1
|
Hao GJ, Ying J, Li LS, Yu F, Dun SS, Su LY, Zhao XY, Li S, Zhang Y. Two functionally interchangeable Vps9 isoforms mediate pollen tube penetration of style. THE NEW PHYTOLOGIST 2024; 244:840-854. [PMID: 39262026 DOI: 10.1111/nph.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.
Collapse
Affiliation(s)
- Guang-Jiu Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Jun Ying
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu-Shen Li
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Le-Yan Su
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Ying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
2
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
3
|
Ying S, Tang Y, Yang W, Hu Z, Huang R, Ding J, Yi X, Niu J, Chen Z, Wang T, Liu W, Peng X. The vesicle trafficking gene, OsRab7, is critical for pollen development and male fertility in cytoplasmic male-sterility rice. Gene 2024; 915:148423. [PMID: 38575100 DOI: 10.1016/j.gene.2024.148423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Rice cytoplasmic male sterility (CMS) provides an exceptional model for studying genetic interaction within plant nuclei given its inheritable trait of non-functional male gametophyte. Gaining a comprehensive understanding of the genes and pathways associated with the CMS mechanism is imperative for improving the vigor of hybrid rice agronomically, such as its productivity. Here, we observed a significant decrease in the expression of a gene named OsRab7 in the anther of the CMS line (SJA) compared to the maintainer line (SJB). OsRab7 is responsible for vesicle trafficking and loss function of OsRab7 significantly reduced pollen fertility and setting rate relative to the wild type. Meanwhile, over-expression of OsRab7 enhanced pollen fertility in the SJA line while a decrease in its expression in the SJB line led to the reduced pollen fertility. Premature tapetum and abnormal development of microspores were observed in the rab7 mutant. The expression of critical genes involved in tapetum development (OsMYB103, OsPTC1, OsEAT1 and OsAP25) and pollen development (OsMSP1, OsDTM1 and OsC4) decreased significantly in the anther of rab7 mutant. Reduced activities of the pDR5::GUS marker in the young panicle and anther of the rab7 mutant were also observed. Furthermore, the mRNA levels of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PINs), auxin response factors (ARFs), and members of the IAA family (IAAs) were all downregulated in the rab7 mutant, indicating its impact on auxin signaling and distribution. In summary, these findings underscore the importance of OsRab7 in rice pollen development and its potential link to cytoplasmic male sterility.
Collapse
Affiliation(s)
- Suping Ying
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yunting Tang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Wei Yang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhao Hu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Ruifeng Huang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jie Ding
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xiangyun Yi
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jiawei Niu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zihan Chen
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Ting Wang
- Department of Chemistry, University of Kentucky, Lexington, United States
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Lu Y, Cheng K, Tang H, Li J, Zhang C, Zhu H. The role of Rab GTPase in Plant development and stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154239. [PMID: 38574493 DOI: 10.1016/j.jplph.2024.154239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.
Collapse
Affiliation(s)
- Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Zhang ZB, Xiong T, Wang XJ, Chen YR, Wang JL, Guo CL, Ye ZY. Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. PLoS One 2024; 19:e0302292. [PMID: 38626181 PMCID: PMC11020792 DOI: 10.1371/journal.pone.0302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Xiao-Jia Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jing-Lei Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Cong-Li Guo
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Zi-Yi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
6
|
Qian D, Li T, Zheng C, Niu Y, Niu Y, Li C, Wang M, Yang Y, An L, Xiang Y. Actin-depolymerizing factors 8 and 11 promote root hair elongation at high pH. PLANT COMMUNICATIONS 2024; 5:100787. [PMID: 38158655 PMCID: PMC10943588 DOI: 10.1016/j.xplc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.
Collapse
Affiliation(s)
- Dong Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Davis JA, Poulsen LR, Kjeldgaard B, Moog MW, Brown E, Palmgren M, López-Marqués RL, Harper JF. Deficiencies in cluster-2 ALA lipid flippases result in salicylic acid-dependent growth reductions. PHYSIOLOGIA PLANTARUM 2024; 176:e14228. [PMID: 38413387 DOI: 10.1111/ppl.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster-2 ALAs (ala8/9/10/11/12), which is the most highly expressed ALA subgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2-fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in an ala10/11 double KO. The growth and lesion phenotypes of ala8/9/10/11/12 mutants were reversed by expressing a NahG transgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA-biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) and two SA-responsive genes PATHOGENESIS-RELATED GENE 1 (PR1) and PR2. Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA-dependent autoimmunity. Yeast-based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8-12 are at least partially overlapping, and that deficiencies in cluster-2 ALAs result in an SA-dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in other ALA clusters.
