1
|
Triesch S, Denton AK, Bouvier JW, Buchmann JP, Reichel-Deland V, Guerreiro RNFM, Busch N, Schlüter U, Stich B, Kelly S, Weber APM. Transposable elements contribute to the establishment of the glycine shuttle in Brassicaceae species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:270-281. [PMID: 38168881 DOI: 10.1111/plb.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.
Collapse
Affiliation(s)
- S Triesch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - A K Denton
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - J W Bouvier
- Department of Biology, University of Oxford, Oxford, UK
| | - J P Buchmann
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Biological Data Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - V Reichel-Deland
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - R N F M Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N Busch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Schlüter
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - B Stich
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - S Kelly
- Department of Biology, University of Oxford, Oxford, UK
| | - A P M Weber
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
2
|
Huang CF, Liu WY, Yu CP, Wu SH, Ku MSB, Li WH. C 4 leaf development and evolution. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102454. [PMID: 37743123 DOI: 10.1016/j.pbi.2023.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
C4 photosynthesis is more efficient than C3 photosynthesis for two reasons. First, C4 plants have evolved efficient C4 enzymes to suppress wasteful photorespiration and enhance CO2 fixation. Second, C4 leaves have Kranz anatomy in which the veins are surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. The BS and M cells are functionally well differentiated and also well coordinated for rapid assimilation of atmospheric CO2 and transport of photo-assimilates between the two types of cells. Recent comparative transcriptomics of developing M and BS cells in young maize embryonic leaves revealed not only potential regulators of BS and M cell differentiation but also rapid early BS cell differentiation whereas slower, more prolonged M cell differentiation, contrary to the traditional view of a far simpler process of M cell development. Moreover, new upstream regulators of Kranz anatomy development have been identified and a number of gene co-expression modules for early vascular development have been inferred. Also, a candidate gene regulatory network associated with Kranz anatomy and vascular development has been constructed. Additionally, how whole genome duplication (WGD) may facilitate C4 evolution has been studied and the reasons for why the same WGD event led to successful C4 evolution in Gynandropsis gynandra but not in the sister species Tarenaya hassleriana have been proposed. Finally, new future research directions are suggested.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan
| | - Maurice S B Ku
- Institute of Bioagricultural Science, National Chiayi University, 600 Chiayi, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 115 Taipei, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA.
| |
Collapse
|
3
|
Schlüter U, Bouvier JW, Guerreiro R, Malisic M, Kontny C, Westhoff P, Stich B, Weber APM. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6631-6649. [PMID: 37392176 PMCID: PMC10662225 DOI: 10.1093/jxb/erad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jacques W Bouvier
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Milena Malisic
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Carina Kontny
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
5
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
6
|
Hoang NV, Sogbohossou EOD, Xiong W, Simpson CJC, Singh P, Walden N, van den Bergh E, Becker FFM, Li Z, Zhu XG, Brautigam A, Weber APM, van Haarst JC, Schijlen EGWM, Hendre PS, Van Deynze A, Achigan-Dako EG, Hibberd JM, Schranz ME. The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae. THE PLANT CELL 2023; 35:1334-1359. [PMID: 36691724 PMCID: PMC10118270 DOI: 10.1093/plcell/koad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.
Collapse
Affiliation(s)
| | | | - Wei Xiong
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Conor J C Simpson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nora Walden
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Erik van den Bergh
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Andrea Brautigam
- Faculty of Biology, Bielefeld University, 33501 Bielefeld, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jan C van Haarst
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Elio G W M Schijlen
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Prasad S Hendre
- African Orphan Crops Consortium (AOCC), World Agroforestry (ICRAF), Nairobi 00100, Kenya
| | - Allen Van Deynze
- African Orphan Crops Consortium (AOCC), World Agroforestry (ICRAF), Nairobi 00100, Kenya
- Seed Biotechnology Center, University of California, Davis, California 95616, USA
| | - Enoch G Achigan-Dako
- Laboratory of Genetics, Biotechnology and Seed Science (GbioS), Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 2549 Abomey-Calavi, Republic of Benin
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
7
|
Adachi S, Stata M, Martin DG, Cheng S, Liu H, Zhu XG, Sage RF. The Evolution of C4 Photosynthesis in Flaveria (Asteraceae): Insights from the Flaveria linearis Complex. PLANT PHYSIOLOGY 2023; 191:233-251. [PMID: 36200882 PMCID: PMC9806627 DOI: 10.1093/plphys/kiac467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.
Collapse
Affiliation(s)
- Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Matt Stata
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Duncan G Martin
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Institute for Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032 China
| | - Rowan F Sage
- Department of Ecology and Evolution, The University of Toronto, Toronto, Ontario M5S3B2, Canada
| |
Collapse
|
8
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
9
|
Munekage YN, Taniguchi YY. A scheme for C 4 evolution derived from a comparative analysis of the closely related C 3, C 3-C 4 intermediate, C 4-like, and C 4 species in the genus Flaveria. PLANT MOLECULAR BIOLOGY 2022; 110:445-454. [PMID: 35119574 DOI: 10.1007/s11103-022-01246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of the genus Flaveria showed a C4 evolutionary process in which the anatomical and metabolic features of C4 photosynthesis were gradually acquired through C3-C4 intermediate stages. C4 photosynthesis has been acquired in multiple lineages of angiosperms during evolution to suppress photorespiration. Crops that perform C4 photosynthesis exhibit high rates of CO2 assimilation and high grain production even under high-temperature in semiarid environments; therefore, engineering C4 photosynthesis in C3 plants is of great importance in the application field. The genus Flaveria contains a large number of C3, C3-C4 intermediate, C4-like, and C4 species, making it a good model genus to study the evolution of C4 photosynthesis, and these studies indicate the direction for C4 engineering. C4 photosynthesis was acquired gradually through the C3-C4 intermediate stage. First, a two-celled C2 cycle called C2 photosynthesis was acquired by localizing glycine decarboxylase activity in the mitochondria of bundle sheath cells. With the development of two-cell metabolism, anatomical features also changed. Next, the replacement of the two-celled C2 cycle by the two-celled C4 cycle was induced by the acquisition of cell-selective expression in addition to the upregulation of enzymes in the C4 cycle during the C3-C4 intermediate stage. This was supported by an increase in cyclic electron transport activity in response to an increase in the ATP/NADPH demand for metabolism. Suppression of the C3 cycle in mesophyll cells was induced after the functional establishment of the C4 cycle, and optimization of electron transport by suppressing the activity of photosystem II also occurred during the final phase of C4 evolution.
