1
|
Feng Y, Wang Y, Wang T, Liu L. NUCLEAR RNA POLYMERASE D1 is essential for tomato embryogenesis and desiccation tolerance in seeds. Cell Rep 2025; 44:115345. [PMID: 39982816 DOI: 10.1016/j.celrep.2025.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Plant-unique RNA polymerase IV (RNA Pol IV) governs the establishment of small RNA (sRNA)-directed DNA methylation (RdDM). In dicotyledon, elevated RdDM activity is often associated with embryogenesis; however, the loss of RdDM frequently results in indiscernible phenotypes. Here, we report that the absence of SlNRPD1, encoding the largest subunit of RNA Pol IV, leads to diminished RdDM and abnormal embryogenesis in tomato (Solanum lycopersicum). Hypermethylation at pericentric transposable elements (TEs) and a burst of 21/22-nt siRNA from the distal and pericentric genes are observed in slnrpd1 embryos. The specific activation of endoribonuclease Dicer-like 2 (SlDCL2b/c/d) is correlated with 21/22-nt sRNA accumulation. Auxin and WUSCHEL-related homeobox (WOX) signaling gene expression is altered by mCHH hypomethylation, which may lead to defective embryos. Due to improper maturation, the slnrpd1 embryos cannot withstand post-harvest desiccation. This study provides insights into how DNA methylation regulates plant embryogenesis.
Collapse
Affiliation(s)
- Yixuan Feng
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Yiming Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Tai Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China.
| | - Lingtong Liu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
2
|
Deans NC, Talbot JERB, Li M, Sáez-González C, Hövel I, Heavens D, Stam M, Hollick JB. Paramutation at the maize pl1 locus is associated with RdDM activity at distal tandem repeats. PLoS Genet 2024; 20:e1011296. [PMID: 38814980 PMCID: PMC11166354 DOI: 10.1371/journal.pgen.1011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/11/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Exceptions to Mendelian inheritance often highlight novel chromosomal behaviors. The maize Pl1-Rhoades allele conferring plant pigmentation can display inheritance patterns deviating from Mendelian expectations in a behavior known as paramutation. However, the chromosome features mediating such exceptions remain unknown. Here we show that small RNA production reflecting RNA polymerase IV function within a distal downstream set of five tandem repeats is coincident with meiotically-heritable repression of the Pl1-Rhoades transcription unit. A related pl1 haplotype with three, but not one with two, repeat units also displays the trans-homolog silencing typifying paramutations. 4C interactions, CHD3a-dependent small RNA profiles, nuclease sensitivity, and polyadenylated RNA levels highlight a repeat subregion having regulatory potential. Our comparative and mutant analyses show that transcriptional repression of Pl1-Rhoades correlates with 24-nucleotide RNA production and cytosine methylation at this subregion indicating the action of a specific DNA-dependent RNA polymerase complex. These findings support a working model in which pl1 paramutation depends on trans-chromosomal RNA-directed DNA methylation operating at a discrete cis-linked and copy-number-dependent transcriptional regulatory element.
Collapse
Affiliation(s)
- Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Joy-El R. B. Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Mowei Li
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Cristian Sáez-González
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Jay B. Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
3
|
Sidorenko LV, Chandler VL, Wang X, Peterson T. Transcribed enhancer sequences are required for maize p1 paramutation. Genetics 2024; 226:iyad178. [PMID: 38169343 PMCID: PMC10763531 DOI: 10.1093/genetics/iyad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/27/2023] [Indexed: 01/05/2024] Open
Abstract
Paramutation is a transfer of heritable silencing states between interacting endogenous alleles or between endogenous alleles and homologous transgenes. Prior results demonstrated that paramutation occurs at the P1-rr (red pericarp and red cob) allele of the maize p1 (pericarp color 1) gene when exposed to a transgene containing a 1.2-kb enhancer fragment (P1.2) of P1-rr. The paramutable P1-rr allele undergoes transcriptional silencing resulting in a paramutant light-pigmented P1-rr' state. To define more precisely the sequences required to elicit paramutation, the P1.2 fragment was further subdivided, and the fragments transformed into maize plants and crossed with P1-rr. Analysis of the progeny plants showed that the sequences required for paramutation are located within a ∼600-bp segment of P1.2 and that this segment overlaps with a previously identified enhancer that is present in 4 direct repeats in P1-rr. The paramutagenic segment is transcribed in both the expressed P1-rr and the silenced P1-rr'. Transcription is sensitive to α-amanitin, indicating that RNA polymerase II mediates most of the transcription of this sequence. Although transcription within the paramutagenic sequence was similar in all tested genotypes, small RNAs were more abundant in the silenced P1-rr' epiallele relative to the expressed P1-rr allele. In agreement with prior results indicating the association of RNA-mediated DNA methylation in p1 paramutation, DNA blot analyses detected increased cytosine methylation of the paramutant P1-rr' sequences homologous to the transgenic P1.2 subfragments. Together these results demonstrate that the P1-rr enhancer repeats mediate p1 paramutation.
