1
|
Fung-Uceda J, Gómez MS, Rodríguez-Casillas L, González-Gil A, Gutierrez C. Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2325-2336. [PMID: 39487594 DOI: 10.1111/tpj.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Rhythmic oscillation of biological processes helps organisms adapt their physiological responses to the most appropriate time of the day. Chromatin remodeling has been described as one of the molecular mechanisms controlling these oscillations. The importance of these changes in transcriptional activation as well as in the maintenance of heterochromatic regions has been widely demonstrated. However, little is still known on how diurnal changes can impact the global status of chromatin modifications and, hence, control gene expression. In plants, the repressive mark H3K27me1, deposited by ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 and 6 (ATXR5 and 6) methyltransferases, is largely associated with transposable elements but also covers lowly expressed genes. Here we show that this histone modification is preferentially deposited during the night. In euchromatic regions, it is found along the bodies of DNA damage response genes (DDR), where it is needed for their proper expression. The absence of H3K27me1 translates into an enhanced expression of DDR genes that follows a rhythmic oscillation pattern. This evidences a link between chromatin modifications and their synchronization with the diurnal cycle in order to accurately modulate the activation of biological processes to the most appropriate time of the day.
Collapse
Affiliation(s)
- Jorge Fung-Uceda
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - María Sol Gómez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Laura Rodríguez-Casillas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Anna González-Gil
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
2
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Zhu K, Ye Y. When to germinate: the talk between abscisic acid and circadian clock. PLANT PHYSIOLOGY 2023; 191:1473-1474. [PMID: 36648240 PMCID: PMC10022602 DOI: 10.1093/plphys/kiad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Kaikai Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | |
Collapse
|
4
|
Pupillo P, Sparla F, Melandri BA, Trost P. The circadian night depression of photosynthesis analyzed in a herb, Pulmonaria vallarsae. Day/night quantitative relationships. PHOTOSYNTHESIS RESEARCH 2022; 154:143-153. [PMID: 36087250 PMCID: PMC9630222 DOI: 10.1007/s11120-022-00956-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Although many photosynthesis related processes are known to be controlled by the circadian system, consequent changes in photosynthetic activities are poorly understood. Photosynthesis was investigated during the daily cycle by chlorophyll fluorescence using a PAM fluorometer in Pulmonaria vallarsae subsp. apennina, an understory herb. A standard test consists of a light induction pretreatment followed by light response curve (LRC). Comparison of the major diagnostic parameters collected during day and night showed a nocturnal drop of photosynthetic responses, more evident in water-limited plants and consisting of: (i) strong reduction of flash-induced fluorescence peaks (FIP), maximum linear electron transport rate (Jmax, ETREM) and effective PSII quantum yield (ΦPSII); (ii) strong enhancement of nonphotochemical quenching (NPQ) and (iii) little or no change in photochemical quenching qP, maximum quantum yield of linear electron transport (Φ), and shape of LRC (θ). A remarkable feature of day/night LRCs at moderate to high irradiance was their linear-parallel course in double-reciprocal plots. Photosynthesis was also monitored in plants subjected to 2-3 days of continuous darkness ("long night"). In such conditions, plants exhibited high but declining peaks of photosynthetic activity during subjective days and a low, constant value with elevated NPQ during subjective night tests. The photosynthetic parameters recorded in subjective days in artificial darkness resembled those under natural day conditions. On the basis of the evidence, we suggest a circadian component and a biochemical feedback inhibition to explain the night depression of photosynthesis in P. vallarsae.
Collapse
Affiliation(s)
- Paolo Pupillo
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy.
| | - Bruno A Melandri
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna Alma Mater, Via Irnerio 42, 40126, Bologna, Italy
| |
Collapse
|
5
|
Xiong L, Zhou W, Mas P. Illuminating the Arabidopsis circadian epigenome: Dynamics of histone acetylation and deacetylation. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102268. [PMID: 35921796 DOI: 10.1016/j.pbi.2022.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock generates rhythms in biological processes including plant development and metabolism. Light synchronizes the circadian clock with the day and night cycle and also triggers developmental transitions such as germination, or flowering. The circadian and light signaling pathways are closely interconnected and understanding their mechanisms of action and regulation requires the integration of both pathways in their complexity. Here, we provide a glimpse into how chromatin remodeling lies at the interface of the circadian and light signaling regulation. We focus on histone acetylation/deacetylation and the generation of permissive or repressive states for transcription. Several chromatin remodelers intervene in both pathways, suggesting that interaction with specific transcription factors might specify the proper timing or light-dependent responses. Deciphering the repertoire of chromatin remodelers and their interacting transcription factors will provide a view on the circadian and light-dependent epigenetic landscape amenable for mechanistic studies and timely regulation of transcription in plants.
Collapse
Affiliation(s)
- Lu Xiong
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Wenguan Zhou
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Patnaik A, Alavilli H, Rath J, Panigrahi KCS, Panigrahy M. Variations in Circadian Clock Organization & Function: A Journey from Ancient to Recent. PLANTA 2022; 256:91. [PMID: 36173529 DOI: 10.1007/s00425-022-04002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Circadian clock components exhibit structural variations in different plant systems, and functional variations during various abiotic stresses. These variations bear relevance for plant fitness and could be important evolutionarily. All organisms on earth have the innate ability to measure time as diurnal rhythms that occur due to the earth's rotations in a 24-h cycle. Circadian oscillations arising from the circadian clock abide by its fundamental properties of periodicity, entrainment, temperature compensation, and oscillator mechanism, which is central to its function. Despite the fact that a myriad of research in Arabidopsis thaliana illuminated many detailed aspects of the circadian clock, many more variations in clock components' organizations and functions remain to get deciphered. These variations are crucial for sustainability and adaptation in different plant systems in the varied environmental conditions in which they grow. Together with these variations, circadian clock functions differ drastically even during various abiotic and biotic stress conditions. The present review discusses variations in the organization of clock components and their role in different plant systems and abiotic stresses. We briefly introduce the clock components, entrainment, and rhythmicity, followed by the variants of the circadian clock in different plant types, starting from lower non-flowering plants, marine plants, dicots to the monocot crop plants. Furthermore, we discuss the interaction of the circadian clock with components of various abiotic stress pathways, such as temperature, light, water stress, salinity, and nutrient deficiency with implications for the reprogramming during these stresses. We also update on recent advances in clock regulations due to post-transcriptional, post-translation, non-coding, and micro-RNAs. Finally, we end this review by summarizing the points of applicability, a remark on the future perspectives, and the experiments that could clear major enigmas in this area of research.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul, 05006, South Korea
| | - Jnanendra Rath
- Institute of Science, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India.
| |
Collapse
|
7
|
Okada M, Yang Z, Mas P. Circadian autonomy and rhythmic precision of the Arabidopsis female reproductive organ. Dev Cell 2022; 57:2168-2180.e4. [PMID: 36115345 DOI: 10.1016/j.devcel.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
The plant circadian clock regulates essential biological processes including flowering time or petal movement. However, little is known about how the clock functions in flowers. Here, we identified the circadian components and transcriptional networks contributing to the generation of rhythms in pistils, the female reproductive organ. When detached from the rest of the flower, pistils sustain highly precise rhythms, indicating organ-specific circadian autonomy. Analyses of clock mutants and chromatin immunoprecipitation assays showed distinct expression patterns and specific regulatory functions for clock activators and repressors in pistils. Genetic interaction studies also suggested a hierarchy of the repressing activities that provide robustness and precision to the pistil clock. Globally, the circadian function in pistils primarily governs responses to environmental stimuli and photosynthesis and controls pistil growth and seed weight and production. Understanding the circadian intricacies in reproductive organs may prove useful for optimizing plant reproduction and productivity.