Collapse
Affiliation(s)
- Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
10
|
Billakurthi K, Schulze S, Schulz ELM, Sage TL, Schreier TB, Hibberd JM, Ludwig M, Westhoff P. Shedding light on AT1G29480 of Arabidopsis thaliana-An enigmatic locus restricted to Brassicacean genomes. PLANT DIRECT 2022; 6:e455. [PMID: 36263108 PMCID: PMC9576117 DOI: 10.1002/pld3.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A key feature of C4 Kranz anatomy is the presence of an enlarged, photosynthetically highly active bundle sheath whose cells contain large numbers of chloroplasts. With the aim to identify novel candidate regulators of C4 bundle sheath development, we performed an activation tagging screen with Arabidopsis thaliana. The reporter gene used encoded a chloroplast-targeted GFP protein preferentially expressed in the bundle sheath, and the promoter of the C4 phosphoenolpyruvate carboxylase gene from Flaveria trinervia served as activation tag because of its activity in all chlorenchymatous tissues of A. thaliana. Primary mutants were selected based on their GFP signal intensity, and one stable mutant named kb-1 with a significant increase in GFP fluorescence intensity was obtained. Despite the increased GFP signal, kb-1 showed no alterations to bundle sheath anatomy. The causal locus, AT1G29480, is specific to the Brassicaceae with its second exon being conserved. Overexpression and reconstitution studies confirmed that AT1G29480, and specifically its second exon, were sufficient for the enhanced GFP phenotype, which was not dependent on translation of the locus or its parts into protein. We conclude, therefore, that the AT1G29480 locus enhances the GFP reporter gene activity via an RNA-based mechanism.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits Towards Synthetic Modules’Düsseldorf‐CologneGermany
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
| | - Eva Lena Marie Schulz
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoOntarioCanada
| | - Tina B. Schreier
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Julian M. Hibberd
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Martha Ludwig
- School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits Towards Synthetic Modules’Düsseldorf‐CologneGermany
| |
Collapse
|
11
|
Zhao YY, Lyu MA, Miao F, Chen G, Zhu XG. The evolution of stomatal traits along the trajectory toward C4 photosynthesis. PLANT PHYSIOLOGY 2022; 190:441-458. [PMID: 35652758 PMCID: PMC9434244 DOI: 10.1093/plphys/kiac252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
C4 photosynthesis optimizes plant carbon and water relations, allowing high photosynthetic rates with low stomatal conductance. Stomata have long been considered a part of the C4 syndrome. However, it remains unclear how stomatal traits evolved along the path from C3 to C4. Here, we examined stomata in the Flaveria genus, a model used for C4 evolutionary study. Comparative, transgenic, and semi-in vitro experiments were performed to study the molecular basis that underlies the changes of stomatal traits in C4 evolution. The evolution from C3 to C4 species is accompanied by a gradual rather than an abrupt change in stomatal traits. The initial change appears near the Type I intermediate stage. Co-evolution of the photosynthetic pathway and stomatal traits is supported. On the road to C4, stomata tend to be fewer in number but larger in size and stomatal density dominates changes in anatomical maximum stomatal conductance (gsmax). Reduction of FSTOMAGEN expression underlies decreased gsmax in Flaveria and likely occurs in other C4 lineages. Decreased gsmax contributes to the increase in intrinsic water-use efficiency in C4 evolution. This work highlights the stomatal traits in the current C4 evolutionary model. Our study provides insights into the pattern, mechanism, and role of stomatal evolution along the road toward C4.
Collapse
Affiliation(s)
- Yong-Yao Zhao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - FenFen Miao
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Genyun Chen
- State Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
12
|
Gilman IS, Moreno-Villena JJ, Lewis ZR, Goolsby EW, Edwards EJ. Gene co-expression reveals the modularity and integration of C4 and CAM in Portulaca. PLANT PHYSIOLOGY 2022; 189:735-753. [PMID: 35285495 PMCID: PMC9157154 DOI: 10.1093/plphys/kiac116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/17/2022] [Indexed: 05/17/2023]
Abstract
C4 photosynthesis and Crassulacean acid metabolism (CAM) have been considered as largely independent adaptations despite sharing key biochemical modules. Portulaca is a geographically widespread clade of over 100 annual and perennial angiosperm species that primarily use C4 but facultatively exhibit CAM when drought stressed, a photosynthetic system known as C4 + CAM. It has been hypothesized that C4 + CAM is rare because of pleiotropic constraints, but these have not been deeply explored. We generated a chromosome-level genome assembly of Portulaca amilis and sampled mRNA from P. amilis and Portulaca oleracea during CAM induction. Gene co-expression network analyses identified C4 and CAM gene modules shared and unique to both Portulaca species. A conserved CAM module linked phosphoenolpyruvate carboxylase to starch turnover during the day-night transition and was enriched in circadian clock regulatory motifs in the P. amilis genome. Preservation of this co-expression module regardless of water status suggests that Portulaca constitutively operate a weak CAM cycle that is transcriptionally and posttranscriptionally upregulated during drought. C4 and CAM mostly used mutually exclusive genes for primary carbon fixation, and it is likely that nocturnal CAM malate stores are shuttled into diurnal C4 decarboxylation pathways, but we found evidence that metabolite cycling may occur at low levels. C4 likely evolved in Portulaca through co-option of redundant genes and integration of the diurnal portion of CAM. Thus, the ancestral CAM system did not strongly constrain C4 evolution because photosynthetic gene networks are not co-regulated for both daytime and nighttime functions.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Author for correspondence:
| | - Jose J Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Zachary R Lewis
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Mercado MA, Studer AJ. Meeting in the Middle: Lessons and Opportunities from Studying C 3-C 4 Intermediates. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:43-65. [PMID: 35231181 DOI: 10.1146/annurev-arplant-102720-114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of C3-C4 intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C3 to C4. A key feature of C3-C4 intermediates that utilize C2 photosynthesis is the improvement in photosynthetic efficiency compared with C3 species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C3 to C4 photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C2 photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C3-C4 intermediates species will enrich comparisons between evolutionary lineages. The investigation of C3-C4 intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.
Collapse
Affiliation(s)
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA; ,
| |
Collapse
|
14
|
Borghi GL, Arrivault S, Günther M, Barbosa Medeiros D, Dell’Aversana E, Fusco GM, Carillo P, Ludwig M, Fernie AR, Lunn JE, Stitt M. Metabolic profiles in C3, C3-C4 intermediate, C4-like, and C4 species in the genus Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1581-1601. [PMID: 34910813 PMCID: PMC8890617 DOI: 10.1093/jxb/erab540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 05/22/2023]
Abstract
C4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis. Previous studies have indicated that the first major change in metabolism probably involved relocation of glycine decarboxylase and photorespiratory CO2 release to the bundle sheath and establishment of intercellular shuttles to maintain nitrogen stoichiometry. This was followed by selection for a CO2-concentrating cycle between phosphoenolpyruvate carboxylase in the mesophyll and decarboxylases in the bundle sheath, and relocation of Rubisco to the latter. We have profiled 52 metabolites in nine Flaveria species and analysed 13CO2 labelling patterns for four species. Our results point to operation of multiple shuttles, including movement of aspartate in C3-C4 intermediates and a switch towards a malate/pyruvate shuttle in C4-like species. The malate/pyruvate shuttle increases from C4-like to complete C4 species, accompanied by a rise in ancillary organic acid pools. Our findings support current models and uncover further modifications of metabolism along the evolutionary path to C4 photosynthesis in the genus Flaveria.
Collapse
Affiliation(s)
- Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- Correspondence:
| | - Manuela Günther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Emilia Dell’Aversana
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanna Marta Fusco
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Universitá degli Studi della Campania, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100 Caserta, Italy
| | - Martha Ludwig
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, 6009 Perth, Australia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
15
|
Oono J, Hatakeyama Y, Yabiku T, Ueno O. Effects of growth temperature and nitrogen nutrition on expression of C 3-C 4 intermediate traits in Chenopodium album. JOURNAL OF PLANT RESEARCH 2022; 135:15-27. [PMID: 34519912 DOI: 10.1007/s10265-021-01346-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Proto-Kranz plants represent an initial phase in the evolution from C3 to C3-C4 intermediate to C4 plants. The ecological and adaptive aspects of C3-C4 plants would provide an important clue to understand the evolution of C3-C4 plants. We investigated whether growth temperature and nitrogen (N) nutrition influence the expression of C3-C4 traits in Chenopodium album (proto-Kranz) in comparison with Chenopodium quinoa (C3). Plants were grown during 5 weeks at 20 or 30 °C under standard or low N supply levels (referred to as 20SN, 20LN, 30SN, and 30LN). Net photosynthetic rate and leaf N content were higher in 20SN and 30SN plants than in 20LN and 30LN plants of C. album but did not differ among growth conditions in C. quinoa. The CO2 compensation point (Γ) of C. album was lowest in 30LN plants (36 µmol mol-1), highest in 20SN plants (51 µmol mol-1), and intermediate in 20LN and 30SN plants, whereas Γ of C. quinoa did not differ among the growth conditions (51-52 µmol mol-1). The anatomical structure of leaves was not considerably affected by growth conditions in either species. However, ultrastructural observations in C. album showed that the number of mitochondria per mesophyll or bundle sheath (BS) cell was lower in 20LN and 30LN plants than in 20SN and 30SN plants. Immunohistochemical observations revealed that lower accumulation level of P-protein of glycine decarboxylase (GDC-P) in mesophyll mitochondria than in BS mitochondria is the major factor causing the decrease in Γ values in C. album plants grown under low N supply and high temperature. These results suggest that high growth temperature and low N supply lead to the expression of C3-C4 traits (the reduction of Γ) in the proto-Kranz plants of C. album through the regulation of GDC-P expression.
