabidopsis and rice model plants. The functional analysis of Arabidopsis and rice miRNAs indicate that their miRNAs regulate a wide range of processes including development, reproduction, metabolism, and stress. Tomato serves as a major model crop for the study of fleshy fruit development and ripening but until recently, information on the identity of its MIR genes and their coded miRNAs was limited and occasionally contradictory. As a result, the majority of tomato miRNAs remained uncharacterized. Recently, a comprehensive annotation of tomato MIR genes has been carried out by several labs and us. In this review, we curate and organize the resulting partially overlapping MIR annotations into an exhaustive and non-redundant atlas of tomato MIR genes. There are 538 candidate and validated MIR genes in the atlas, of which, 169, 18, and 351 code for highly conserved, Solanaceae-specific, and tomato-specific miRNAs, respectively. Furthermore, a critical review of functional studies on tomato miRNAs is presented, highlighting validated and possible functions, creating a useful resource for future tomato miRNA research.
Collapse
|
41
|
Tyagi K, Sunkum A, Rai M, Yadav A, Sircar S, Sreelakshmi Y, Sharma R. Seeing the unseen: a trifoliate (MYB117) mutant allele fortifies folate and carotenoids in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:38-54. [PMID: 35899408 DOI: 10.1111/tpj.15925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In tomato (Solanum lycopersicum), mutations in the gene encoding the R2R3-MYB117 transcription factor elicit trifoliate leaves and initiate the formation of axillary meristems; however, their effects on fruit ripening remain unexplored. The fruits of a new trifoliate (tf) mutant (tf-5) were firmer and had higher °Brix values and higher folate and carotenoid contents. The transcriptome, proteome, and metabolome profiling of tf-5 reflected a broad-spectrum change in cellular homeostasis. The tf-5 allele enhanced the fruit firmness by suppressing cell wall softening-related proteins. tf-5 fruit displayed a substantial increase in amino acids, particularly γ-aminobutyric acid, with a parallel reduction in aminoacyl-tRNA synthases. The increased lipoxygenase protein and transcript levels seemingly elevated jasmonic acid levels. In addition, increased abscisic acid hydrolase transcript levels coupled with reduced precursor supply lowered abscisic acid levels. The upregulation of carotenoids was mediated by modulation of methylerythreitol and plastoquinone pathways and increased the levels of carotenoid isomerization proteins. The upregulation of folate in tf-5 was connoted by the increase in the precursor p-aminobenzoic acid and transcript levels of several folate biosynthesis genes. The reduction in pterin-6-carboxylate levels and γ-glutamyl hydrolase activity indicated that reduced folate degradation in tf-5 increased folate levels. Our study delineates that in addition to leaf development, MYB117 also influences fruit metabolism. The tf-5 allele can be used to increase γ-aminobutyric acid, carotenoid, and folate levels in tomato.
Collapse
Affiliation(s)
- Kamal Tyagi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amita Yadav
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanchari Sircar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
42
|
Su D, Liu K, Yu Z, Li Y, Zhang Y, Zhu Y, Wu Y, He H, Zeng X, Chen H, Grierson D, Deng H, Liu M. Genome-wide characterization of the tomato GASA family identifies SlGASA1 as a repressor of fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac222. [PMID: 36643743 PMCID: PMC9832878 DOI: 10.1093/hr/uhac222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Gibberellins (GAs) play crucial roles in a wide range of developmental processes and stress responses in plants. However, the roles of GA-responsive genes in tomato (Solanum lycopersicum) fruit development remain largely unknown. Here, we identify 17 GASA (Gibberellic Acid-Stimulated Arabidopsis) family genes in tomato. These genes encode proteins with a cleavable signal peptide at their N terminus and a conserved GASA domain at their C terminus. The expression levels of all tomato GASA family genes were responsive to exogenous GA treatment, but adding ethylene eliminated this effect. Comprehensive expression profiling of SlGASA family genes showed that SlGASA1 follows a ripening-associated expression pattern, with low expression levels during fruit ripening, suggesting it plays a negative role in regulating ripening. Overexpressing SlGASA1 using a ripening-specific promoter delayed the onset of fruit ripening, whereas SlGASA1-knockdown fruits displayed accelerated ripening. Consistent with their delayed ripening, SlGASA1-overexpressing fruits showed significantly reduced ethylene production and carotenoid contents compared to the wild type. Moreover, ripening-related genes were downregulated in SlGASA1-overexpressing fruits but upregulated in SlGASA1-knockdown fruits compared to the wild type. Yeast two-hybrid, co-immunoprecipitation, transactivation, and DNA pull-down assays indicated that SlGASA1 interacts with the key ripening regulator FRUITFULL1 and represses its activation of the ethylene biosynthesis genes ACS2 and ACO1. Our findings shed new light on the role and mode of action of a GA-responsive gene in tomato fruit ripening.