Collapse
Affiliation(s)
- Lyudmila V Sidorenko
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
| | - Vicki L Chandler
- Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Minerva University, 14 Mint Plaza, Suite 300, San Francisco, CA 94103, USA
| | - Xiujuan Wang
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA 50131, USA
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| | - Thomas Peterson
- Department of Genetics, Development, and Cellular Biology, Department of Agronomy, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
4
|
Aubert J, Bellegarde F, Oltehua-Lopez O, Leblanc O, Arteaga-Vazquez MA, Martienssen RA, Grimanelli D. AGO104 is a RdDM effector of paramutation at the maize b1 locus. PLoS One 2022; 17:e0273695. [PMID: 36040902 PMCID: PMC9426929 DOI: 10.1371/journal.pone.0273695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.
Collapse
Affiliation(s)
- Juliette Aubert
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fanny Bellegarde
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Olivier Leblanc
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, United States of America
| | - Daniel Grimanelli
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- * E-mail:
| |
Collapse
|
5
|
Wang Z, Butel N, Santos-González J, Simon L, Wärdig C, Köhler C. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biol 2021; 22:141. [PMID: 33957942 PMCID: PMC8101200 DOI: 10.1186/s13059-021-02359-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hybridization of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. In Arabidopsis, loss of function of NRPD1, encoding the largest subunit of the plant-specific RNA polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates short RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. Recent work suggests that suppression of the triploid block by mutants in RdDM components differs, depending on whether the diploid pollen is derived from tetraploid plants or from the omission in second division 1 (osd1) mutant. This study aims to understand this difference. RESULTS In this study, we find that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While first homozygous generation mutants in RdDM components NRPD1, RDR2, NRPE1, and DRM2 have weak or no ability to rescue the triploid block, they are able to suppress the triploid block with successive generations of inbreeding. Inbreeding of nrpd1 was connected with a transgenerational loss of non-CG DNA methylation on sites jointly regulated by CHROMOMETHYLASES 2 and 3. CONCLUSIONS Our data reveal that loss of RdDM function differs in its effect in early and late generations, which has important implications when interpreting the effect of RdDM mutants.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Present address: College of Horticulture, Nanjing Agricultural University and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, 210095 China
| | - Nicolas Butel
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Lauriane Simon
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
6
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
7
|
Zhang S, Wu XQ, Xie HT, Zhao SS, Wu JG. Multifaceted roles of RNA polymerase IV in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5725-5732. [PMID: 32969476 PMCID: PMC7541909 DOI: 10.1093/jxb/eraa346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss the latest findings on RNA polymerase IV (Pol IV) in plant growth and development, providing new insights and expanding on new ideas for further, more in-depth research on Pol IV.