Collapse
Affiliation(s)
- Jemin Oono
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Siadjeu C, Lauterbach M, Kadereit G. Insights into Regulation of C 2 and C 4 Photosynthesis in Amaranthaceae/ Chenopodiaceae Using RNA-Seq. Int J Mol Sci 2021; 22:12120. [PMID: 34830004 PMCID: PMC8624041 DOI: 10.3390/ijms222212120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Amaranthaceae (incl. Chenopodiaceae) shows an immense diversity of C4 syndromes. More than 15 independent origins of C4 photosynthesis, and the largest number of C4 species in eudicots signify the importance of this angiosperm lineage in C4 evolution. Here, we conduct RNA-Seq followed by comparative transcriptome analysis of three species from Camphorosmeae representing related clades with different photosynthetic types: Threlkeldia diffusa (C3), Sedobassia sedoides (C2), and Bassia prostrata (C4). Results show that B. prostrata belongs to the NADP-ME type and core genes encoding for C4 cycle are significantly upregulated when compared with Sed. sedoides and T. diffusa. Sedobassia sedoides and B. prostrata share a number of upregulated C4-related genes; however, two C4 transporters (DIT and TPT) are found significantly upregulated only in Sed. sedoides. Combined analysis of transcription factors (TFs) of the closely related lineages (Camphorosmeae and Salsoleae) revealed that no C3-specific TFs are higher in C2 species compared with C4 species; instead, the C2 species show their own set of upregulated TFs. Taken together, our study indicates that the hypothesis of the C2 photosynthesis as a proxy towards C4 photosynthesis is questionable in Sed. sedoides and more in favour of an independent evolutionary stable state.
Collapse
Affiliation(s)
- Christian Siadjeu
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| | | | - Gudrun Kadereit
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University Munich, 80638 Munich, Germany;
| |
Collapse
|
18
|
Artur MAS, Kajala K. Convergent evolution of gene regulatory networks underlying plant adaptations to dry environments. PLANT, CELL & ENVIRONMENT 2021; 44:3211-3222. [PMID: 34196969 PMCID: PMC8518057 DOI: 10.1111/pce.14143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/25/2021] [Indexed: 05/21/2023]
Abstract
Plants transitioned from an aquatic to a terrestrial lifestyle during their evolution. On land, fluctuations on water availability in the environment became one of the major problems they encountered. The appearance of morpho-physiological adaptations to cope with and tolerate water loss from the cells was undeniably useful to survive on dry land. Some of these adaptations, such as carbon concentrating mechanisms (CCMs), desiccation tolerance (DT) and root impermeabilization, appeared in multiple plant lineages. Despite being crucial for evolution on land, it has been unclear how these adaptations convergently evolved in the various plant lineages. Recent advances on whole genome and transcriptome sequencing are revealing that co-option of genes and gene regulatory networks (GRNs) is a common feature underlying the convergent evolution of these adaptations. In this review, we address how the study of CCMs and DT has provided insight into convergent evolution of GRNs underlying plant adaptation to dry environments, and how these insights could be applied to currently emerging understanding of evolution of root impermeabilization through different barrier cell types. We discuss examples of co-option, conservation and innovation of genes and GRNs at the cell, tissue and organ levels revealed by recent phylogenomic (comparative genomic) and comparative transcriptomic studies.
Collapse
Affiliation(s)
- Mariana A. S. Artur
- Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
19
|
Huang CF, Liu WY, Jade Lu MY, Chen YH, Ku MSB, Li WH. Whole genome duplication facilitated the evolution of C4 photosynthesis in Gynandropsis gynandra. Mol Biol Evol 2021; 38:4715-4731. [PMID: 34191030 PMCID: PMC8557433 DOI: 10.1093/molbev/msab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In higher plants, whole-genome duplication (WGD) is thought to facilitate the evolution of C4 photosynthesis from C3 photosynthesis. To understand this issue, we used new and existing leaf-development transcriptomes to construct two coding sequence databases for C4Gynandropsis gynandra and C3Tarenaya hassleriana, which shared a WGD before their divergence. We compared duplicated genes in the two species and found that the WGD contributed to four aspects of the evolution of C4 photosynthesis in G. gynandra. First, G. gynandra has retained the duplicates of ALAAT (alanine aminotransferase) and GOGAT (glutamine oxoglutarate aminotransferase) for nitrogen recycling to establish a photorespiratory CO2 pump in bundle sheath (BS) cells for increasing photosynthesis efficiency, suggesting that G. gynandra experienced a C3–C4 intermediate stage during the C4 evolution. Second, G. gynandra has retained almost all known vein-development-related paralogous genes derived from the WGD event, likely contributing to the high vein complexity of G. gynandra. Third, the WGD facilitated the evolution of C4 enzyme genes and their recruitment into the C4 pathway. Fourth, several genes encoding photosystem I proteins were derived from the WGD and are upregulated in G. gynandra, likely enabling the NADH dehydrogenase-like complex to produce extra ATPs for the C4 CO2 concentration mechanism. Thus, the WGD apparently played an enabler role in the evolution of C4 photosynthesis in G. gynandra. Importantly, an ALAAT duplicate became highly expressed in BS cells in G. gynandra, facilitating nitrogen recycling and transition to the C4 cycle. This study revealed how WDG may facilitate C4 photosynthesis evolution.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Maurice S B Ku
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 600, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA
| |
Collapse
|
20
|
Kuhnert F, Schlüter U, Linka N, Eisenhut M. Transport Proteins Enabling Plant Photorespiratory Metabolism. PLANTS 2021; 10:plants10050880. [PMID: 33925393 PMCID: PMC8146403 DOI: 10.3390/plants10050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/21/2023]
Abstract
Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.
Collapse
|
21
|
Guo J, Gong BQ, Li JF. Arabidopsis lysin motif/F-box-containing protein InLYP1 fine-tunes glycine metabolism by degrading glycine decarboxylase GLDP2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:394-408. [PMID: 33506579 DOI: 10.1111/tpj.15171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Lysin motif (LysM) is a carbohydrate-binding module often found in secreted or transmembrane proteins in living organisms from prokaryotes to eukaryotes. Thus far, all characterized LysM-containing proteins in plants are plasma membrane-resident receptors or co-receptors playing roles in plant-microbe interactions. Here, we interrogate the Arabidopsis LysM/F-box-containing protein InLYP1 and reveal its function in glycine metabolism. InLYP1 was mainly expressed by vigorously growing tissues, encoding a nuclear-cytoplasmic protein. We validated InLYP1 as part of the SKP1-CULLIN1-F-box E3 complex for mediating protein degradation. The glycine decarboxylase P-protein 1 (GLDP1) was identified as an InLYP1-interacting protein by both immunoprecipitation/mass spectrometry and yeast two-hybrid library screening. InLYP1 could also interact with GLDP2, a paralog of GLDP1 with weaker catalytic activity, and could mediate the degradation of GLDP2 but not GLDP1. Interestingly, both GLDPs could be O-glycosylated and form homodimers or heterodimers. Overexpression of InLYP1L9A encoding a dominant-negative variant could cause seedling germination retardation on the medium containing glycine. Collectively, these results shed light on the function of plant intracellular LysM-containing proteins, and suggest that InLYP1 may deplete GLDP2 to facilitate glycine decarboxylation in Arabidopsis.