Collapse
Affiliation(s)
- James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Lisbeth R Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bodil Kjeldgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Max W Moog
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
8
|
Kou X, Cao P, Zhao Z, Zhang X, Dai Y, Wang K, Wu J, Zhang S. Comparative genomic analysis of the RabGAP gene family in seven Rosaceae species, and functional identification of PbrRabGAP10 in controlling pollen tube growth by mediating cellulose deposition in pear. Int J Biol Macromol 2024; 256:128498. [PMID: 38042315 DOI: 10.1016/j.ijbiomac.2023.128498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Rab GTPase-activating proteins (RabGAPs), serving as crucial signaling switches, play essential roles in several physiological processes related to plant growth and development. However, despite their importance, information regarding the RabGAP gene family and their biological functions remains unknown in the Rosaceae. In this study, we identified a total of 127 RabGAP genes in seven Rosaceae species, which were divided into five subfamilies. Our findings indicate that whole genome duplication (WGD) events or dispersed duplication events largely contributed to the expansion of RabGAP family members within Rosaceae species. Through tissue-specific expression analyses, we revealed that the PbrRabGAP genes exhibited distinct expression patterns in different pear tissues. Furthermore, by examining the expression pattern during pollen development and employing an antisense oligonucleotide approach, we demonstrated that PbrRabGAP10, located in the cytoplasm, mediates the imbalance of cellulose distribution, thus regulating pollen tube elongation. In conclusion, the present study offers an overview of the RabGAP family in Rosaceae genomes and serves as the basis for further functional studies.
Collapse
Affiliation(s)
- Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Peng Cao
- College of Faculty of Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhen Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Yuan G, Lian Y, Wang J, Yong T, Gao H, Wu H, Yang T, Wang C. AtHSPR functions in gibberellin-mediated primary root growth by interacting with KNAT5 and OFP1 in Arabidopsis. PLANT CELL REPORTS 2023; 42:1629-1649. [PMID: 37597006 DOI: 10.1007/s00299-023-03057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
KEY MESSAGE AtHSPR forms a complex with KNAT5 and OFP1 to regulate primary root growth through GA-mediated root meristem activity. KNAT5-OFP1 functions as a negative regulator of AtHSPR in response to GA. Plant root growth is modulated by gibberellic acid (GA) signaling and depends on root meristem maintenance. ARABIDOPSIS THALIANA HEAT SHOCK PROTEIN-RELATED (AtHSPR) is a vital regulator of flowering time and salt stress tolerance. However, little is known about the role of AtHSPR in the regulation of primary root growth. Here, we report that athspr mutant exhibits a shorter primary root compared to wild type and that AtHSPR interacts with KNOTTED1-LIKE HOMEOBOX GENE 5 (KNAT5) and OVATE FAMILY PROTEIN 1 (OFP1). Genetic analysis showed that overexpression of KNAT5 or OFP1 caused a defect in primary root growth similar to that of the athspr mutant, but knockout of KNAT5 or OFP1 rescued the short root phenotype in the athspr mutant by altering root meristem activity. Further investigation revealed that KNAT5 interacts with OFP1 and that AtHSPR weakens the inhibition of GIBBERELLIN 20-OXIDASE 1 (GA20ox1) expression by the KNAT5-OFP1 complex. Moreover, root meristem cell proliferation and root elongation in 35S::KNAT5athspr and 35S::OFP1athspr seedlings were hypersensitive to GA3 treatment compared to the athspr mutant. Together, our results demonstrate that the AtHSPR-KNAT5-OFP1 module regulates root growth and development by impacting the expression of GA biosynthetic gene GA20ox1, which could be a way for plants to achieve plasticity in response to the environment.