Collapse
Affiliation(s)
- Shuai Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Qing Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Ting Xie
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Shan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Wang Z, Butel N, Santos-González J, Borges F, Yi J, Martienssen RA, Martinez G, Köhler C. Polymerase IV Plays a Crucial Role in Pollen Development in Capsella. THE PLANT CELL 2020; 32:950-966. [PMID: 31988265 PMCID: PMC7145478 DOI: 10.1105/tpc.19.00938] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 05/04/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), DNA-dependent RNA polymerase IV (Pol IV) is required for the formation of transposable element (TE)-derived small RNA transcripts. These transcripts are processed by DICER-LIKE3 into 24-nucleotide small interfering RNAs (siRNAs) that guide RNA-directed DNA methylation. In the pollen grain, Pol IV is also required for the accumulation of 21/22-nucleotide epigenetically activated siRNAs, which likely silence TEs via post-transcriptional mechanisms. Despite this proposed role of Pol IV, its loss of function in Arabidopsis does not cause a discernible pollen defect. Here, we show that the knockout of NRPD1, encoding the largest subunit of Pol IV, in the Brassicaceae species Capsella (Capsella rubella), caused postmeiotic arrest of pollen development at the microspore stage. As in Arabidopsis, all TE-derived siRNAs were depleted in Capsella nrpd1 microspores. In the wild-type background, the same TEs produced 21/22-nucleotide and 24-nucleotide siRNAs; these processes required Pol IV activity. Arrest of Capsella nrpd1 microspores was accompanied by the deregulation of genes targeted by Pol IV-dependent siRNAs. TEs were much closer to genes in Capsella compared with Arabidopsis, perhaps explaining the essential role of Pol IV in pollen development in Capsella. Our discovery that Pol IV is functionally required in Capsella microspores emphasizes the relevance of investigating different plant models.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Nicolas Butel
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Filipe Borges
- Howard Hughes Medical Institute and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Jun Yi
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Robert A Martienssen
- Howard Hughes Medical Institute and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - German Martinez
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
9
|
Forestan C, Farinati S, Rouster J, Lassagne H, Lauria M, Dal Ferro N, Varotto S. Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 DOI: 10.1534/genetics.117.300625/-/dc1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 05/28/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Silvia Farinati
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Jacques Rouster
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Hervé Lassagne
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Massimiliano Lauria
- The Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
10
|
Seifert F, Thiemann A, Grant-Downton R, Edelmann S, Rybka D, Schrag TA, Frisch M, Dickinson HG, Melchinger AE, Scholten S. Parental Expression Variation of Small RNAs Is Negatively Correlated with Grain Yield Heterosis in a Maize Breeding Population. FRONTIERS IN PLANT SCIENCE 2018; 9:13. [PMID: 29441076 PMCID: PMC5797689 DOI: 10.3389/fpls.2018.00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/04/2018] [Indexed: 05/26/2023]
Abstract
Heterosis refers to a quantitative phenomenon in which F1 hybrid trait values exceed the mean of the parental values in a positive direction. Generally, it is dependent on a high degree of heterozygosity, which is maintained in hybrid breeding by developing parental lines in separate, genetically distinct heterotic groups. The mobility of small RNAs (sRNAs) that mediate epigenetic regulation of gene expression renders them promising candidates for modulating the action of combined diverse genomes in trans-and evidence already indicates their contribution to transgressive phenotypes. By sequencing small RNA libraries of a panel of 21 maize parental inbred lines we found a low overlap of 35% between the sRNA populations from both distinct heterotic groups. Surprisingly, in contrast to genetic or gene expression variation, parental sRNA expression variation is negatively correlated with grain yield (GY) heterosis. Among 0.595 million expressed sRNAs, we identified 9,767, predominantly 22- and 24-nt long sRNAs, which showed an association of their differential expression between parental lines and GY heterosis of the respective hybrids. Of these sRNAs, 3,485 or 6,282 showed an association with high or low GY heterosis, respectively, thus the low heterosis associated group prevailing at 64%. The heterosis associated sRNAs map more frequently to genes that show differential expression between parental lines than reference sets. Together these findings suggest that trans-chromosomal actions of sRNAs in hybrids might add up to a negative contribution in heterosis formation, mediated by unfavorable gene expression regulation. We further revealed an exclusive accumulation of 22-nt sRNAs that are associated with low GY heterosis in pericentromeric genomic regions. That recombinational suppression led to this enrichment is indicated by its close correlation with low recombination rates. The existence of this enrichment, which we hypothesize resulted from the separated breeding of inbred lines within heterotic groups, may have implications for hybrid breeding strategies addressing the recombinational constraints characteristic of complex crop genomes.