Collapse
Affiliation(s)
| | | | - Zhuoshu Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ying Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hongyu He
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xiaodan Zeng
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Honglin Chen
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Heng Deng
- Correspondence author: Mingchun Liu Tel: 02885400432, Fax: 02885400432 Heng Deng Tel: 02885400432, Fax: 02885400432
| | - Mingchun Liu
- Correspondence author: Mingchun Liu Tel: 02885400432, Fax: 02885400432 Heng Deng Tel: 02885400432, Fax: 02885400432
| |
Collapse
|
43
|
Ampomah-Dwamena C, Tomes S, Thrimawithana AH, Elborough C, Bhargava N, Rebstock R, Sutherland P, Ireland H, Allan AC, Espley RV. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:967143. [PMID: 36186009 PMCID: PMC9520574 DOI: 10.3389/fpls.2022.967143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.
Collapse
Affiliation(s)
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
- BioLumic Limited, Palmerston North, New Zealand
| | - Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| |
Collapse
|
44
|
Zhu F, Jadhav SS, Tohge T, Salem MA, Lee JM, Giovannoni JJ, Cheng Y, Alseekh S, Fernie AR. A comparative transcriptomics and eQTL approach identifies SlWD40 as a tomato fruit ripening regulator. PLANT PHYSIOLOGY 2022; 190:250-266. [PMID: 35512210 PMCID: PMC9434188 DOI: 10.1093/plphys/kiac200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
Although multiple vital genes with strong effects on the tomato (Solanum lycopersicum) ripening process have been identified via the positional cloning of ripening mutants and cloning of ripening-related transcription factors (TFs), recent studies suggest that it is unlikely that we have fully characterized the gene regulatory networks underpinning this process. Here, combining comparative transcriptomics and expression QTLs, we identified 16 candidate genes involved in tomato fruit ripening and validated them through virus-induced gene silencing analysis. To further confirm the accuracy of the approach, one potential ripening regulator, SlWD40 (WD-40 repeats), was chosen for in-depth analysis. Co-expression network analysis indicated that master regulators such as RIN (ripening inhibitor) and NOR (nonripening) as well as vital TFs including FUL1 (FRUITFUL1), SlNAC4 (NAM, ATAF1,2, and CUC2 4), and AP2a (Activating enhancer binding Protein 2 alpha) strongly co-expressed with SlWD40. Furthermore, SlWD40 overexpression and RNAi lines exhibited substantially accelerated and delayed ripening phenotypes compared with the wild type, respectively. Moreover, transcriptome analysis of these transgenics revealed that expression patterns of ethylene biosynthesis genes, phytoene synthase, pectate lyase, and branched chain amino transferase 2, in SlWD40-RNAi lines were similar to those of rin and nor fruits, which further demonstrated that SlWD40 may act as an important ripening regulator in conjunction with RIN and NOR. These results are discussed in the context of current models of ripening and in terms of the use of comparative genomics and transcriptomics as an effective route for isolating causal genes underlying differences in genotypes.