Collapse
Affiliation(s)
- Guoqiang Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Junmei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Taibi Yong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Pukyšová V, Sans Sánchez A, Rudolf J, Nodzyński T, Zwiewka M. Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4959-4977. [PMID: 37353222 PMCID: PMC10498020 DOI: 10.1093/jxb/erad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Collapse
Affiliation(s)
- Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Rudolf
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| |
Collapse
|
12
|
Allsman LA, Bellinger MA, Huang V, Duong M, Contreras A, Romero AN, Verboonen B, Sidhu S, Zhang X, Steinkraus H, Uyehara AN, Martinez SE, Sinclair RM, Soriano GS, Diep B, Byrd V. D, Noriega A, Drakakaki G, Sylvester AW, Rasmussen CG. Subcellular positioning during cell division and cell plate formation in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1204889. [PMID: 37484472 PMCID: PMC10360171 DOI: 10.3389/fpls.2023.1204889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Introduction During proliferative plant cell division, the new cell wall, called the cell plate, is first built in the middle of the cell and then expands outward to complete cytokinesis. This dynamic process requires coordinated movement and arrangement of the cytoskeleton and organelles. Methods Here we use live-cell markers to track the dynamic reorganization of microtubules, nuclei, endoplasmic reticulum, and endomembrane compartments during division and the formation of the cell plate in maize leaf epidermal cells. Results The microtubule plus-end localized protein END BINDING1 (EB1) highlighted increasing microtubule dynamicity during mitosis to support rapid changes in microtubule structures. The localization of the cell-plate specific syntaxin KNOLLE, several RAB-GTPases, as well as two plasma membrane localized proteins was assessed after treatment with the cytokinesis-specific callose-deposition inhibitor Endosidin7 (ES7) and the microtubule-disrupting herbicide chlorpropham (CIPC). While ES7 caused cell plate defects in Arabidopsis thaliana, it did not alter callose accumulation, or disrupt cell plate formation in maize. In contrast, CIPC treatment of maize epidermal cells occasionally produced irregular cell plates that split or fragmented, but did not otherwise disrupt the accumulation of cell-plate localized proteins. Discussion Together, these markers provide a robust suite of tools to examine subcellular trafficking and organellar organization during mitosis and cell plate formation in maize.
Collapse
Affiliation(s)
- Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Marschal A. Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Vivian Huang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew Duong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alondra Contreras
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Andrea N. Romero
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Benjamin Verboonen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Sukhmani Sidhu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Xiaoguo Zhang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Holly Steinkraus
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Rosalie M. Sinclair
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Gabriela Salazar Soriano
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Beatrice Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Dawson Byrd V.
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alexander Noriega
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
Khatoon U, Prasad V, Sawant SV. Expression dynamics and a loss-of-function of Arabidopsis RabC1 GTPase unveil its role in plant growth and seed development. PLANTA 2023; 257:89. [PMID: 36988700 DOI: 10.1007/s00425-023-04122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Transcript isoform dynamics, spatiotemporal expression, and mutational analysis uncover that Arabidopsis RabC1 GTPase is required for root length, flowering time, seed size, and seed mucilage. Rab GTPases are crucial regulators for moving different molecules to their specific compartments according to the needs of the cell. In this work, we illustrate the role of RabC1 GTPase in Arabidopsis growth and seed development. We identify and analyze the expression pattern of three transcript isoforms of RabC1 in different development stages, along with their tissue-specific transcript abundance. The promoter activity of RabC1 using promoter-GUS fusion shows that it is widely expressed during the growth of Arabidopsis, particularly in seed tissues such as chalazal seed coat and chalazal endosperm. Lack of RabC1 function led to shorter roots, lesser biomass, delayed flowering, and sluggish plant development. The mutants had smaller seeds than the wildtype, less seed mass, and lower seed coat permeability. Developing seeds also revealed a smaller endosperm cavity and shorter integument cells. Additionally, we found that the knock-out mutant had downregulated expression of genes implicated in the transit of sugars and amino acids from maternal tissue to developing seed. The seeds of the loss-of-function mutant had reduced seed mucilage. All the observed mutant phenotypes were restored in the complemented lines confirming the function of RabC1 in seed development and plant growth.