Collapse
Affiliation(s)
- Felix Seifert
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | | | | | - Susanne Edelmann
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Dominika Rybka
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Tobias A. Schrag
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus-Liebig University, Giessen, Germany
| | - Hugh G. Dickinson
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Albrecht E. Melchinger
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stefan Scholten
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 PMCID: PMC5887141 DOI: 10.1534/genetics.117.300625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
|
12
|
|
13
|
Lunardon A, Forestan C, Farinati S, Axtell MJ, Varotto S. Genome-Wide Characterization of Maize Small RNA Loci and Their Regulation in the required to maintain repression6-1 (rmr6-1) Mutant and Long-Term Abiotic Stresses. PLANT PHYSIOLOGY 2016; 170:1535-48. [PMID: 26747286 PMCID: PMC4775107 DOI: 10.1104/pp.15.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Cristian Forestan
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Silvia Farinati
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Michael J Axtell
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Serena Varotto
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| |
Collapse
|
14
|
Mejía-Guerra MK, Li W, Galeano NF, Vidal M, Gray J, Doseff AI, Grotewold E. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites. THE PLANT CELL 2015; 27:3309-20. [PMID: 26628745 PMCID: PMC4707454 DOI: 10.1105/tpc.15.00630] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/11/2015] [Indexed: 05/03/2023]
Abstract
Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop.
Collapse
Affiliation(s)
- María Katherine Mejía-Guerra
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Wei Li
- Department of Physiology and Cell Biology, 305B Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Narmer F Galeano
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Carrera 23 No 60-63 Manizales, Colombia
| | - Mabel Vidal
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Andrea I Doseff
- Department of Physiology and Cell Biology, 305B Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Erich Grotewold
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
15
|
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:67-76. [PMID: 26164237 DOI: 10.1016/j.pbi.2015.05.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
In plant genomes the vast majority of transposable elements (TEs) are found in a transcriptionally silenced state that is epigenetically propagated from generation to generation. Although the mechanism of this maintenance of silencing has been well studied, it is now clear that the pathways responsible for maintaining TEs in a silenced state differ from the pathways responsible for initially targeting the TE for silencing. Recently, attention in this field has focused on investigating the molecular mechanisms that initiate and establish TE silencing. Here we review the current models of how TEs are triggered for silencing, the data supporting each model, and the key future questions in this fast moving field.
Collapse
Affiliation(s)
- Dalen Fultz
- Department of Molecular Genetics, The Ohio State University, United States
| | - Sarah G Choudury
- Department of Molecular Genetics, The Ohio State University, United States
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
16
|
Wang Y, Ma H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits. THE NEW PHYTOLOGIST 2015; 207:1198-212. [PMID: 25921392 DOI: 10.1111/nph.13432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/24/2015] [Indexed: 05/25/2023]
Abstract
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
17
|
Gabriel JM, Hollick JB. Paramutation in maize and related behaviors in metazoans. Semin Cell Dev Biol 2015; 44:11-21. [PMID: 26318741 DOI: 10.1016/j.semcdb.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
Paramutation refers to both the process and results of trans-homolog interactions causing heritable changes in both gene regulation and silencing abilities. Originally described in plants, paramutation-like behaviors have now been reported in model metazoans. Here we detail our current understanding of the paramutation mechanism as defined in Zea mays and compare this paradigm to these metazoan examples. Experimental results implicate functional roles of small RNAs in all these model organisms that highlight a diversity of mechanisms by which these molecules specify meiotically heritable regulatory information in the eukarya.
Collapse
Affiliation(s)
- Janelle M Gabriel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Jay B Hollick
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Pilu R. Paramutation phenomena in plants. Semin Cell Dev Biol 2015; 44:2-10. [DOI: 10.1016/j.semcdb.2015.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
19
|
Giacopelli BJ, Hollick JB. Trans-Homolog Interactions Facilitating Paramutation in Maize. PLANT PHYSIOLOGY 2015; 168:1226-36. [PMID: 26149572 PMCID: PMC4528761 DOI: 10.1104/pp.15.00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/03/2015] [Indexed: 05/13/2023]
Abstract
Paramutations represent locus-specific trans-homolog interactions affecting the heritable silencing properties of endogenous alleles. Although examples of paramutation are well studied in maize (Zea mays), the responsible mechanisms remain unclear. Genetic analyses indicate roles for plant-specific DNA-dependent RNA polymerases that generate small RNAs, and current working models hypothesize that these small RNAs direct heritable changes at sequences often acting as transcriptional enhancers. Several studies have defined specific sequences that mediate paramutation behaviors, and recent results identify a diversity of DNA-dependent RNA polymerase complexes operating in maize. Other reports ascribe broader roles for some of these complexes in normal genome function. This review highlights recent research to understand the molecular mechanisms of paramutation and examines evidence relevant to small RNA-based modes of transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Brian John Giacopelli