Collapse
Affiliation(s)
- Masaaki Okada
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Zhiyuan Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
9
|
Xu X, Yuan L, Xie Q. The circadian clock ticks in plant stress responses. STRESS BIOLOGY 2022; 2:15. [PMID: 37676516 PMCID: PMC10441891 DOI: 10.1007/s44154-022-00040-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 09/08/2023]
Abstract
The circadian clock, a time-keeping mechanism, drives nearly 24-h self-sustaining rhythms at the physiological, cellular, and molecular levels, keeping them synchronized with the cyclic changes of environmental signals. The plant clock is sensitive to external and internal stress signals that act as timing cues to influence the circadian rhythms through input pathways of the circadian clock system. In order to cope with environmental stresses, many core oscillators are involved in defense while maintaining daily growth in various ways. Recent studies have shown that a hierarchical multi-oscillator network orchestrates the defense through rhythmic accumulation of gene transcripts, alternative splicing of mRNA precursors, modification and turnover of proteins, subcellular localization, stimuli-induced phase separation, and long-distance transport of proteins. This review summarizes the essential role of circadian core oscillators in response to stresses in Arabidopsis thaliana and crops, including daily and seasonal abiotic stresses (low or high temperature, drought, high salinity, and nutrition deficiency) and biotic stresses (pathogens and herbivorous insects). By integrating time-keeping mechanisms, circadian rhythms and stress resistance, we provide a temporal perspective for scientists to better understand plant environmental adaptation and breed high-quality crop germplasm for agricultural production.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Hotta CT. From crops to shops: how agriculture can use circadian clocks. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7668-7679. [PMID: 34363668 DOI: 10.1093/jxb/erab371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about environmental and biological rhythms can lead to more sustainable agriculture in a climate crisis and resource scarcity scenario. When rhythms are considered, more efficient and cost-effective management practices can be designed for food production. The circadian clock is used to anticipate daily and seasonal changes, organize the metabolism during the day, integrate internal and external signals, and optimize interaction with other organisms. Plants with a circadian clock in synchrony with the environment are more productive and use fewer resources. In medicine, chronotherapy is used to increase drug efficacy, reduce toxicity, and understand the health effects of circadian clock disruption. Here, I show evidence of why circadian biology can be helpful in agriculture. However, as evidence is scattered among many areas, they frequently lack field testing, integrate poorly with other rhythms, or suffer inconsistent results. These problems can be mitigated if researchers of different areas start collaborating under a new study area-circadian agriculture.
Collapse
Affiliation(s)
- Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Liu HY, Gu H, Li Y, Hu P, Yang Y, Li K, Li H, Zhang K, Zhou B, Wu H, Bao W, Cai D. Dietary Conjugated Linoleic Acid Modulates the Hepatic Circadian Clock Program via PPARα/REV-ERBα-Mediated Chromatin Modification in Mice. Front Nutr 2021; 8:711398. [PMID: 34722605 PMCID: PMC8553932 DOI: 10.3389/fnut.2021.711398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Scope: Disruptions of circadian rhythm cause metabolic disorders and are closely related to dietary factors. In this study, we investigated the interplays between the dietary conjugated linoleic acid (CLA)-induced hepatic steatosis and the circadian clock regulation, in association with lipid homeostasis. Methods and Results: Exposure of mice to 1.5% dietary CLA for 28 days caused insulin resistance, enlarged livers, caused hepatic steatosis, and increased triglyceride levels. Transcriptional profiling showed that hepatic circadian clock genes were significantly downregulated with increased expression of the negative transcription factor, REV-ERBα. We uncovered that the nuclear receptor (NR) PPARα, as a major target of dietary CLA, drives REV-ERBα expression via its binding to key genes of the circadian clock, including Cry1 and Clock, and the recruitment of histone marks and cofactors. The PPARα or REV-ERBα inhibition blocked the physical connection of this NR pair, reduced the cobinding of PPARα and REV-ERBα to the genomic DNA response element, and abolished histone modifications in the CLA-hepatocytes. In addition, we demonstrated that CLA promotes PPARα driving REV-ERBα transcriptional activity by directly binding to the PPAR response element (PPRE) at the Nr1d1 gene. Conclusions: Our results add a layer to the understanding of the peripheral clock feedback loop, which involves the PPARα-REV-ERBα, and provide guidance for nutrients optimization in circadian physiology.
Collapse
Affiliation(s)
- Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanwei Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Li
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kexin Zhang
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bo Zhou
- Institute of Digestive Disease, Zhengzhou University, Zhengzhou, China
| | - Huaxing Wu
- Baijiu Science and Research Center, Sichuan Swellfun Co., Ltd., Chengdu, China
| | - Wenbin Bao
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Yan J, Li S, Kim YJ, Zeng Q, Radziejwoski A, Wang L, Nomura Y, Nakagami H, Somers DE. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth. EMBO J 2021; 40:e108684. [PMID: 34726281 DOI: 10.15252/embj.2021108684] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.
Collapse
Affiliation(s)
- Jiapei Yan
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Shibai Li
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,Memorial Sloan Kettering Cancer Center, Molecular Biology Program, New York, NY, USA
| | - Yeon Jeong Kim
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Qingning Zeng
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Lei Wang
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,The Chinese Academy of Sciences, Institute of Botany, Beijing, China
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Proteomics Research Unit, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Proteomics Research Unit, Yokohama, Japan.,Max Planck Institute for Plant Breeding Research, Protein Mass Spectrometry, Cologne, Germany
| | - David E Somers
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,POSTECH, Division of Integrative Biosciences and Biotechnology, Pohang, South Korea
| |
Collapse
|
13
|
McClung CR. Circadian Clock Components Offer Targets for Crop Domestication and Improvement. Genes (Basel) 2021; 12:genes12030374. [PMID: 33800720 PMCID: PMC7999361 DOI: 10.3390/genes12030374] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
During plant domestication and improvement, farmers select for alleles present in wild species that improve performance in new selective environments associated with cultivation and use. The selected alleles become enriched and other alleles depleted in elite cultivars. One important aspect of crop improvement is expansion of the geographic area suitable for cultivation; this frequently includes growth at higher or lower latitudes, requiring the plant to adapt to novel photoperiodic environments. Many crops exhibit photoperiodic control of flowering and altered photoperiodic sensitivity is commonly required for optimal performance at novel latitudes. Alleles of a number of circadian clock genes have been selected for their effects on photoperiodic flowering in multiple crops. The circadian clock coordinates many additional aspects of plant growth, metabolism and physiology, including responses to abiotic and biotic stresses. Many of these clock-regulated processes contribute to plant performance. Examples of selection for altered clock function in tomato demonstrate that with domestication, the phasing of the clock is delayed with respect to the light–dark cycle and the period is lengthened; this modified clock is associated with increased chlorophyll content in long days. These and other data suggest the circadian clock is an attractive target during breeding for crop improvement.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Cervela-Cardona L, Alary B, Mas P. The Arabidopsis Circadian Clock and Metabolic Energy: A Question of Time. FRONTIERS IN PLANT SCIENCE 2021; 12:804468. [PMID: 34956299 PMCID: PMC8695440 DOI: 10.3389/fpls.2021.804468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
A fundamental principle shared by all organisms is the metabolic conversion of nutrients into energy for cellular processes and structural building blocks. A highly precise spatiotemporal programming is required to couple metabolic capacity with energy allocation. Cellular metabolism is also able to adapt to the external time, and the mechanisms governing such an adaptation rely on the circadian clock. Virtually all photosensitive organisms have evolved a self-sustained timekeeping mechanism or circadian clock that anticipates and responds to the 24-h environmental changes that occur during the day and night cycle. This endogenous timing mechanism works in resonance with the environment to control growth, development, responses to stress, and also metabolism. Here, we briefly describe the prevalent role for the circadian clock controlling the timing of mitochondrial activity and cellular energy in Arabidopsis thaliana. Evidence that metabolic signals can in turn feedback to the clock place the spotlight onto the molecular mechanisms and components linking the circadian function with metabolic homeostasis and energy.