Collapse
Affiliation(s)
- Uzma Khatoon
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
14
|
Fan T, Fan Y, Yang Y, Qian D, Niu Y, An L, Xiang Y. SEC1A and SEC6 synergistically regulate pollen tube polar growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36951316 DOI: 10.1111/jipb.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.
Collapse
Affiliation(s)
- Tingting Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
15
|
López-Marqués RL. Mini-review: Lipid flippases as putative targets for biotechnological crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1107142. [PMID: 36895879 PMCID: PMC9989201 DOI: 10.3389/fpls.2023.1107142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
An increasing world population and drastic changes in weather conditions are challenging agricultural production. To face these challenges and ensure sustainable food production in the future, crop plants need to be improved to withstand several different biotic and abiotic stresses. Commonly, breeders select varieties that can tolerate a specific type of stress and then cross these varieties to stack beneficial traits. This strategy is time-consuming and strictly dependent on the stacked traits been genetically unlinked. Here, we revise the role of plant lipid flippases of the P4 ATPase family in stress-related responses with a special focus on the pleiotropic nature of their functions and discuss their suitability as biotechnological targets for crop improvement.
Collapse
|
16
|
Thattai M. Molecular and cellular constraints on vesicle traffic evolution. Curr Opin Cell Biol 2023; 80:102151. [PMID: 36610080 DOI: 10.1016/j.ceb.2022.102151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
In eukaryotic cells, the budding and fusion of intracellular transport vesicles is carefully orchestrated in space and time. Locally, a vesicle's source compartment, its cargo, and its destination compartment are controlled by dynamic multi-protein specificity modules. Globally, vesicle constituents must be recycled to ensure homeostasis of compartment compositions. The emergence of a novel vesicle pathway therefore requires new specificity modules as well as new recycling routes. Here, we review recent research on local (molecular) constraints on gene module duplication and global (cellular) constraints on intracellular recycling. By studying the evolution of vesicle traffic, we may discover general principles of how complex traits arise via multiple intermediate steps.
Collapse
Affiliation(s)
- Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bangalore, India.
| |
Collapse
|
17
|
Sugi N, Izumi R, Tomomi S, Susaki D, Kinoshita T, Maruyama D. Removal of the endoplasma membrane upon sperm cell activation after pollen tube discharge. FRONTIERS IN PLANT SCIENCE 2023; 14:1116289. [PMID: 36778680 PMCID: PMC9909283 DOI: 10.3389/fpls.2023.1116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In pollen and pollen tubes, immotile sperm cells are enclosed by an inner vegetative plasma membrane (IVPM), a single endomembrane originating from the vegetative-cell plasma membrane. It is widely believed that sperm cells must be removed from the IVPM prior to gamete associations and fusions; however, details of the timing and morphological changes upon IVPM dissociation remain elusive. Here, we report a rapid IVPM breakdown immediately before double fertilization in Arabidopsis thaliana. The IVPM was stably observed in coiling pollen tubes when pollen tube discharge was prevented using lorelei mutant ovules. In contrast, a semi-in vivo fertilization assay in wild-type ovules demonstrated fragmented IVPM around sperm nuclei 1 min after pollen tube discharge. These observations revealed the dynamic alteration of released sperm cells and provided new insights into double fertilization in flowering plants. With a summary of recent findings on IVPM lipid composition, we discussed the possible physiological signals controlling IVPM breakdown.
Collapse
|
18
|
Plant transbilayer lipid asymmetry and the role of lipid flippases. Emerg Top Life Sci 2022; 7:21-29. [PMID: 36562347 DOI: 10.1042/etls20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Many biological membranes present an asymmetric lipid distribution between the two leaflets that is known as the transbilayer lipid asymmetry. This asymmetry is essential for cell survival and its loss is related to apoptosis. In mammalian and yeast cells, ATP-dependent transport of lipids to the cytosolic side of the biological membranes, carried out by so-called lipid flippases, contributes to the transbilayer lipid asymmetry. Most of these lipid flippases belong to the P4-ATPase protein family, which is also present in plants. In this review, we summarize the relatively scarce literature concerning the presence of transbilayer lipid asymmetry in different plant cell membranes and revise the potential role of lipid flippases of the P4-ATPase family in generation and/or maintenance of this asymmetry.