Collapse
Affiliation(s)
- Jianhang Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ben-Qiang Gong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Russ Monson and the evolution of C 4 photosynthesis. Oecologia 2021; 197:823-840. [PMID: 33661402 DOI: 10.1007/s00442-021-04883-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Early in his career, Russ Monson produced a series of influential eco-physiological papers that helped lay the foundation for the study of C4 plant evolution. Among the most important was a 1984 paper with Maurice Ku and Gerry Edwards that outlined the pathway for the evolutionary bridge from C3 to C4 photosynthesis. This model proposed C4 photosynthesis arose out of a shuttle that imported photorespiratory metabolites into bundle sheath (BS) cells, where glycine decarboxylase cleaved off CO2, allowing it to accumulate and be efficiently refixed by BS Rubisco. By the mid-1990's, Monson's research focus had shifted away from C4 plants, save for one 2003 paper on C3 versus C4 stomatal control with Travis Huxman, and a series of critical reviews on C4 evolution. These reviews heavily influenced the modern synthesis of C4 evolutionary studies, which incorporates phylogenomic understanding with physiological, molecular, and structural characterizations of trait shifts in multiple evolutionary lineages. Subsequent research supported the Monson et al. model from 1984, by showing a glycine shuttle occurs in nearly all C3-C4 intermediate species identified. Monson also examined the physiological controls over the ecological distribution of C3, C3-C4 intermediate, and C4 photosynthesis, building our understanding of the fitness value of the intermediate and C4 pathway in relevant microenvironments. By establishing the foundation for discoveries that followed, Russ Monson can rightly be considered a leading pioneer contributing to the evolutionary biology of C4 photosynthesis.
Collapse
|
23
|
Cummins PL. The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating Mechanisms in Higher Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:662425. [PMID: 34539685 PMCID: PMC8440988 DOI: 10.3389/fpls.2021.662425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) is the carbon-fixing enzyme present in most photosynthetic organisms, converting CO2 into organic matter. Globally, photosynthetic efficiency in terrestrial plants has become increasingly challenged in recent decades due to a rapid increase in atmospheric CO2 and associated changes toward warmer and dryer environments. Well adapted for these new climatic conditions, the C4 photosynthetic pathway utilizes carbon concentrating mechanisms to increase CO2 concentrations surrounding RuBisCO, suppressing photorespiration from the oxygenase catalyzed reaction with O2. The energy efficiency of C3 photosynthesis, from which the C4 pathway evolved, is thought to rely critically on an uninterrupted supply of chloroplast CO2. Part of the homeostatic mechanism that maintains this constancy of supply involves the CO2 produced as a byproduct of photorespiration in a negative feedback loop. Analyzing the database of RuBisCO kinetic parameters, we suggest that in genera (Flaveria and Panicum) for which both C3 and C4 examples are available, the C4 pathway evolved only from C3 ancestors possessing much lower than the average carboxylase specificity relative to that of the oxygenase reaction (S C/O=S C/S O), and hence, the higher CO2 levels required for development of the photorespiratory CO2 pump (C2 photosynthesis) essential in the initial stages of C4 evolution, while in the later stage (final optimization phase in the Flaveria model) increased CO2 turnover may have occurred, which would have been supported by the higher CO2 levels. Otherwise, C4 RuBisCO kinetic traits remain little changed from the ancestral C3 species. At the opposite end of the spectrum, C3 plants (from Limonium) with higher than average S C/O, which may be associated with the ability of increased CO2, relative to O2, affinity to offset reduced photorespiration and chloroplast CO2 levels, can tolerate high stress environments. It is suggested that, instead of inherently constrained by its kinetic mechanism, RuBisCO possesses the extensive kinetic plasticity necessary for adaptation to changes in photorespiration that occur in the homeostatic regulation of CO2 supply under a broad range of abiotic environmental conditions.
Collapse
|
24
|
Khoshravesh R, Stata M, Adachi S, Sage TL, Sage RF. Evolutionary Convergence of C 4 Photosynthesis: A Case Study in the Nyctaginaceae. FRONTIERS IN PLANT SCIENCE 2020; 11:578739. [PMID: 33224166 PMCID: PMC7667235 DOI: 10.3389/fpls.2020.578739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 05/27/2023]
Abstract
C4 photosynthesis evolved over 65 times, with around 24 origins in the eudicot order Caryophyllales. In the Caryophyllales family Nyctaginaceae, the C4 pathway is known in three genera of the tribe Nyctagineae: Allionia, Okenia and Boerhavia. Phylogenetically, Allionia and Boerhavia/Okenia are separated by three genera whose photosynthetic pathway is uncertain. To clarify the distribution of photosynthetic pathways in the Nyctaginaceae, we surveyed carbon isotope ratios of 159 species of the Nyctaginaceae, along with bundle sheath (BS) cell ultrastructure, leaf gas exchange, and C4 pathway biochemistry in five species from the two C4 clades and closely related C3 genera. All species in Allionia, Okenia and Boerhavia are C4, while no C4 species occur in any other genera of the family, including three that branch between Allionia and Boerhavia. This demonstrates that C4 photosynthesis evolved twice in Nyctaginaceae. Boerhavia species use the NADP-malic enzyme (NADP-ME) subtype of C4 photosynthesis, while Allionia species use the NAD-malic enzyme (NAD-ME) subtype. The BS cells of Allionia have many more mitochondria than the BS of Boerhavia. Bundle sheath mitochondria are closely associated with chloroplasts in Allionia which facilitates CO2 refixation following decarboxylation by mitochondrial NAD-ME. The close relationship between Allionia and Boerhavia could provide insights into why NADP-ME versus NAD-ME subtypes evolve, particularly when coupled to analysis of their respective genomes. As such, the group is an excellent system to dissect the organizational hierarchy of convergent versus divergent traits produced by C4 evolution, enabling us to understand when convergence is favored versus when divergent modifications can result in a common phenotype.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
- Department of Biology, The University of New Mexico, Albuquerque, NM, United States
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| | - Shunsuke Adachi
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tammy L. Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| | - Rowan F. Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:666-677. [PMID: 31904886 DOI: 10.1111/tpj.14669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 05/08/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is a metabolic repair system that enables the CO2 fixation enzyme Rubisco to sustainably operate in the presence of oxygen, that is, during oxygenic photosynthesis of plants and cyanobacteria. Photorespiration is necessary because an auto-inhibitory metabolite, 2-phosphoglycolate (2PG), is produced when Rubisco binds oxygen instead of CO2 as a substrate and must be removed, to avoid collapse of metabolism, and recycled as efficiently as possible. The basic principle of recycling 2PG very likely evolved several billion years ago in connection with the evolution of oxyphotobacteria. It comprises the multi-step combination of two molecules of 2PG to form 3-phosphoglycerate. The biochemistry of this process dictates that one out of four 2PG carbons is lost as CO2 , which is a long-standing plant breeders' concern because it represents by far the largest fraction of respiratory processes that reduce gross-photosynthesis of major crops down to about 50% and less, lowering potential yields. In addition to the ATP needed for recycling of the 2PG carbon, extra energy is needed for the refixation of liberated equal amounts of ammonia. It is thought that the energy costs of photorespiration have an additional negative impact on crop yields in at least some environments. This paper discusses recent advances concerning the origin and evolution of photorespiration, and gives an overview of contemporary and envisioned strategies to engineer the biochemistry of, or even avoid, photorespiration.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051, Rostock, Germany