Collapse
Affiliation(s)
- Luis Cervela-Cardona
- Centre for Research in Agricultural Genomics, CSIC-IRTA-Universidad Autónoma de Barcelona (UAB)-UB, Barcelona, Spain
| | - Benjamin Alary
- Centre for Research in Agricultural Genomics, CSIC-IRTA-Universidad Autónoma de Barcelona (UAB)-UB, Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics, CSIC-IRTA-Universidad Autónoma de Barcelona (UAB)-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- *Correspondence: Paloma Mas,
| |
Collapse
|
15
|
Maric A, Mas P. Chromatin Dynamics and Transcriptional Control of Circadian Rhythms in Arabidopsis. Genes (Basel) 2020; 11:E1170. [PMID: 33036236 PMCID: PMC7601625 DOI: 10.3390/genes11101170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms pervade nearly all aspects of plant growth, physiology, and development. Generation of the rhythms relies on an endogenous timing system or circadian clock that generates 24-hour oscillations in multiple rhythmic outputs. At its bases, the plant circadian function relies on dynamic interactive networks of clock components that regulate each other to generate rhythms at specific phases during the day and night. From the initial discovery more than 13 years ago of a parallelism between the oscillations in chromatin status and the transcriptional rhythms of an Arabidopsis clock gene, a number of studies have later expanded considerably our view on the circadian epigenome and transcriptome landscapes. Here, we describe the most recent identification of chromatin-related factors that are able to directly interact with Arabidopsis clock proteins to shape the transcriptional waveforms of circadian gene expression and clock outputs. We discuss how changes in chromatin marks associate with transcript initiation, elongation, and the rhythms of nascent RNAs, and speculate on future interesting research directions in the field.
Collapse
Affiliation(s)
- Aida Maric
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain
| |
Collapse
|
16
|
Singh G, Singh V, Singh V. Genome-wide interologous interactome map (TeaGPIN) of Camellia sinensis. Genomics 2020; 113:553-564. [PMID: 33002625 DOI: 10.1016/j.ygeno.2020.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/15/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022]
Abstract
Tea, prepared from the young leaves of Camellia sinensis, is a non-alcoholic beverage globally consumed due to its antioxidant properties, strong taste and aroma. Although, the genomic data of this medicinally and commercially important plant is available, studies related to its sub-cellular interactomic maps are less explored. In this work, we propose a genome-wide interologous protein-protein interaction (PPI) network of tea, termed as TeaGPIN, consisting of 12,033 nodes and 216,107 interactions, developed using draft genome of tea and known PPIs exhaustively collected from 49 template plants. TeaGPIN interactions are prioritized using domain-domain interactions along with the interolog information. A high-confidence TeaGPIN consisting of 5983 nodes and 58,867 edges is reported and its interactions are further evaluated using protein co-localization similarities. Based on three network centralities (degree, betweenness and eigenvector), 1302 key proteins are reported in tea to have p-value <0.01 by comparing the TeaGPIN with 10,000 realizations of Erdős-Rényi and Barabási-Albert based corresponding random network models. Functional content of TeaGPIN is assessed using KEGG and GO annotations and its modular architecture is explored. Network based characterization is carried-out on the transcription factors, and proteins involved flavonoid biosynthesis and photosynthesis pathways to find novel candidates involved in various regulatory processes. We believe the proposed TeaGPIN will impart useful insights in understanding various mechanisms related to growth and development as well as defence against biotic and abiotic perturbations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India.
| |
Collapse
|
17
|
Kim TS, Wang L, Kim YJ, Somers DE. Compensatory Mutations in GI and ZTL May Modulate Temperature Compensation in the Circadian Clock. PLANT PHYSIOLOGY 2020; 182:1130-1141. [PMID: 31740505 PMCID: PMC6997678 DOI: 10.1104/pp.19.01120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/02/2019] [Indexed: 05/04/2023]
Abstract
Circadian systems share the three properties of entrainment, free-running period, and temperature compensation (TC). TC ensures nearly the same period over a broad range of physiologically relevant temperatures; however, the mechanisms behind TC remain poorly understood. Here, we identify single point mutations in two key elements of the Arabidopsis circadian clock, GIGANTEA (GI) and ZEITLUPE (ZTL), which likely act as compensatory substitutions to establish a remarkably constant free-running period over a wide range of temperatures. Using near-isogenic lines generated from the introgression of the Cape Verde Islands (Cvi) alleles of GI and ZTL into the Landsberg erecta (Ler) background, we show how longer periods in the Cvi background at higher temperatures correlate with a difference in strength of the GI/ZTL interaction. Pairwise interaction testing of all GI/ZTL allelic combinations shows similar affinities for isogenic alleles at 22°C, but very poor interaction between GI (Cvi) and ZTL (Cvi) at higher temperature. In vivo, this would result in lower ZTL levels at high temperatures leading to longer periods in the Cvi background. Mismatched allelic combinations result in extremely strong or weak GI/ZTL interactions, indicating how the corresponding natural variants likely became fixed through epistatic selection. Additionally, molecular characterization of GI (Cvi) reveals a novel functional motif that can modulate the GI/ZTL interaction as well as nucleocytoplasmic partitioning. Taken together, these results identify a plausible temperature-dependent molecular mechanism, which contributes to the robustness of TC through natural variation in GI and ZTL alleles found on the Cape Verde Islands.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Lei Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
18
|
Tong M, Lee K, Ezer D, Cortijo S, Jung J, Charoensawan V, Box MS, Jaeger KE, Takahashi N, Mas P, Wigge PA, Seo PJ. The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. PLANT PHYSIOLOGY 2020; 182:612-625. [PMID: 31712305 PMCID: PMC6945876 DOI: 10.1104/pp.19.00881] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
The Evening Complex (EC) is a core component of the Arabidopsis (Arabidopsis thaliana) circadian clock, which represses target gene expression at the end of the day and integrates temperature information to coordinate environmental and endogenous signals. Here we show that the EC induces repressive chromatin structure to regulate the evening transcriptome. The EC component ELF3 directly interacts with a protein from the SWI2/SNF2-RELATED (SWR1) complex to control deposition of H2A.Z-nucleosomes at the EC target genes. SWR1 components display circadian oscillation in gene expression with a peak at dusk. In turn, SWR1 is required for the circadian clockwork, as defects in SWR1 activity alter morning-expressed genes. The EC-SWR1 complex binds to the loci of the core clock genes PSEUDO-RESPONSE REGULATOR7 (PRR7) and PRR9 and catalyzes deposition of nucleosomes containing the histone variant H2A.Z coincident with the repression of these genes at dusk. This provides a mechanism by which the circadian clock temporally establishes repressive chromatin domains to shape oscillatory gene expression around dusk.