Collapse
|
19
|
Weng X, Wang H. Apical vesicles: Social networking at the pollen tube tip. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1978-1996. [PMID: 35900211 PMCID: PMC9614507 DOI: 10.1093/plphys/kiac354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 05/04/2023]
Abstract
Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
- Department of Experimental Plant Biology, Charles University, Viničná 5, Prague 12844, Czech Republic
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Nabila Djafi
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Sylvie Collin
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Juraj Sekereš
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | | |
Collapse
|
21
|
Ou H, Yi P. ROP GTPase-dependent polarity establishment during tip growth in plants. THE NEW PHYTOLOGIST 2022; 236:49-57. [PMID: 35832004 DOI: 10.1111/nph.18373] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Polar cell growth in plants requires a cell peripheral region that undergoes membrane extension and cell wall remodeling. Since the 1990s, RHO-RELATED GTPASES FROM PLANTS (ROPs) have been identified as master regulators that determine the site of cell growth. ROPs function to regulate actin and microtubule cytoskeletons, calcium gradients, and exocytosis, thus directing the delivery of materials for membrane and cell wall extension. In recent years, our understanding of the regulatory mechanisms underlying polar localization and the activation of ROPs has greatly advanced. Evidence points to the crucial roles of membrane lipids, receptor-like kinases, and cell wall components. In this review, we provide updates on the mechanisms underlying polarity control in tip-growing cells, with a focus on ROP effectors and membrane-associated signals. By integrating knowledge from pollen tubes, root hairs, and findings in bryophyte protonema cells and rhizoids, we hope to offer important insights into a common conceptual framework on polarity establishment governed by intercellular and extracellular signals.
Collapse
Affiliation(s)
- Hongxin Ou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
22
|
Gorelova V. ALA3 regulates pollen tube growth and guidance by keeping PRKs in all the right places. THE PLANT CELL 2022; 34:3497-3498. [PMID: 35915887 PMCID: PMC9516182 DOI: 10.1093/plcell/koac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Vera Gorelova
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
23
|
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. THE PLANT CELL 2022; 34:3718-3736. [PMID: 35861414 PMCID: PMC9516151 DOI: 10.1093/plcell/koac208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube guidance regulates the growth direction and ovule targeting of pollen tubes in pistils, which is crucial for the completion of sexual reproduction in flowering plants. The Arabidopsis (Arabidopsis thaliana) pollen-specific receptor kinase (PRK) family members PRK3 and PRK6 are specifically tip-localized and essential for pollen tube growth and guidance. However, the mechanisms controlling the polar localization of PRKs at the pollen tube tip are unclear. The Arabidopsis P4-ATPase ALA3 helps establish the polar localization of apical phosphatidylserine (PS) in pollen tubes. Here, we discovered that loss of ALA3 function caused pollen tube defects in growth and ovule targeting and significantly affected the polar localization pattern of PRK3 and PRK6. Both PRK3 and PRK6 contain two polybasic clusters in the intracellular juxtamembrane domain, and they bound to PS in vitro. PRK3 and PRK6 with polybasic cluster mutations showed reduced or abolished binding to PS and altered polar localization patterns, and they failed to effectively complement the pollen tube-related phenotypes of prk mutants. These results suggest that ALA3 influences the precise localization of PRK3, PRK6, and other PRKs by regulating the distribution of PS, which plays a key role in regulating pollen tube growth and guidance.
Collapse
Affiliation(s)
| | | | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingxia Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
24
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
25
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
27
|
Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nat Commun 2021; 12:6426. [PMID: 34741039 PMCID: PMC8571369 DOI: 10.1038/s41467-021-26727-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.