| |
Collapse
|
26
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
27
|
van Rooijen R, Schulze S, Petzsch P, Westhoff P. Targeted misexpression of NAC052, acting in H3K4 demethylation, alters leaf morphological and anatomical traits in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1434-1448. [PMID: 31740936 PMCID: PMC7031063 DOI: 10.1093/jxb/erz509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 05/31/2023]
Abstract
In an effort to identify genetic regulators for the cell ontogeny around the veins in Arabidopsis thaliana leaves, an activation-tagged mutant line with altered leaf morphology and altered bundle sheath anatomy was characterized. This mutant had a small rosette area with wrinkled leaves and chlorotic leaf edges, as well as enhanced chloroplast numbers in the (pre-)bundle sheath tissue. It had a bundle-specific promoter from the gene GLYCINE DECARBOXYLASE SUBUNIT-T from the C4 species Flaveria trinervia (GLDTFt promoter) inserted in the coding region of the transcriptional repressor NAC052, functioning in H3K4 demethylation, in front of an alternative start codon in-frame with the natural start codon. Reconstruction of the mutation event of our activation-tagged line by creating a line expressing an N-terminally truncated sequence of NAC052 under control of the GLDTFt promoter confirmed the involvement of NAC052 in leaf development. Our study not only reveals leaf anatomic and transcriptomic effects of an N-terminally truncated NAC052 under control of the GLDTFt promoter, but also identifies NAC052 as a novel genetic regulator of leaf development.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’, Duesseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Genomics & Transcriptomics Labor (GTL), Heinrich-Heine-University, Duesseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’, Duesseldorf, Germany
| |
Collapse
|
28
|
Khoshravesh R, Stata M, Busch FA, Saladié M, Castelli JM, Dakin N, Hattersley PW, Macfarlane TD, Sage RF, Ludwig M, Sage TL. The Evolutionary Origin of C 4 Photosynthesis in the Grass Subtribe Neurachninae. PLANT PHYSIOLOGY 2020; 182:566-583. [PMID: 31611421 PMCID: PMC6945869 DOI: 10.1104/pp.19.00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 05/10/2023]
Abstract
The Australian grass subtribe Neurachninae contains closely related species that use C3, C4, and C2 photosynthesis. To gain insight into the evolution of C4 photosynthesis in grasses, we examined leaf gas exchange, anatomy and ultrastructure, and tissue localization of Gly decarboxylase subunit P (GLDP) in nine Neurachninae species. We identified previously unrecognized variation in leaf structure and physiology within Neurachne that represents varying degrees of C3-C4 intermediacy in the Neurachninae. These include inverse correlations between the apparent photosynthetic carbon dioxide (CO2) compensation point in the absence of day respiration (C * ) and chloroplast and mitochondrial investment in the mestome sheath (MS), where CO2 is concentrated in C2 and C4 Neurachne species; width of the MS cells; frequency of plasmodesmata in the MS cell walls adjoining the parenchymatous bundle sheath; and the proportion of leaf GLDP invested in the MS tissue. Less than 12% of the leaf GLDP was allocated to the MS of completely C3 Neurachninae species with C * values of 56-61 μmol mol-1, whereas two-thirds of leaf GLDP was in the MS of Neurachne lanigera, which exhibits a newly-identified, partial C2 phenotype with C * of 44 μmol mol-1 Increased investment of GLDP in MS tissue of the C2 species was attributed to more MS mitochondria and less GLDP in mesophyll mitochondria. These results are consistent with a model where C4 evolution in Neurachninae initially occurred via an increase in organelle and GLDP content in MS cells, which generated a sink for photorespired CO2 in MS tissues.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Florian A Busch
- Research School of Biology and Australian Research Council Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Montserrat Saladié
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Joanne M Castelli
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole Dakin
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Paul W Hattersley
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Terry D Macfarlane
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia 6983 Australia
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
29
|
Chu N, Zhou JR, Fu HY, Huang MT, Zhang HL, Gao SJ. Global Gene Responses of Resistant and Susceptible Sugarcane Cultivars to Acidovorax avenae subsp. avenae Identified Using Comparative Transcriptome Analysis. Microorganisms 2019; 8:microorganisms8010010. [PMID: 31861562 PMCID: PMC7022508 DOI: 10.3390/microorganisms8010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Red stripe disease in sugarcane caused by Acidovorax avenae subsp. avenae (Aaa) is related to serious global losses in yield. However, the underlying molecular mechanisms associated with responses of sugarcane plants to infection by this pathogen remain largely unknown. Here, we used Illumina RNA-sequencing (RNA-seq) to perform large-scale transcriptome sequencing of two sugarcane cultivars to contrast gene expression patterns of plants between Aaa and mock inoculations, and identify key genes and pathways involved in sugarcane defense responses to Aaa infection. At 0–72 hours post-inoculation (hpi) of the red stripe disease-resistant cultivar ROC22, a total of 18,689 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples. Of these, 8498 and 10,196 genes were up- and downregulated, respectively. In MT11-610, which is susceptible to red stripe disease, 15,782 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples and 8807 and 6984 genes were up- and downregulated, respectively. The genes that were differentially expressed following Aaa inoculation were mainly involved in photosynthesis and carbon metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant–pathogen interaction pathways. Further, qRT-PCR and RNA-seq used for additional validation of 12 differentially expressed genes (DEGs) showed that eight genes in particular were highly expressed in ROC22. These eight genes participated in the biosynthesis of lignin and coumarin, as well as signal transduction by salicylic acid, jasmonic acid, ethylene, and mitogen-activated protein kinase (MAPK), suggesting that they play essential roles in sugarcane resistance to Aaa. Collectively, our results characterized the sugarcane transcriptome during early infection with Aaa, thereby providing insights into the molecular mechanisms responsible for bacterial tolerance.
Collapse
|
30
|
Heyduk K, Ray JN, Ayyampalayam S, Moledina N, Borland A, Harding SA, Tsai CJ, Leebens-Mack J. Shared expression of crassulacean acid metabolism (CAM) genes pre-dates the origin of CAM in the genus Yucca. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6597-6609. [PMID: 30870557 PMCID: PMC6883266 DOI: 10.1093/jxb/erz105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
Crassulacean acid metabolism (CAM) is a carbon-concentrating mechanism that has evolved numerous times across flowering plants and is thought to be an adaptation to water-limited environments. CAM has been investigated from physiological and biochemical perspectives, but little is known about how plants evolve from C3 to CAM at the genetic or metabolic level. Here we take a comparative approach in analyzing time-course data of C3, CAM, and C3+CAM intermediate Yucca (Asparagaceae) species. RNA samples were collected over a 24 h period from both well-watered and drought-stressed plants, and were clustered based on time-dependent expression patterns. Metabolomic data reveal differences in carbohydrate metabolism and antioxidant response between the CAM and C3 species, suggesting that changes to metabolic pathways are important for CAM evolution and function. However, all three species share expression profiles of canonical CAM pathway genes, regardless of photosynthetic pathway. Despite differences in transcript and metabolite profiles between the C3 and CAM species, shared time-structured expression of CAM genes in both CAM and C3Yucca species suggests that ancestral expression patterns required for CAM may have pre-dated its origin in Yucca.