Collapse
Affiliation(s)
- Meixuezi Tong
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Jaehoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Mathew S Box
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Nozomu Takahashi
- Center for Research in Agricultural Genomics, Consortium Consejo Superior de Investigaciones Cientificas-Institute of Agrifood Research and Technology-Universitat Autònoma de Barcelona-Universidad de Barcelona, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Barcelona 08193, Spain
| | - Paloma Mas
- Center for Research in Agricultural Genomics, Consortium Consejo Superior de Investigaciones Cientificas-Institute of Agrifood Research and Technology-Universitat Autònoma de Barcelona-Universidad de Barcelona, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona 08193, Spain
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, 14979 Großbeeren, Germany
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Singh G, Singh V, Singh V. Construction and analysis of an interologous protein-protein interaction network of Camellia sinensis leaf (TeaLIPIN) from RNA-Seq data sets. PLANT CELL REPORTS 2019; 38:1249-1262. [PMID: 31197449 DOI: 10.1007/s00299-019-02440-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
An interologous PPI network of tea leaf is designed by developing reference transcriptome assembly and using experimentally validated PPIs in plants. Key regulatory proteins are proposed and potential TFs are predicted. Worldwide, tea (Camellia sinensis) is the most consumed beverage primarily due to the taste, flavour, and aroma of its newly formed leaves; and has been used as an important ingredient in several traditional medicinal systems because of its antioxidant properties. For this medicinally and commercially important plant, design principles of gene-regulatory and protein-protein interaction (PPI) networks at sub-cellular level are largely un-characterized. In this work, we report a tea leaf interologous PPI network (TeaLIPIN) consisting of 11,208 nodes and 197,820 interactions. A reference transcriptome assembly was first developed from all the 44 samples of 6 publicly available leaf transcriptomes (1,567,288,290 raw reads). By inferring the high-confidence interactions among potential proteins coded by these transcripts using known experimental information about PPIs in 14 plants, an interologous PPI network was constructed and its modular architecture was explored. Comparing this network with 10,000 realizations of two types of corresponding random networks (Erdős-Rényi and Barabási-Albert models) and examining over three network centrality metrics, we predict 2750 bottleneck proteins (having p values < 0.01). 247 of these are deduced to have transcription factor domains by in-house developed HMM models of known plant TFs and these were also mapped to the draft tea genome for searching their probable loci of origin. Co-expression analysis of the TeaLIPIN proteins was also performed and top ranking modules are elaborated. We believe that the proposed novel methodology can easily be adopted to develop and explore the PPI interactomes in other plant species by making use of the available transcriptomic data.
Collapse
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
20
|
Song Q, Huang TY, Yu HH, Ando A, Mas P, Ha M, Chen ZJ. Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis. Genome Biol 2019; 20:170. [PMID: 31429787 PMCID: PMC6892391 DOI: 10.1186/s13059-019-1777-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background Circadian rhythms modulate growth and development in all organisms through interlocking transcriptional-translational feedback loops. The transcriptional loop involves chromatin modifications of central circadian oscillators in mammals and plants. However, the molecular basis for rhythmic epigenetic modifications and circadian regulation is poorly understood. Results Here we report a feedback relationship between diurnal regulation of circadian clock genes and histone modifications in Arabidopsis. On one hand, the circadian oscillators CCA1 and LHY regulate diurnal expression of genes coding for the eraser (JMJ14) directly and writer (SDG2) indirectly for H3K4me3 modification, leading to rhythmic H3K4me3 changes in target genes. On the other hand, expression of circadian oscillator genes including CCA1 and LHY is associated with H3K4me3 levels and decreased in the sdg2 mutant but increased in the jmj14 mutant. At the genome-wide level, diurnal rhythms of H3K4me3 and another histone mark H3K9ac are associated with diurnal regulation of 20–30% of the expressed genes. While the majority (86%) of H3K4me3 and H3K9ac target genes overlap, only 13% of morning-phased and 22% of evening-phased genes had both H3K4me3 and H3K9ac peaks, suggesting specific roles of different histone modifications in diurnal gene expression. Conclusions Circadian clock genes promote diurnal regulation of SDG2 and JMJ14 expression, which in turn regulate rhythmic histone modification dynamics for the clock and its output genes. This reciprocal regulatory module between chromatin modifiers and circadian clock oscillators orchestrates diurnal gene expression that governs plant growth and development. Electronic supplementary material The online version of this article (10.1186/s13059-019-1777-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tien-Yu Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Helen H Yu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Misook Ha
- Samsung Advanced Institute of Technology, Samsung Electronics Corporation, Suwon, 443-803, South Korea.
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA. .,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Thines B, Parlan EV, Fulton EC. Circadian Network Interactions with Jasmonate Signaling and Defense. PLANTS 2019; 8:plants8080252. [PMID: 31357700 PMCID: PMC6724144 DOI: 10.3390/plants8080252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023]
Abstract
Plants experience specific stresses at particular, but predictable, times of the day. The circadian clock is a molecular oscillator that increases plant survival by timing internal processes to optimally match these environmental challenges. Clock regulation of jasmonic acid (JA) action is important for effective defenses against fungal pathogens and generalist herbivores in multiple plant species. Endogenous JA levels are rhythmic and under clock control with peak JA abundance during the day, a time when plants are more likely to experience certain types of biotic stresses. The expression of many JA biosynthesis, signaling, and response genes is transcriptionally controlled by the clock and timed through direct connections with core clock proteins. For example, the promoter of Arabidopsis transcription factor MYC2, a master regulator for JA signaling, is directly bound by the clock evening complex (EC) to negatively affect JA processes, including leaf senescence, at the end of the day. Also, tobacco ZEITLUPE, a circadian photoreceptor, binds directly to JAZ proteins and stimulates their degradation with resulting effects on JA root-based defenses. Collectively, a model where JA processes are embedded within the circadian network at multiple levels is emerging, and these connections to the circadian network suggest multiple avenues for future research.