Collapse
|
28
|
Westermann J. Two Is Company, but Four Is a Party-Challenges of Tetraploidization for Cell Wall Dynamics and Efficient Tip-Growth in Pollen. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112382. [PMID: 34834745 PMCID: PMC8623246 DOI: 10.3390/plants10112382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
Some cells grow by an intricately coordinated process called tip-growth, which allows the formation of long tubular structures by a remarkable increase in cell surface-to-volume ratio and cell expansion across vast distances. On a broad evolutionary scale, tip-growth has been extraordinarily successful, as indicated by its recurrent 're-discovery' throughout evolutionary time in all major land plant taxa which allowed for the functional diversification of tip-growing cell types across gametophytic and sporophytic life-phases. All major land plant lineages have experienced (recurrent) polyploidization events and subsequent re-diploidization that may have positively contributed to plant adaptive evolutionary processes. How individual cells respond to genome-doubling on a shorter evolutionary scale has not been addressed as elaborately. Nevertheless, it is clear that when polyploids first form, they face numerous important challenges that must be overcome for lineages to persist. Evidence in the literature suggests that tip-growth is one of those processes. Here, I discuss the literature to present hypotheses about how polyploidization events may challenge efficient tip-growth and strategies which may overcome them: I first review the complex and multi-layered processes by which tip-growing cells maintain their cell wall integrity and steady growth. I will then discuss how they may be affected by the cellular changes that accompany genome-doubling. Finally, I will depict possible mechanisms polyploid plants may evolve to compensate for the effects caused by genome-doubling to regain diploid-like growth, particularly focusing on cell wall dynamics and the subcellular machinery they are controlled by.
Collapse
Affiliation(s)
- Jens Westermann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
29
|
Gao S, Zhang X, Wang L, Wang X, Zhang H, Xie H, Ma Y, Qiu QS. Arabidopsis antiporter CHX23 and auxin transporter PIN8 coordinately regulate pollen growth. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153539. [PMID: 34628190 DOI: 10.1016/j.jplph.2021.153539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/08/2023]
Abstract
Both the antiporter CHX23 (Cation/Proton Exchangers 23) and auxin transporter PIN8 (PIN-FORMED 8) are localized in the ER and regulate pollen growth in Arabidopsis. But how these two proteins regulate pollen growth remains to be studied. Here, we report that CHX23 and PIN8 act coordinately in regulating pollen growth. The chx23 mutant was reduced in pollen growth and normally shaped pollen grains, and complementation with CHX23 restored both pollen growth and normal pollen morphology. NAA treatments showed that CHX23 was crucial for pollen auxin homeostasis. The pin8 chx23 double mutant was decreased in pollen growth and normal pollen grains, indicating the joint effort of CHX23 and PIN8 in pollen growth. In vivo germination assay showed that CHX23 and PIN8 were involved in the early stage of pollen growth. CHX23 and PIN8 also function collaboratively in maintaining pollen auxin homeostasis. PIN8 depends on CHX23 in regulating pollen morphology and response to NAA treatments. CHX23 co-localized with PIN8, but there was no physical interaction. KCl and NaCl treatments showed that pollen growth of chx23 was reduced less than Col-0; pin8 chx23 was reduced less than chx23 and pin8. Together, CHX23 may regulate PIN8 function and hence pollen growth through controlling K+ and Na+ homeostasis mediated by its transport activity.
Collapse
Affiliation(s)
- Shenglan Gao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiufang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yonggui Ma
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Hou S, Shi J, Hao L, Wang Z, Liao Y, Gu H, Dong J, Dresselhaus T, Zhong S, Qu LJ. VPS18-regulated vesicle trafficking controls the secretion of pectin and its modifying enzyme during pollen tube growth in Arabidopsis. THE PLANT CELL 2021; 33:3042-3056. [PMID: 34125904 PMCID: PMC8462820 DOI: 10.1093/plcell/koab164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.
Collapse
Affiliation(s)
- Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jiao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Lihong Hao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi Province 030006, People’s Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yalan Liao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- Author for correspondence: (S.Z.), (L.-J.Q.)
| | - Li-Jia Qu
- Author for correspondence: (S.Z.), (L.-J.Q.)