Collapse
Affiliation(s)
- Karolina Heyduk
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jeremy N Ray
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Nida Moledina
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Anne Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| | - Scott A Harding
- Department of Genetics, University of Georgia, Athens, GA, USA
- Warnell School of Forestry, University of Georgia, Athens, GA, USA
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, GA, USA
- Warnell School of Forestry, University of Georgia, Athens, GA, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Kleinenkuhnen N, Büchel F, Gerlich SC, Kopriva S, Metzger S. A Novel Method for Identification and Quantification of Sulfated Flavonoids in Plants by Neutral Loss Scan Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:885. [PMID: 31333712 PMCID: PMC6625178 DOI: 10.3389/fpls.2019.00885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/21/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is present in plants in a large range of essential primary metabolites, as well as in numerous natural products. Many of these secondary metabolites contain sulfur in the oxidized form of organic sulfate. However, except of glucosinolates, very little is known about other classes of such sulfated metabolites, mainly because of lack of specific and quantitative analytical methods. We developed an LC-MS method to analyze sulfated flavonoids, a group of sulfated secondary metabolites prominent, e.g., in plants of the genus Flaveria. The method uses a linear gradient of methanol/formic acid in water on a Restek Raptor C18 Core-Shell column for separation of the compounds. The sulfated flavonoids are detected by mass spectrometry (MS) in a negative mode, using a neutral loss of 80 Da after a collision induced dissociation. With this method we were also able to quantify the sulfated flavonoids. We could detect all (mono)sulfated flavonoids described before in Flaveria plus a number of new ones, such as isorhamnetin-sulfate-glycoside. In addition, we showed that sulfated flavonoids represent a substantial sulfur pool in Flaveria, larger than the thiols glutathione and cysteine. The individual species possess different sulfated flavonoids, but there is no correlation between the qualitative pattern and type of photosynthesis. Similar to other sulfur-containing secondary compounds, the concentration of sulfated flavonoids in leaves is reduced by sulfur starvation. The new LC-MS method will enable qualitative and quantitative detection of these secondary metabolites in plants as a pre-requisite to addressing their functions.
Collapse
Affiliation(s)
- Niklas Kleinenkuhnen
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
| | - Felix Büchel
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
| | - Silke C. Gerlich
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sabine Metzger
- MS-Platform, Cluster of Excellence on Plant Sciences, Botanical Institute (CEPLAS), University of Cologne, Cologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Hwang I. Plastid biogenesis and homeostasis. PLANT CELL REPORTS 2019; 38:777-778. [PMID: 31165906 DOI: 10.1007/s00299-019-02437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
33
|
Adwy W, Schlüter U, Papenbrock J, Peterhansel C, Offermann S. Loss of the M-box from the glycine decarboxylase P-subunit promoter in C2 Moricandia species. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Stata M, Sage TL, Sage RF. Mind the gap: the evolutionary engagement of the C 4 metabolic cycle in support of net carbon assimilation. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:27-34. [PMID: 31150949 DOI: 10.1016/j.pbi.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
C4 photosynthesis evolved dozens of times, with a critical step being the engagement of a C4 metabolic cycle to concentrate CO2 into a bundle sheath-like compartment. While C3-C4 intermediate species show a progressive increase in the activity of a C4 metabolic cycle, the integration of the C4 and C3 biochemical cycles in enhancing photosynthetic carbon gain occurs in a punctuated manner, at an initial C4 cycle activity near 60%. Punctuated integration of the C4 cycle could result from the evolutionary acquisition of traits that coordinate the C3 and C4 biochemical cycles (for example, an enzymatic, regulatory or transport function) or from a sudden reduction in the mesophyll C3 cycle. Alternatively, a punctuated pattern could be an artifact of low numbers of C3-C4 intermediates in the evolutionary space where C4 cycle engagement occurs, due to incomplete sampling of natural diversity or evolutionary dynamics rendering such intermediates unstable. Understanding how the C4 cycle becomes integrated with the C3 cycle could reveal new avenues for engineering the C4 pathway into C3 plants. Such efforts would be facilitated by the generation of hybrids, or the discovery of additional intermediates, that span the transition from low to high C4 cycle engagement.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, M5S3B2, Canada.
| |
Collapse
|
35
|
Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:881. [PMID: 31354760 PMCID: PMC6635470 DOI: 10.3389/fpls.2019.00881] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 05/05/2023]
Abstract
Plants produce a diverse array of lineage-specific specialized (secondary) metabolites, which are synthesized from primary metabolites. Plant specialized metabolites play crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-documented diversification of plant specialized metabolic enzymes, primary metabolism that provides essential compounds for cellular homeostasis is under strong selection pressure and generally assumed to be conserved across the plant kingdom. Yet, some alterations in primary metabolic pathways have been reported in plants. The biosynthetic pathways of certain amino acids and lipids have been altered in specific plant lineages. Also, two alternative pathways exist in plants for synthesizing primary precursors of the two major classes of plant specialized metabolites, terpenoids and phenylpropanoids. Such primary metabolic diversities likely underlie major evolutionary changes in plant metabolism and chemical diversity by acting as enabling or associated traits for the evolution of specialized metabolic pathways.
Collapse
|
36
|
Gerlich SC, Walker BJ, Krueger S, Kopriva S. Sulfate Metabolism in C 4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis. PLANT PHYSIOLOGY 2018; 178:565-582. [PMID: 30104256 PMCID: PMC6181035 DOI: 10.1104/pp.18.00520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/27/2018] [Indexed: 05/21/2023]
Abstract
The evolution of C4 photosynthesis led to an increase in carbon assimilation rates and plant growth compared to C3 photosynthetic plants. This enhanced plant growth, in turn, affects the requirement for soil-derived mineral nutrients. However, mineral plant nutrition has scarcely been considered in connection with C4 photosynthesis. Sulfur is crucial for plant growth and development, and preliminary studies in the genus Flaveria suggested metabolic differences in sulfate assimilation along the C4 evolutionary trajectory. Here, we show that in controlled conditions, foliar accumulation of the reduced sulfur compounds Cys and glutathione (GSH) increased with progressing establishment of the C4 photosynthetic cycle in different Flaveria species. An enhanced demand for reduced sulfur in C4 Flaveria species is reflected in high rates of [35S]sulfate incorporation into GSH upon sulfate deprivation and increased GSH turnover as a reaction to the inhibition of GSH synthesis. Expression analyses indicate that the γ-glutamyl cycle is crucial for the recycling of GSH in C4 species. Sulfate reduction and GSH synthesis seems to be preferentially localized in the roots of C4 species, which might be linked to its colocalization with the phosphorylated pathway of Ser biosynthesis. Interspecies grafting experiments of F. robusta (C3) and F. bidentis (C4) revealed that the root system primarily controls sulfate acquisition, GSH synthesis, and sulfate and metabolite allocation in C3 and C4 plants. This study thus shows that evolution of C4 photosynthesis resulted in a wide range of adaptations of sulfur metabolism and points out the need for broader studies on importance of mineral nutrition for C4 plants.
Collapse
Affiliation(s)
- Silke C Gerlich
- Botanical Institute, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Berkley J Walker
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan Krueger
- Botanical Institute, University of Cologne, 50674 Cologne, Germany
| | - Stanislav Kopriva
- Botanical Institute, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
37
|
Some like it hot: the physiological ecology of C 4 plant evolution. Oecologia 2018; 187:941-966. [PMID: 29955992 DOI: 10.1007/s00442-018-4191-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The evolution of C4 photosynthesis requires an intermediate phase where photorespiratory glycine produced in the mesophyll cells must flow to the vascular sheath cells for metabolism by glycine decarboxylase. This glycine flux concentrates photorespired CO2 within the sheath cells, allowing it to be efficiently refixed by sheath Rubisco. A modest C4 biochemical cycle is then upregulated, possibly to support the refixation of photorespired ammonia in sheath cells, with subsequent increases in C4 metabolism providing incremental benefits until an optimized C4 pathway is established. 'Why' C4 photosynthesis evolved is largely explained by ancestral C3 species exploiting photorespiratory CO2 to improve carbon gain and thus enhance fitness. While photorespiration depresses C3 performance, it produces a resource (photorespired CO2) that can be exploited to build an evolutionary bridge to C4 photosynthesis. 'Where' C4 evolved is indicated by the habitat of species branching near C3-to-C4 transitions on phylogenetic trees. Consistent with the photorespiratory bridge hypothesis, transitional species show that the large majority of > 60 C4 lineages arose in hot, dry, and/or saline regions where photorespiratory potential is high. 'When' C4 evolved has been clarified by molecular clock analyses using phylogenetic data, coupled with isotopic signatures from fossils. Nearly all C4 lineages arose after 25 Ma when atmospheric CO2 levels had fallen to near current values. This reduction in CO2, coupled with persistent high temperature at low-to-mid-latitudes, met a precondition where photorespiration was elevated, thus facilitating the evolutionary selection pressure that led to C4 photosynthesis.