Collapse
Affiliation(s)
- Bryan Thines
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA.
| | - Emily V Parlan
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| | - Elena C Fulton
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| |
Collapse
|
22
|
Lee K, Mas P, Seo PJ. The EC-HDA9 complex rhythmically regulates histone acetylation at the TOC1 promoter in Arabidopsis. Commun Biol 2019; 2:143. [PMID: 31044168 PMCID: PMC6478914 DOI: 10.1038/s42003-019-0377-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Circadian clocks are conserved time-keeper mechanisms in some prokaryotes and higher eukaryotes. Chromatin modification is emerging as key regulatory mechanism for refining core clock gene expression. Rhythmic changes in histone marks are closely associated to the TIMING OF CAB EXPRESSION 1 (TOC1) Arabidopsis clock gene. However, the chromatin-related modifiers responsible for these marks remain largely unknown. Here, we uncover that the chromatin modifier HISTONE DEACETYLASE 9 (HDA9) and the Evening complex (EC) component EARLY FLOWERING 3 (ELF3) directly interact to regulate the declining phase of TOC1 after its peak expression. We found that HDA9 specifically binds to the TOC1 promoter through the interaction with ELF3. The EC-HDA9 complex promotes H3 deacetylation at the TOC1 locus, contributing to suppressing TOC1 expression during the night, the time of EC function. Therefore, we have identified the mechanism by which the circadian clock intertwines with chromatin-related components to shape the circadian waveforms of gene expression in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
23
|
Moraes TA, Mengin V, Annunziata MG, Encke B, Krohn N, Höhne M, Stitt M. Response of the Circadian Clock and Diel Starch Turnover to One Day of Low Light or Low CO 2. PLANT PHYSIOLOGY 2019; 179:1457-1478. [PMID: 30670603 PMCID: PMC6446786 DOI: 10.1104/pp.18.01418] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Diel starch turnover responds rapidly to changes in the light regime. We investigated if these responses require changes in the temporal dynamics of the circadian clock. Arabidopsis (Arabidopsis thaliana) was grown in a 12-h photoperiod for 19 d, shifted to three different reduced light levels or to low CO2 for one light period, and returned to growth conditions. The treatments produced widespread changes in clock transcript abundance. However, almost all of the changes were restricted to extreme treatments that led to carbon starvation and were small compared to the magnitude of the circadian oscillation. Changes included repression of EARLY FLOWERNG 4, slower decay of dusk components, and a slight phase delay at the next dawn, possibly due to abrogated Evening Complex function and sustained expression of PHYTOCHROME INTERACTING FACTORs and REVEILLEs during the night. Mobilization of starch in the night occurred in a linear manner and was paced to dawn, both in moderate treatments that did not alter clock transcripts and in extreme treatments that led to severe carbon starvation. We conclude that pacing of starch mobilization to dawn does not require retrograde carbon signaling to the transcriptional clock. On the following day, growth decreased, sugars rose, and starch accumulation was stimulated in low-light-treated plants compared to controls. This adaptive response was marked after moderate treatments and occurred independently of changes in the transcriptional clock. It is probably a time-delayed response to low-C signaling in the preceding 24-h cycle, possibly including changes in PHYTOCHROME INTERACTING FACTOR and REVEILLE expression.
Collapse
Affiliation(s)
- Thiago Alexandre Moraes
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maria Grazia Annunziata
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
24
|
Lee HG, Hong C, Seo PJ. The Arabidopsis Sin3-HDAC Complex Facilitates Temporal Histone Deacetylation at the CCA1 and PRR9 Loci for Robust Circadian Oscillation. FRONTIERS IN PLANT SCIENCE 2019; 10:171. [PMID: 30833956 PMCID: PMC6387943 DOI: 10.3389/fpls.2019.00171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
The circadian clock synchronizes endogenous rhythmic processes with environmental cycles and maximizes plant fitness. Multiple regulatory layers shape circadian oscillation, and chromatin modification is emerging as an important scheme for precise circadian waveforms. Here, we report the role of an evolutionarily conserved Sin3-histone deacetylase complex (HDAC) in circadian oscillation in Arabidopsis. SAP30 FUNCTION-RELATED 1 (AFR1) and AFR2, which are key components of Sin3-HDAC complex, are circadianly-regulated and possibly facilitate the temporal formation of the Arabidopsis Sin3-HDAC complex at dusk. The evening-expressed AFR proteins bind directly to the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) promoters and catalyze histone 3 (H3) deacetylation at the cognate regions to repress expression, allowing the declining phase of their expression at dusk. In support, the CCA1 and PRR9 genes were de-repressed around dusk in the afr1-1afr2-1 double mutant. These findings indicate that periodic histone deacetylation at the morning genes by the Sin3-HDAC complex contributes to robust circadian maintenance in higher plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Flis A, Mengin V, Ivakov AA, Mugford ST, Hubberten HM, Encke B, Krohn N, Höhne M, Feil R, Hoefgen R, Lunn JE, Millar AJ, Smith AM, Sulpice R, Stitt M. Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. PLANT, CELL & ENVIRONMENT 2019; 42:549-573. [PMID: 30184255 DOI: 10.1111/pce.13440] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 05/09/2023]
Abstract
Plants accumulate reserves in the daytime to support growth at night. Circadian regulation of diel reserve turnover was investigated by profiling starch, sugars, glucose 6-phosphate, organic acids, and amino acids during a light-dark cycle and after transfer to continuous light in Arabidopsis wild types and in mutants lacking dawn (lhy cca1), morning (prr7 prr9), dusk (toc1, gi), or evening (elf3) clock components. The metabolite time series were integrated with published time series for circadian clock transcripts to identify circadian outputs that regulate central metabolism. (a) Starch accumulation was slower in elf3 and prr7 prr9. It is proposed that ELF3 positively regulates starch accumulation. (b) Reducing sugars were high early in the T-cycle in elf3, revealing that ELF3 negatively regulates sucrose recycling. (c) The pattern of starch mobilization was modified in all five mutants. A model is proposed in which dawn and dusk/evening components interact to pace degradation to anticipated dawn. (d) An endogenous oscillation of glucose 6-phosphate revealed that the clock buffers metabolism against the large influx of carbon from photosynthesis. (e) Low levels of organic and amino acids in lhy cca1 and high levels in prr7 prr9 provide evidence that the dawn components positively regulate the accumulation of amino acid reserves.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander A Ivakov
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sam T Mugford
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, UK
| | | | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
26
|
You Y, Sawikowska A, Lee JE, Benstein RM, Neumann M, Krajewski P, Schmid M. Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering. THE PLANT CELL 2019; 31:325-345. [PMID: 30670485 PMCID: PMC6447005 DOI: 10.1105/tpc.17.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
The phloem plays essential roles in the source-to-sink relationship and in long-distance communication, and thereby coordinates growth and development throughout the plant. Here we employed isolation of nuclei tagged in specific cell types coupled with low-input, high-throughput sequencing approaches to analyze the changes of the chromatin modifications H3K4me3 and H3K27me3 and their correlation with gene expression in the phloem companion cells (PCCs) of Arabidopsis(Arabidopsis thaliana) shoots in response to changes in photoperiod. We observed a positive correlation between changes in expression and H3K4me3 levels of genes that are involved in essential PCC functions, including regulation of metabolism, circadian rhythm, development, and epigenetic modifications. By contrast, changes in H3K27me3 signal appeared to contribute little to gene expression changes. These genomic data illustrate the complex gene-regulatory networks that integrate plant developmental and physiological processes in the PCCs. Emphasizing the importance of cell-specific analyses, we identified a previously uncharacterized MORN-motif repeat protein, MORN-MOTIF REPEAT PROTEIN REGULATING FLOWERING1 (MRF1), that was strongly up-regulated in the PCCs in response to inductive photoperiod. The mrf1 mutation delayed flowering, whereas MRF1 overexpression had the opposite effect, indicating that MRF1 acts as a floral promoter.