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jay Brian Hollick
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
20
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
21
|
Greaves IK, Gonzalez-Bayon R, Wang L, Zhu A, Liu PC, Groszmann M, Peacock WJ, Dennis ES. Epigenetic Changes in Hybrids. PLANT PHYSIOLOGY 2015; 168:1197-205. [PMID: 26002907 PMCID: PMC4528738 DOI: 10.1104/pp.15.00231] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/18/2015] [Indexed: 05/19/2023]
Abstract
Genome-wide approaches to the study of hybrid vigor have identified epigenetic changes in the hybrid nucleus in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). DNA methylation associated with 24-nucleotide small interfering RNAs exhibits transallelic effects in hybrids of Arabidopsis and other species. Some of the transmethylation changes are inherited and some affect gene expression. Hybrids have larger leaves than those of the parents and have increases in cell size and number. The increased leaf size results in a greater photosynthetic capacity, which may support the increased vegetative and reproductive yields of the F1 hybrids. Genes and metabolic pathways that have altered expression relative to the parents include loci involved in responses to hormones and to biotic and abiotic stress. Whereas epigenetically induced changes in gene expression may contribute to hybrid vigor, the link between the transcriptional changes and the hybrid phenotype is not confirmed. Recurrent selection of high yielding F1 lines from the F2/F3 of a number of crops has fixed heterosis yields in pure breeding lines. These hybrid-like lines may have valuable applications in crop systems.
Collapse
Affiliation(s)
- Ian K Greaves
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - Rebeca Gonzalez-Bayon
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - Li Wang
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - Anyu Zhu
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - Pei-Chuan Liu
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - Michael Groszmann
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - W James Peacock
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| | - Elizabeth S Dennis
- Commonwealth Scientific and Industrial Research Organization Agricultural Flagship, Canberra, Australian Capital Territory 2600, Australia (I.K.G., R.G.-B., L.W., A.Z., P.-C.L., W.J.P., E.S.D.);Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia (M.G.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (W.J.P., E.S.D.)
| |
Collapse
|
22
|
Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M. Battles and hijacks: noncoding transcription in plants. TRENDS IN PLANT SCIENCE 2015; 20:362-71. [PMID: 25850611 DOI: 10.1016/j.tplants.2015.03.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 05/08/2023]
Abstract
Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.
Collapse
Affiliation(s)
- Federico Ariel
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Natali Romero-Barrios
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Teddy Jégu
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
23
|
Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 2015; 199:1107-25. [PMID: 25653306 DOI: 10.1534/genetics.115.174714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.
Collapse
|
24
|
Paszkowski J. Controlled activation of retrotransposition for plant breeding. Curr Opin Biotechnol 2015; 32:200-206. [PMID: 25615932 DOI: 10.1016/j.copbio.2015.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 12/16/2022]
Abstract
Plant genomes consist to a large extent of transposable elements (TEs), predominantly retrotransposons. Their accumulation through periodic transposition bursts has shaped the structure and regulatory organization of plant genomes, often contributing to phenotypic traits. Transposon-generated phenotypes selected by humans during plant domestication have been maintained under strict selection during subsequent plant breeding. Our knowledge of the epigenetic, environmental, and developmental regulation of TE activity has advanced considerably in recent years. Here I will consider TEs as an attractive endogenous source of genetic variation that can be liberated in a controlled fashion and thus offer novel phenotypic diversity to be selected for crop improvement.
Collapse
Affiliation(s)
- Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom.
| |
Collapse
|
25
|
Abstract
Since the human genome was sequenced, the term "epigenetics" is increasingly being associated with the hope that we are more than just the sum of our genes. Might what we eat, the air we breathe, or even the emotions we feel influence not only our genes but those of descendants? The environment can certainly influence gene expression and can lead to disease, but transgenerational consequences are another matter. Although the inheritance of epigenetic characters can certainly occur-particularly in plants-how much is due to the environment and the extent to which it happens in humans remain unclear.
Collapse
|
26
|
78495111110.1016/j.cell.2014.02.045" />
|
27
|
Lockhart J. RNA polymerase IV defines epigenetic variation in maize. THE PLANT CELL 2013; 25:777. [PMID: 23512857 PMCID: PMC3634685 DOI: 10.1105/tpc.113.250310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|