Collapse
|
38
|
Yerramsetty P, Agar EM, Yim WC, Cushman JC, Berry JO. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4635-4649. [PMID: 28981775 PMCID: PMC5853808 DOI: 10.1093/jxb/erx264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Erin M Agar
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
39
|
Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW. C 3 -C 4 intermediates may be of hybrid origin - a reminder. THE NEW PHYTOLOGIST 2017; 215:70-76. [PMID: 28397963 DOI: 10.1111/nph.14567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
The currently favoured model of the evolution of C4 photosynthesis relies heavily on the interpretation of the broad phenotypic range of naturally growing C3 -C4 intermediates as proxies for evolutionary intermediate steps. On the other hand, C3 -C4 intermediates had earlier been interpreted as hybrids or hybrid derivates. By first comparing experimentally generated with naturally growing C3 -C4 intermediates, and second summarising either direct or circumstantial evidence for hybridisation in lineages comprising C3 , C4 and C3 -C4 intermediates, we conclude that a possible hybrid origin of C3 -C4 intermediates deserves careful examination. While we acknowledge that the current model of C4 photosynthesis evolution is clearly the best available, C3 -C4 intermediates of hybrid origin, if existing, should not be used for further analysis of this model. However, experimental C3 × C4 hybrids potentially are excellent systems to analyse the genetic differences between C3 and C4 species and, also using segregating progeny, to study the relationship between individual photosynthetic traits and environmental factors.
Collapse
Affiliation(s)
- Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Katharina Bohley
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Maximilian Lauterbach
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
40
|
Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin PA, Kurz S, Mettler-Altmann T, Weber AP. Photosynthesis in C3-C4 intermediate Moricandia species. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:191-206. [PMID: 28110276 PMCID: PMC5853546 DOI: 10.1093/jxb/erw391] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/29/2016] [Indexed: 05/09/2023]
Abstract
Evolution of C4 photosynthesis is not distributed evenly in the plant kingdom. Particularly interesting is the situation in the Brassicaceae, because the family contains no C4 species, but several C3-C4 intermediates, mainly in the genus Moricandia Investigation of leaf anatomy, gas exchange parameters, the metabolome, and the transcriptome of two C3-C4 intermediate Moricandia species, M. arvensis and M. suffruticosa, and their close C3 relative M. moricandioides enabled us to unravel the specific C3-C4 characteristics in these Moricandia lines. Reduced CO2 compensation points in these lines were accompanied by anatomical adjustments, such as centripetal concentration of organelles in the bundle sheath, and metabolic adjustments, such as the balancing of C and N metabolism between mesophyll and bundle sheath cells by multiple pathways. Evolution from C3 to C3-C4 intermediacy was probably facilitated first by loss of one copy of the glycine decarboxylase P-protein, followed by dominant activity of a bundle sheath-specific element in its promoter. In contrast to recent models, installation of the C3-C4 pathway was not accompanied by enhanced activity of the C4 cycle. Our results indicate that metabolic limitations connected to N metabolism or anatomical limitations connected to vein density could have constrained evolution of C4 in Moricandia.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Network Analysis and Modelling, Leibniz Institute of Plant Genetics and Crop Research (IPK), OT Gatersleben, Corrensstr. 3, 06466 Stadt Seeland, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Melzer
- Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Research (IPK), OT Gatersleben, Corrensstr. 3, 06466 Stadt Seeland, Germany
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Samantha Kurz
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Khoshravesh R, Lundsgaard-Nielsen V, Sultmanis S, Sage TL. Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration. Methods Mol Biol 2017; 1653:243-270. [PMID: 28822138 DOI: 10.1007/978-1-4939-7225-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-resolution images obtained from plant tissues processed for light microscopy, transmission electron microscopy, and immunohistochemistry have provided crucial links between plant subcellular structure and physiology during photorespiration as well as the impact of photorespiration on plant evolution and development. This chapter presents established protocols to guide researchers in the preparation of plant tissues for high-resolution imaging with a light and transmission electron microscope and detection of proteins using immunohistochemistry. Discussion of concepts and theory behind each step in the process from tissue preservation to staining of resin-embedded tissues is included to enhance the understanding of all steps in the procedure. We also include a brief protocol for quantification of cellular parameters from high-resolution images to help researchers rigorously test hypotheses.
Collapse
Affiliation(s)
- Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2
| | - Vanessa Lundsgaard-Nielsen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, Canada, M5S 3B2.
| |
Collapse
|
42
|
Kümpers BMC, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM. Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:177-189. [PMID: 28062590 PMCID: PMC5853325 DOI: 10.1093/jxb/erw488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 05/08/2023]
Abstract
Most terrestrial plants use C3 photosynthesis to fix carbon. In multiple plant lineages a modified system known as C4 photosynthesis has evolved. To better understand the molecular patterns associated with induction of C4 photosynthesis, the genus Flaveria that contains C3 and C4 species was used. A base to tip maturation gradient of leaf anatomy was defined, and RNA sequencing was undertaken along this gradient for two C3 and two C4 Flaveria species. Key C4 traits including vein density, mesophyll and bundle sheath cross-sectional area, chloroplast ultrastructure, and abundance of transcripts encoding proteins of C4 photosynthesis were quantified. Candidate genes underlying each of these C4 characteristics were identified. Principal components analysis indicated that leaf maturation and the photosynthetic pathway were responsible for the greatest amount of variation in transcript abundance. Photosynthesis genes were over-represented for a prolonged period in the C4 species. Through comparison with publicly available data sets, we identify a small number of transcriptional regulators that have been up-regulated in diverse C4 species. The analysis identifies similar patterns of expression in independent C4 lineages and so indicates that the complex C4 pathway is associated with parallel as well as convergent evolution.