Collapse
Affiliation(s)
- Yuan You
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Center for Plant Molecular Biology (ZMBP), Department of General Genetics, University Tübingen, 72076 Tübingen, Germany
| | - Aneta Sawikowska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ruben M Benstein
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
27
|
Prado K, Cotelle V, Li G, Bellati J, Tang N, Tournaire-Roux C, Martinière A, Santoni V, Maurel C. Oscillating Aquaporin Phosphorylation and 14-3-3 Proteins Mediate the Circadian Regulation of Leaf Hydraulics. THE PLANT CELL 2019; 31:417-429. [PMID: 30674691 PMCID: PMC6447024 DOI: 10.1105/tpc.18.00804] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 05/20/2023]
Abstract
The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity (K ros) of Arabidopsis (Arabidopsis thaliana) rosettes displays a genuine circadian rhythmicity with a peak around midday. Combined immunological and proteomic approaches revealed that phosphorylation at two C-terminal sites (Ser280, Ser283) of PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (AtPIP2;1), a major plasma membrane aquaporin in rosettes, shows circadian oscillations and is correlated with K ros Transgenic expression of phosphodeficient and phosphomimetic forms of this aquaporin indicated that AtPIP2;1 phosphorylation is necessary but not sufficient for K ros regulation. We investigated the supporting role of 14-3-3 proteins, which are known to interact with and regulate phosphorylated proteins. Individual knockout plants for five 14-3-3 protein isoforms expressed in rosettes lacked circadian activation of K ros Two of these [GRF4 (14-3-3Phi); GRF10 (14-3-3Epsilon)] showed direct interactions with AtPIP2;1 in the plant and upon coexpression in Xenopus laevis oocytes and activated AtPIP2;1, preferentially when the latter was phosphorylated at its two C-terminal sites. We propose that this regulatory mechanism assists in the activation of phosphorylated AtPIP2;1 during circadian regulation of K ros.
Collapse
Affiliation(s)
- Karine Prado
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, F-31326, Castanet-Tolosan, France
| | - Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Jorge Bellati
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Ning Tang
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| |
Collapse
|
28
|
Kim YJ, Somers DE. Luciferase-Based Screen for Post-translational Control Factors in the Regulation of the Pseudo-Response Regulator PRR7. FRONTIERS IN PLANT SCIENCE 2019; 10:667. [PMID: 31191580 PMCID: PMC6540683 DOI: 10.3389/fpls.2019.00667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 05/04/2023]
Abstract
Control of protein turnover is a key post-translational control point in the oscillatory network of the circadian clock. Some elements, such as TOC1 and PRR5 are engaged by a well-described F-box protein, ZEITLUPE, dedicated to their proteolytic turnover to shape their expression profile to a specific time of night. For most other clock components the regulation of their protein abundance is unknown, though turnover is often rapid and often lags the cycling of the respective mRNA. Here we report the design and results of an unbiased genetic screen in Arabidopsis to uncover proteolytic regulatory factors of PSEUDO-RESPONSE REGULATOR 7 (PRR7), a transcriptional repressor that peaks in the late afternoon. We performed EMS mutagenesis on a transgenic line expressing a PRR7::PRR7-luciferase (PRR7-LUC) translational fusion that accurately recapitulates the diurnal and circadian oscillations of the endogenous PRR7 protein. Using continuous luciferase imaging under constant light, we recovered mutants that alter the PRR7-LUC waveform and some that change period. We have identified novel alleles of ELF3 and ELF4, core components of the ELF3-ELF4-LUX Evening Complex (EC), that dampen the oscillation of PRR7-LUC. We report the characterization of two new hypomorphic alleles of ELF3 that help to understand the relationship between molecular potency and phenotype.
Collapse
|
29
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|
30
|
Yang P, Wang J, Huang FY, Yang S, Wu K. The Plant Circadian Clock and Chromatin Modifications. Genes (Basel) 2018; 9:genes9110561. [PMID: 30463332 PMCID: PMC6266252 DOI: 10.3390/genes9110561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The circadian clock is an endogenous timekeeping network that integrates environmental signals with internal cues to coordinate diverse physiological processes. The circadian function depends on the precise regulation of rhythmic gene expression at the core of the oscillators. In addition to the well-characterized transcriptional feedback regulation of several clock components, additional regulatory mechanisms, such as alternative splicing, regulation of protein stability, and chromatin modifications are beginning to emerge. In this review, we discuss recent findings in the regulation of the circadian clock function in Arabidopsis thaliana. The involvement of chromatin modifications in the regulation of the core circadian clock genes is also discussed.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianhao Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Fu-Yu Huang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan.
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
31
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Koehl K, Lunn JE, Stitt M. Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4881-4895. [PMID: 30053131 PMCID: PMC6137998 DOI: 10.1093/jxb/ery276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 05/18/2023]
Abstract
Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania ‘Luigi Vanvitelli’, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
32
|
Lee K, Seo PJ. The HAF2 protein shapes histone acetylation levels of PRR5 and LUX loci in Arabidopsis. PLANTA 2018; 248:513-518. [PMID: 29789923 DOI: 10.1007/s00425-018-2921-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/15/2018] [Indexed: 05/16/2023]
Abstract
The histone acetyltransferase HAF2 facilitates H3 acetylation deposition at the PRR5 and LUX promoters to contribute to robust circadian oscillation. The circadian clock ensures synchronization of endogenous rhythmic processes with environmental cycles. Multi-layered regulation underlies precise circadian oscillation, and epigenetic regulation is emerging as a crucial scheme for robust circadian maintenance. Here, we report that HISTONE ACETYLTRANSFERASE OF THE TAFII250 FAMILY 2 (HAF2) is involved in circadian homeostasis. The HAF2 gene is activated at midday, and its temporal expression is shaped by CIRCADIAN CLOCK-ASSOCIATED 1. The midday-activated HAF2 protein stimulates H3 acetylation (H3ac) deposition at the PRR5 and LUX loci, contributing to establishment of the raising phase. These results indicate that epigenetic waves in circadian networks underlie temporal compartmentalization of circadian components and stable maintenance of circadian oscillation.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
33
|
Ode KL, Ueda HR. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028357. [PMID: 29038116 DOI: 10.1101/cshperspect.a028357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Graf A, Coman D, Uhrig RG, Walsh S, Flis A, Stitt M, Gruissem W. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biol 2018; 7:rsob.160333. [PMID: 28250106 PMCID: PMC5376707 DOI: 10.1098/rsob.160333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes.
Collapse
Affiliation(s)
- Alexander Graf
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.,Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - Diana Coman
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - R Glen Uhrig
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sean Walsh
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | | |
Collapse
|
35
|
Lee HG, Seo PJ. Dependence and independence of the root clock on the shoot clock in Arabidopsis. Genes Genomics 2018; 40:1063-1068. [DOI: 10.1007/s13258-018-0710-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/31/2018] [Indexed: 01/16/2023]
|
36
|
Muranaka T, Oyama T. Monitoring circadian rhythms of individual cells in plants. JOURNAL OF PLANT RESEARCH 2018; 131:15-21. [PMID: 29204752 DOI: 10.1007/s10265-017-1001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/15/2017] [Indexed: 05/21/2023]
Abstract
The circadian clock is an endogenous timing system based on the self-sustained oscillation in individual cells. These cellular circadian clocks compose a multicellular circadian system working at respective levels of tissue, organ, plant body. However, how numerous cellular clocks are coordinated within a plant has been unclear. There was little information about behavior of circadian clocks at a single-cell level due to the difficulties in monitoring circadian rhythms of individual cells in an intact plant. We developed a single-cell bioluminescence imaging system using duckweed as the plant material and succeeded in observing behavior of cellular clocks in intact plants for over a week. This imaging technique quantitatively revealed heterogeneous and independent manners of cellular clock behaviors. Furthermore, these quantitative analyses uncovered the local synchronization of cellular circadian rhythms that implied phase-attractive interactions between cellular clocks. The cell-to-cell interaction looked to be too weak to coordinate cellular clocks against their heterogeneity under constant conditions. On the other hand, under light-dark conditions, the heterogeneity of cellular clocks seemed to be corrected by cell-to-cell interactions so that cellular clocks showed a clear spatial pattern of phases at a whole plant level. Thus, it was suggested that the interactions between cellular clocks was an adaptive trait working under day-night cycles to coordinate cellular clocks in a plant body. These findings provide a novel perspective for understanding spatio-temporal architectures in the plant circadian system.