Collapse
Affiliation(s)
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Menoufia 32511, Egypt
| | | | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | | | | |
Collapse
|
45
|
Bianchetti R, Bellora N, de Haro LA, Zuccarelli R, Rosado D, Freschi L, Rossi M, Bermudez L. Phytochrome-Mediated Light Perception Affects Fruit Development and Ripening Through Epigenetic Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:870974. [PMID: 35574124 PMCID: PMC9096621 DOI: 10.3389/fpls.2022.870974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Phytochrome (PHY)-mediated light and temperature perception has been increasingly implicated as important regulator of fruit development, ripening, and nutritional quality. Fruit ripening is also critically regulated by chromatin remodeling via DNA demethylation, though the molecular basis connecting epigenetic modifications in fruits and environmental cues remains largely unknown. Here, to unravel whether the PHY-dependent regulation of fruit development involves epigenetic mechanisms, an integrative analysis of the methylome, transcriptome and sRNAome of tomato fruits from phyA single and phyB1B2 double mutants was performed in immature green (IG) and breaker (BK) stages. The transcriptome analysis showed that PHY-mediated light perception regulates more genes in BK than in the early stages of fruit development (IG) and that PHYB1B2 has a more substantial impact than PHYA in the fruit transcriptome, in both analyzed stages. The global profile of methylated cytosines revealed that both PHYA and PHYB1B2 affect the global methylome, but PHYB1B2 has a greater impact on ripening-associated methylation reprogramming across gene-rich genomic regions in tomato fruits. Remarkably, promoters of master ripening-associated transcription factors (TF) (RIN, NOR, CNR, and AP2a) and key carotenoid biosynthetic genes (PSY1, PDS, ZISO, and ZDS) remained highly methylated in phyB1B2 from the IG to BK stage. The positional distribution and enrichment of TF binding sites were analyzed over the promoter region of the phyB1B2 DEGs, exposing an overrepresentation of binding sites for RIN as well as the PHY-downstream effectors PIFs and HY5/HYH. Moreover, phyA and phyB1B2 mutants showed a positive correlation between the methylation level of sRNA cluster-targeted genome regions in gene bodies and mRNA levels. The experimental evidence indicates that PHYB1B2 signal transduction is mediated by a gene expression network involving chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes, and remodeling factors) and transcriptional regulators leading to altered mRNA profile of ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits.
Collapse
Affiliation(s)
- Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nicolas Bellora
- Institute of Nuclear Technologies for Health (Intecnus), National Scientific and Technical Research Council (CONICET), Bariloche, Argentina
| | - Luis A. de Haro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Bermudez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, INTA-CONICET, Castelar, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Yuan Y, Ren S, Liu X, Su L, Wu Y, Zhang W, Li Y, Jiang Y, Wang H, Fu R, Bouzayen M, Liu M, Zhang Y. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. THE NEW PHYTOLOGIST 2022; 234:164-178. [PMID: 35048386 DOI: 10.1111/nph.17977] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Carotenoids are vital phytonutrients widely recognised for their health benefits. Therefore, it is vital to thoroughly investigate the metabolic regulatory network underlying carotenoid biosynthesis and accumulation to open new leads towards improving their contents in vegetables and crops. The outcome of our study defines SlWRKY35 as a positive regulator of carotenoid biosynthesis in tomato. SlWRKY35 can directly activate the expression of the 1-deoxy-d-xylulose 5-phosphate synthase (SlDXS1) gene to reprogramme metabolism towards the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, leading to enhanced carotenoid accumulation. We also show that the master regulator SlRIN directly regulates the expression of SlWRKY35 during tomato fruit ripening. Compared with the SlLCYE overexpression lines, coexpression of SlWRKY35 and SlLCYE can further enhance lutein production in transgenic tomato fruit, indicating that SlWRKY35 represents a potential target towards designing innovative metabolic engineering strategies for carotenoid derivatives. In addition to providing new insights into the metabolic regulatory network associated with tomato fruit ripening, our data define a new tool for improving fruit content in specific carotenoid compounds.
Collapse
Affiliation(s)
- Yong Yuan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Siyan Ren
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liyang Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wen Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Yidan Jiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hsihua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mondher Bouzayen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- GBF, University of Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
47
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
48
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
49
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
50
|
Ma L, Wang Q, Zheng Y, Guo J, Yuan S, Fu A, Bai C, Zhao X, Zheng S, Wen C, Guo S, Gao L, Grierson D, Zuo J, Xu Y. Cucurbitaceae genome evolution, gene function and molecular breeding. HORTICULTURE RESEARCH 2022; 9:uhab057. [PMID: 35043161 PMCID: PMC8969062 DOI: 10.1093/hr/uhab057] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunmei Bai
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shufang Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaogui Guo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|