| |
Collapse
|
31
|
López-Marqués RL. Lipid flippases as key players in plant adaptation to their environment. NATURE PLANTS 2021; 7:1188-1199. [PMID: 34531559 DOI: 10.1038/s41477-021-00993-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Lipid flippases (P4 ATPases) are active transporters that catalyse the translocation of lipids between the two sides of the biological membranes in the secretory pathway. This activity modulates biological membrane properties, contributes to vesicle formation, and is the trigger for lipid signalling events, which makes P4 ATPases essential for eukaryotic cell survival. Plant P4 ATPases (also known as aminophospholipid ATPases (ALAs)) are crucial for plant fertility and proper development, and are involved in key adaptive responses to biotic and abiotic stress, including chilling tolerance, heat adaptation, nutrient deficiency responses and pathogen defence. While ALAs present many analogies to mammalian and yeast P4 ATPases, they also show characteristic features as the result of their independent evolution. In this Review, the main properties, roles, regulation and mechanisms of action of ALA proteins are discussed.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
32
|
Dell’Aglio E. A COG in the machine: how good Golgi makes good pollen. PLANT PHYSIOLOGY 2021; 186:201-203. [PMID: 33674832 PMCID: PMC8154076 DOI: 10.1093/plphys/kiab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Elisa Dell’Aglio
- Institut National des Sciences Appliquées de Lyon, 69100 Villeurbanne, France
| |
Collapse
|
33
|
López-Marqués RL, Davis JA, Harper JF, Palmgren M. Dynamic membranes: the multiple roles of P4 and P5 ATPases. PLANT PHYSIOLOGY 2021; 185:619-631. [PMID: 33822217 PMCID: PMC8133672 DOI: 10.1093/plphys/kiaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/24/2020] [Indexed: 05/31/2023]
Abstract
The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
34
|
Dubois GA, Jaillais Y. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. PLANT PHYSIOLOGY 2021; 185:577-592. [PMID: 33793905 PMCID: PMC8133617 DOI: 10.1093/plphys/kiaa056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 05/19/2023]
Abstract
Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Collapse
Affiliation(s)
- Gwennogan A Dubois
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
- Author for communication:
| |
Collapse
|
35
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Ruan H, Li J, Wang T, Ren H. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Front Cell Dev Biol 2021; 8:615447. [PMID: 33553150 PMCID: PMC7859277 DOI: 10.3389/fcell.2020.615447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pollen germination and pollen tube growth are important biological events in the sexual reproduction of higher plants, during which a large number of vesicle trafficking and membrane fusion events occur. When secretory vesicles are transported via the F-actin network in proximity to the apex of the pollen tube, the secretory vesicles are tethered and fused to the plasma membrane by tethering factors and SNARE proteins, respectively. The coupling and uncoupling between the vesicle membrane and plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling molecules, including small G proteins, calcium, and PIP2. In this review, we focus on the current knowledge regarding secretory vesicle delivery, tethering, and fusion during pollen germination and tube growth and summarize the progress in research on how regulators and signaling molecules participate in the above processes.
Collapse
Affiliation(s)
- Huaqiang Ruan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Jiang Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| |
Collapse
|
37
|
López-Marqués RL. Lipid flippases in polarized growth. Curr Genet 2021; 67:255-262. [PMID: 33388852 DOI: 10.1007/s00294-020-01145-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
Polarized growth is required in eukaryotic cells for processes such as cell division, morphogenesis and motility, which involve conserved and interconnected signalling pathways controlling cell cycle progression, cytoskeleton reorganization and secretory pathway functioning. While many of the factors involved in polarized growth are known, it is not yet clear how they are coordinated both spatially and temporally. Several lines of evidence point to the important role of lipid flippases in polarized growth events. Lipid flippases, which mainly belong to the P4 subfamily of P-type ATPases, are active transporters that move different lipids to the cytosolic side of biological membranes at the expense of ATP. The involvement of the Saccharomyces cerevisiae plasma membrane P4 ATPases Dnf1p and Dnf2p in polarized growth and their activation by kinase phosphorylation were established some years ago. However, these two proteins do not seem to be responsible for the phosphatidylserine internalization required for early recruitment of proteins to the plasma membrane during yeast mating and budding. In a recent publication, we demonstrated that the Golgi-localized P4 ATPase Dnf3p has a preference for PS as a substrate, can reach the plasma membrane in a cell cycle-dependent manner, and is regulated by the same kinases that activate Dnf1p and Dnf2p. This finding solves a long-lasting enigma in the field of lipid flippases and suggests that tight and heavily coordinated spatiotemporal control of lipid translocation at the plasma membrane is important for proper polarized growth.
Collapse
Affiliation(s)
- Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|