Collapse
Affiliation(s)
- Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
37
|
Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM. CIRCADIAN CLOCK ASSOCIATED1 ( CCA1) and the Circadian Control of Stomatal Aperture. PLANT PHYSIOLOGY 2017; 175:1864-1877. [PMID: 29084902 PMCID: PMC5717738 DOI: 10.1104/pp.17.01214] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 05/18/2023]
Abstract
The endogenous circadian (∼24 h) system allows plants to anticipate and adapt to daily environmental changes. Stomatal aperture is one of the many processes under circadian control; stomatal opening and closing occurs under constant conditions, even in the absence of environmental cues. To understand the significance of circadian-mediated anticipation in stomatal opening, we have generated SGC (specifically guard cell) Arabidopsis (Arabidopsis thaliana) plants in which the oscillator gene CIRCADIAN CLOCK ASSOCIATED1 (CCA1) was overexpressed under the control of the guard-cell-specific promoter, GC1. The SGC plants showed a loss of ability to open stomata in anticipation of daily dark-to-light changes and of circadian-mediated stomatal opening in constant light. We observed that under fully watered and mild drought conditions, SGC plants outperform wild type with larger leaf area and biomass. To investigate the molecular basis for circadian control of guard cell aperture, we used large-scale qRT-PCR to compare circadian oscillator gene expression in guard cells compared with the "average" whole-leaf oscillator and examined gene expression and stomatal aperture in several lines of plants with misexpressed CCA1 Our results show that the guard cell oscillator is different from the average plant oscillator. Moreover, the differences in guard cell oscillator function may be important for the correct regulation of photoperiod pathway genes that have previously been reported to control stomatal aperture. We conclude by showing that CONSTANS and FLOWERING LOCUS T, components of the photoperiod pathway that regulate flowering time, also control stomatal aperture in a daylength-dependent manner.
Collapse
Affiliation(s)
- Miriam Hassidim
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Adi Turjeman
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ekaterina Shor
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ariane Anidjar
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Keren Goldberg
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
38
|
Hansen LL, van den Burg HA, van Ooijen G. Sumoylation Contributes to Timekeeping and Temperature Compensation of the Plant Circadian Clock. J Biol Rhythms 2017; 32:560-569. [PMID: 29172926 DOI: 10.1177/0748730417737633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transcriptional circadian clock network is tuned into a 24-h oscillator by numerous posttranslational modifications on the proteins encoded by clock genes, differentially influencing their subcellular localization or activity. Clock proteins in any circadian organism are subject to posttranslational regulation, and many of the key enzymes, notably kinases and phosphatases, are functionally conserved between the clocks of mammals, fungi, and plants. We now establish sumoylation, the posttranslational modification of target proteins by the covalent attachment of the small ubiquitin-like modifier protein SUMO, as a novel mechanism regulating key clock properties in the model plant Arabidopsis. Using 2 different approaches, we show that mutant plant lines with decreased or increased levels of global sumoylation exhibit shortened or lengthened circadian period, respectively. One known functional role of sumoylation is to protect the proteome from temperature stress. The circadian clock is characterized by temperature compensation, meaning that proper timekeeping is ensured over the full range of physiologically relevant temperatures. Interestingly, we observed that the period defects in sumoylation mutant plants are strongly differential across temperature. Increased global sumoylation leads to undercompensation of the clock against temperature and decreased sumoylation to overcompensation, implying that sumoylation buffers the plant clock system against differential ambient temperature.
Collapse
Affiliation(s)
- Louise L Hansen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Lu H, McClung CR, Zhang C. Tick Tock: Circadian Regulation of Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:287-311. [PMID: 28590878 DOI: 10.1146/annurev-phyto-080516-035451] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many living organisms on Earth have evolved the ability to integrate environmental and internal signals to determine time and thereafter adjust appropriately their metabolism, physiology, and behavior. The circadian clock is the endogenous timekeeper critical for multiple biological processes in many organisms. A growing body of evidence supports the importance of the circadian clock for plant health. Plants activate timed defense with various strategies to anticipate daily attacks of pathogens and pests and to modulate responses to specific invaders in a time-of-day-dependent manner (gating). Pathogen infection is also known to reciprocally modulate clock activity. Such a cross talk likely reflects the adaptive nature of plants to coordinate limited resources for growth, development, and defense. This review summarizes recent progress in circadian regulation of plant innate immunity with a focus on the molecular events linking the circadian clock and defense. More and better knowledge of clock-defense cross talk could help to improve disease resistance and productivity in economically important crops.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, Maryland 21052;
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, Maryland 21052;
| |
Collapse
|
40
|
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC PLANT BIOLOGY 2017; 17:94. [PMID: 28558655 PMCID: PMC5450095 DOI: 10.1186/s12870-017-1043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Juli Petereit
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - David Toubiana
- Telekom Innovation, Laboratories and Cyber Security Research Center, Department of Information, Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, 84990 Midreshet Ben-Gurion, Israel
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
41
|
Cha JY, Kim J, Kim TS, Zeng Q, Wang L, Lee SY, Kim WY, Somers DE. GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nat Commun 2017; 8:3. [PMID: 28232745 PMCID: PMC5431898 DOI: 10.1038/s41467-016-0014-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Circadian clock systems help establish the correct daily phasing of the behavioral, developmental, and molecular events needed for the proper coordination of physiology and metabolism. The circadian oscillator comprises transcription–translation feedback loops but also requires post-translational processes that regulate clock protein homeostasis. GIGANTEA is a unique plant protein involved in the maintenance and control of numerous facets of plant physiology and development. Through an unknown mechanism GIGANTEA stabilizes the F-box protein ZEITLUPE, a key regulator of the circadian clock. Here, we show that GIGANTEA has general protein chaperone activity and can act to specifically facilitate ZEITLUPE maturation into an active form in vitro and in planta. GIGANTEA forms a ternary complex with HSP90 and ZEITLUPE and its co-chaperone action synergistically enhances HSP90/HSP70 maturation of ZEITLUPE in vitro. These results identify a molecular mechanism for GIGANTEA activity that can explain its wide-ranging role in plant biology. The plant-specific GIGANTEA protein regulates the circadian clock by stabilizing the F-box protein ZEITLUPE via an unknown mechanism. Here Cha et al. show that GIGANTEA has intrinsic chaperone activity and can facilitate ZEITLUPE maturation by acting synergistically with HSP90.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeongsik Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, 43210, USA.,Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 711-873, Republic of Korea
| | - Tae-Sung Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, 43210, USA.,Department of Agricultural Sciences, Korea National Open University, Seoul, 03087, Republic of Korea
| | - Qingning Zeng
- Department of Molecular Genetics, The Ohio State University, Columbus, 43210, USA
| | - Lei Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, 43210, USA.,Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
42
|
Alternative Splicing of Barley Clock Genes in Response to Low Temperature. PLoS One 2016; 11:e0168028. [PMID: 27959947 PMCID: PMC5154542 DOI: 10.1371/journal.pone.0168028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement.