Collapse
Affiliation(s)
- Britta M C Kümpers
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Steven J Burgess
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Richard Smith-Unna
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Chris Boursnell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
43
|
Bellasio C. A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:269-282. [PMID: 27535993 PMCID: PMC5853385 DOI: 10.1093/jxb/erw303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 05/22/2023]
Abstract
The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (SMA) in which energetics, metabolite traffic, and the different decarboxylating enzymes (NAD-dependent malic enzyme, NADP-dependent malic enzyme, or phosphoenolpyruvate carboxykinase) are explicitly included. The SMA can be used to refine experimental data analysis or formulate hypothetical scenarios, and is coded in a freely available Microsoft Excel workbook. The theoretical underpinnings and general model behaviour are analysed with a range of simulations, including (i) an analysis of C3, C2, C2+C4, and C4 in operational conditions; (ii) manipulating photorespiration in a C3 plant; (iii) progressively upregulating a C2 shuttle in C3 photosynthesis; (iv) progressively upregulating a C4 cycle in C2 photosynthesis; and (v) manipulating processes that are hypothesized to respond to transient environmental inputs. Results quantify the functional trade-offs, such as the electron transport needed to meet ATP/NADPH demand, as well as metabolite traffic, inherent to different subtypes. The SMA refines our understanding of the stoichiometry of photosynthesis, which is of paramount importance for basic and applied research.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
44
|
Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 2016; 35:109-116. [PMID: 27693890 DOI: 10.1016/j.cbpa.2016.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is an essential metabolite repair pathway that allows the photosynthetic CO2 fixation of plants to occur in the presence of oxygen. It is necessary because oxygen is a competing substrate of the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase, forming 2-phosphoglycolate that negatively interferes with photosynthesis. Photorespiration very efficiently recycles 2-phosphoglycolate into 3-phosphoglycerate, which re-enters the Calvin-Benson cycle to drive sustainable photosynthesis. Photorespiration however requires extra energy and re-oxidises one quarter of the 2-phosphoglycolate carbon to CO2, lowering potential maximum rates of photosynthesis in most plants including food and energy crops. This review discusses natural and artificial strategies to reduce the undesired impact of air oxygen on photosynthesis and in turn plant growth.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18051 Rostock, Germany.
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
45
|
Modelling metabolic evolution on phenotypic fitness landscapes: a case study on C4 photosynthesis. Biochem Soc Trans 2016; 43:1172-6. [PMID: 26614656 DOI: 10.1042/bst20150148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
How did the complex metabolic systems we observe today evolve through adaptive evolution? The fitness landscape is the theoretical framework to answer this question. Since experimental data on natural fitness landscapes is scarce, computational models are a valuable tool to predict landscape topologies and evolutionary trajectories. Careful assumptions about the genetic and phenotypic features of the system under study can simplify the design of such models significantly. The analysis of C4 photosynthesis evolution provides an example for accurate predictions based on the phenotypic fitness landscape of a complex metabolic trait. The C4 pathway evolved multiple times from the ancestral C3 pathway and models predict a smooth 'Mount Fuji' landscape accordingly. The modelled phenotypic landscape implies evolutionary trajectories that agree with data on modern intermediate species, indicating that evolution can be predicted based on the phenotypic fitness landscape. Future directions will have to include structural changes of metabolic fitness landscape structure with changing environments. This will not only answer important evolutionary questions about reversibility of metabolic traits, but also suggest strategies to increase crop yields by engineering the C4 pathway into C3 plants.
Collapse
|
46
|
Schulze S, Westhoff P, Gowik U. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:29-35. [PMID: 27038285 DOI: 10.1016/j.pbi.2016.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 05/09/2023]
Abstract
The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump.
Collapse
Affiliation(s)
- Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany; Cluster of Excellence on Plant Sciences 'From Complex Traits towards Synthetic Modules', 40225 Duesseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
47
|
Sage RF, Khoshravesh R. Passive CO2 concentration in higher plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:58-65. [PMID: 27058940 DOI: 10.1016/j.pbi.2016.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada.
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| |
Collapse
|
48
|
Ludwig M. Evolution of carbonic anhydrase in C4 plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:16-22. [PMID: 27016649 DOI: 10.1016/j.pbi.2016.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
During the evolution of C4 photosynthesis, the intracellular location with most carbonic anhydrase (CA) activity has changed. In Flaveria, the loss of the sequence encoding a chloroplast transit peptide from an ancestral C3 CA ortholog confined the C4 isoform to the mesophyll cell cytosol. Recent studies indicate that sequence elements and histone modifications controlling the expression of C4-associated CAs were likely present in the C3 ancestral chromatin, enabling the evolution of the C4 pathway. Almost complete abolishment of maize CA activity yields no obvious phenotype at ambient CO2 levels. This contrasts with results for Flaveria CA mutants, and has opened discussion on the role of CA in the C4 carbon concentrating mechanism.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Chemistry and Biochemistry [310], University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
49
|
Huang P, Brutnell TP. A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:91-9. [PMID: 27078208 DOI: 10.1016/j.pbi.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 05/23/2023]
Abstract
C4 photosynthesis is used by only three percent of all flowering plants, but explains a quarter of global primary production, including some of the worlds' most important cereals and bioenergy grasses. Recent advances in our understanding of C4 development can be attributed to the application of comparative transcriptomics approaches that has been fueled by high throughput sequencing. Global surveys of gene expression conducted between different developmental stages or on phylogenetically closely related C3 and C4 species are providing new insights into C4 function, development and evolution. Importantly, through co-expression analysis and comparative genomics, these studies help define novel candidate genes that transcend traditional genetic screens. In this review, we briefly summarize the major findings from recent transcriptomic studies, compare and contrast these studies to summarize emerging consensus, and suggest new approaches to exploit the data. Finally, we suggest using Setaria viridis as a model system to relieve a major bottleneck in genetic studies of C4 photosynthesis, and discuss the challenges and new opportunities for future comparative transcriptomic studies.
Collapse
Affiliation(s)
- Pu Huang
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St Louis, MO 63132, USA
| | - Thomas P Brutnell
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St Louis, MO 63132, USA.
| |
Collapse
|
50
|
Lin H, Karki S, Coe RA, Bagha S, Khoshravesh R, Balahadia CP, Ver Sagun J, Tapia R, Israel WK, Montecillo F, de Luna A, Danila FR, Lazaro A, Realubit CM, Acoba MG, Sage TL, von Caemmerer S, Furbank RT, Cousins AB, Hibberd JM, Quick WP, Covshoff S. Targeted Knockdown of GDCH in Rice Leads to a Photorespiratory-Deficient Phenotype Useful as a Building Block for C4 Rice. PLANT & CELL PHYSIOLOGY 2016; 57:919-32. [PMID: 26903527 DOI: 10.1093/pcp/pcw033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/10/2016] [Indexed: 05/07/2023]
Abstract
The glycine decarboxylase complex (GDC) plays a critical role in the photorespiratory C2 cycle of C3 species by recovering carbon following the oxygenation reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase. Loss of GDC from mesophyll cells (MCs) is considered a key early step in the evolution of C4 photosynthesis. To assess the impact of preferentially reducing GDC in rice MCs, we decreased the abundance of OsGDCH (Os10g37180) using an artificial microRNA (amiRNA) driven by a promoter that preferentially drives expression in MCs. GDC H- and P-proteins were undetectable in leaves of gdch lines. Plants exhibited a photorespiratory-deficient phenotype with stunted growth, accelerated leaf senescence, reduced chlorophyll, soluble protein and sugars, and increased glycine accumulation in leaves. Gas exchange measurements indicated an impaired ability to regenerate ribulose 1,5-bisphosphate in photorespiratory conditions. In addition, MCs of gdch lines exhibited a significant reduction in chloroplast area and coverage of the cell wall when grown in air, traits that occur during the later stages of C4 evolution. The presence of these two traits important for C4 photosynthesis and the non-lethal, down-regulation of the photorespiratory C2 cycle positively contribute to efforts to produce a C4 rice prototype.
Collapse
Affiliation(s)
- HsiangChun Lin
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines These authors contributed equally to this work
| | - Shanta Karki
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines These authors contributed equally to this work
| | - Robert A Coe
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines These authors contributed equally to this work
| | - Shaheen Bagha
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Roxana Khoshravesh
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - C Paolo Balahadia
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Julius Ver Sagun
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Ronald Tapia
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - W Krystler Israel
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | | | - Albert de Luna
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Florence R Danila
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Andrea Lazaro
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Czarina M Realubit
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Michelle G Acoba
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines
| | - Tammy L Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, 2601, Australia
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, 2601, Australia
| | - Asaph B Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - W Paul Quick
- C4 Rice Center, International Rice Research Institute, Los Baños, Philippines Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|