Collapse
|
43
|
Sanchez SE, Kay SA. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a027748. [PMID: 27663772 PMCID: PMC5131769 DOI: 10.1101/cshperspect.a027748] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| | - Steve A Kay
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| |
Collapse
|
44
|
Baerenfaller K, Shu H, Hirsch-Hoffmann M, Fütterer J, Opitz L, Rehrauer H, Hennig L, Gruissem W. Diurnal changes in the histone H3 signature H3K9ac|H3K27ac|H3S28p are associated with diurnal gene expression in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:2557-2569. [PMID: 27487196 DOI: 10.1111/pce.12811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 05/18/2023]
Abstract
Post-translational chromatin modifications are an important regulatory mechanism in light signalling and circadian clock function. The regulation of diurnal transcript level changes requires fine-tuning of the expression of generally active genes depending on the prevailing environmental conditions. We investigated the association of histone modifications H3K4me3, H3K9ac, H3K9me2, H3S10p, H3K27ac, H3K27me3 and H3S28p with diurnal changes in transcript expression using chromatin immunoprecipitations followed by sequencing (ChIP-Seq) in fully expanded leaves 6 of Arabidopsis thaliana grown in short-day optimal and water-deficit conditions. We identified a differential H3K9ac, H3K27ac and H3S28p signature between end-of-day and end-of-night that is correlated with changes in diurnal transcript levels. Genes with this signature have particular over-represented promoter elements and encode proteins that are significantly enriched for transcription factors, circadian clock and starch catabolic process. Additional activating modifications were prevalent in optimally watered (H3S10p) and in water-deficit (H3K4me3) plants. The data suggest a mechanism for diurnal transcript level regulation in which reduced binding of repressive transcription factors facilitates activating H3K9ac, H3K27ac and H3S28p chromatin modifications. The presence of activating chromatin modification patterns on genes only at times of the day when their expression is required can explain why some genes are differentially inducible during the diurnal cycle.
Collapse
Affiliation(s)
| | - Huan Shu
- Department of Biology, ETH Zurich, Zurich, 8092, Switzerland
- Program of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, 8057, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, 8057, Switzerland
| | - Lars Hennig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, SE-75007, Sweden
| | | |
Collapse
|
45
|
Huang H, Nusinow DA. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 2016; 32:674-686. [PMID: 27594171 DOI: 10.1101/068460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as photoperiodic and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
46
|
Huang H, Nusinow DA. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock. Trends Genet 2016; 32:674-686. [PMID: 27594171 DOI: 10.1016/j.tig.2016.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
In Arabidopsis thaliana an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as photoperiodic and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.
Collapse
Affiliation(s)
- He Huang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
47
|
Flis A, Sulpice R, Seaton DD, Ivakov AA, Liput M, Abel C, Millar AJ, Stitt M. Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:1955-81. [PMID: 27075884 DOI: 10.1111/pce.12754] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 05/06/2023]
Abstract
Plants use the circadian clock to sense photoperiod length. Seasonal responses like flowering are triggered at a critical photoperiod when a light-sensitive clock output coincides with light or darkness. However, many metabolic processes, like starch turnover, and growth respond progressively to photoperiod duration. We first tested the photoperiod response of 10 core clock genes and two output genes. qRT-PCR analyses of transcript abundance under 6, 8, 12 and 18 h photoperiods revealed 1-4 h earlier peak times under short photoperiods and detailed changes like rising PRR7 expression before dawn. Clock models recapitulated most of these changes. We explored the consequences for global gene expression by performing transcript profiling in 4, 6, 8, 12 and 18 h photoperiods. There were major changes in transcript abundance at dawn, which were as large as those between dawn and dusk in a given photoperiod. Contributing factors included altered timing of the clock relative to dawn, light signalling and changes in carbon availability at night as a result of clock-dependent regulation of starch degradation. Their interaction facilitates coordinated transcriptional regulation of key processes like starch turnover, anthocyanin, flavonoid and glucosinolate biosynthesis and protein synthesis and underpins the response of metabolism and growth to photoperiod.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 475, Canberra, Australian Capital Territory, 2601, Australia
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, NUIG, Galway, Ireland
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Alexander A Ivakov
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 475, Canberra, Australian Capital Territory, 2601, Australia
| | - Magda Liput
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Golm, Potsdam, Germany
| |
Collapse
|
48
|
Hernando CE, Romanowski A, Yanovsky MJ. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:84-94. [PMID: 27412912 DOI: 10.1016/j.bbagrm.2016.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/16/2022]
Abstract
The circadian clock drives rhythms in multiple physiological processes allowing plants to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of thousands of genes linked to the control of photosynthesis, cell elongation, biotic and abiotic stress responses, developmental processes such as flowering, and the clock itself. Given its pervasive effects on plant physiology, it is not surprising that circadian clock genes have played an important role in the domestication of crop plants and in the improvement of crop productivity. Therefore, identifying the principles governing the dynamics of the circadian gene regulatory network in plants could strongly contribute to further speed up crop improvement. Here we provide an historical as well as a current description of our knowledge of the molecular mechanisms underlying circadian rhythms in plants. This work focuses on the transcriptional and post-transcriptional regulatory layers that control the very core of the circadian clock, and some of its complex interactions with signaling pathways that help synchronize plant growth and development to daily and seasonal changes in the environment. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
49
|
Chen Y, Müller F, Rieu I, Winter P. Epigenetic events in plant male germ cell heat stress responses. PLANT REPRODUCTION 2016; 29:21-29. [PMID: 26639000 DOI: 10.1007/s00497-015-0271-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
A review on pollen epigenetics. Plants grow in an ever-changing environment and are used to environmental fluctuations such as high and low temperatures during their life cycles. To cope with adverse conditions, plants have evolved intricate short-term and long-term mechanisms to respond and adapt to external stresses. The plant's ability to respond to stresses largely depends on its capacity to modulate the transcriptome rapidly and specifically. Epigenetic mechanisms, including DNA methylation, chromatin dynamics and small RNAs, play an essential role in the regulation of stress-responsive gene expression. Stress-related covalent modifications of DNA and histones can be passed on during mitosis and meiosis to the next generation and provide a memory that enables the plant and even its offspring to adopt better to a subsequent stress. Plant reproduction, in particular pollen development, is the most stress-sensitive process in the life cycle of the organism. In particular, developmental stages around the meiotic and mitotic divisions are the most vulnerable. In this review, we highlight the current understanding of epigenetic mechanisms involved in pollen development and speculate on their roles in pollen heat stress response.
Collapse
Affiliation(s)
| | - Florian Müller
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
50
|
Millar AJ. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:595-618. [PMID: 26653934 DOI: 10.1146/annurev-arplant-043014-115619] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom;
| |
Collapse
|