1
|
Madrid-Espinoza J, Salinas-Cornejo J, Norambuena L, Ruiz-Lara S. Tissue-Specific Regulation of Vesicular Trafficking Mediated by Rab-GEF Complex MON1/CCZ1 From Solanum chilense Increases Salt Stress Tolerance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449264 DOI: 10.1111/pce.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Salt stress constrains the development and growth of plants. To tolerate it, mechanisms of endocytosis and vacuolar compartmentalization of Na+ are induced. In this work, the genes that encode a putative activator of vesicular trafficking called MON1/CCZ1 from Solanum chilense, SchMON1 and SchCCZ1, were co-expressed in roots of Arabidopsis thaliana to determine whether the increase in prevacuolar vesicular trafficking also increases the Na+ compartmentalization capacity and tolerance. Initially, we demonstrated that both SchMON1 and SchCCZ1 genes rescued the dwarf phenotype of both A. thaliana mon1-1 and ccz1a/b mutants associated with the loss of function, and both proteins colocalized with their functional targets, RabF and RabG, in endosomes. Transgenic A. thaliana plants co-expressing these genes improved salt stress tolerance compared to wild type plants, with SchMON1 contributing the most. At the sub-cellular level, co-expression of SchMON1/SchCCZ1 reduced ROS levels and increased endocytic activity, and number of acidic structures associated with autophagosomes. Notably, greater Na+ accumulation in vacuoles of cortex and endodermis was evidenced in the SchMON1 genotype. Molecular analysis of gene expression in each genotype supported these results. Altogether, our analysis shows that root activation of prevacuolar vesicular trafficking mediated by MON1/CCZ1 emerges as a promising physiological molecular mechanism to increase tolerance to salt stress in crops of economic interest.
Collapse
Affiliation(s)
- José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Center, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Allen H, Zhu X, Li S, Gu Y. The TRAPPIII subunit, Trs85, has a dual role in the trafficking of cellulose synthase complexes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1475-1485. [PMID: 38402593 DOI: 10.1111/tpj.16688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Plant cell walls are essential for defining plant growth and development, providing structural support to the main body and responding to abiotic and biotic cues. Cellulose, the main structural polymer of plant cell walls, is synthesized at the plasma membrane by cellulose synthase complexes (CSCs). The construction and transport of CSCs to and from the plasma membrane is poorly understood but is known to rely on the coordinated activity of cellulose synthase-interactive protein 1 (CSI1), a key regulator of CSC trafficking. In this study, we found that Trs85, a TRAPPIII complex subunit, interacted with CSI1 in vitro. Using functional genetics and live-cell imaging, we have shown that trs85-1 mutants have reduced cellulose content, stimulated CSC delivery, an increased population of static CSCs and deficient clathrin-mediated endocytosis in the primary cell wall. Overall, our findings suggest that Trs85 has a dual role in the trafficking of CSCs, by negatively regulating the exocytosis and clathrin-mediated endocytosis of CSCs.
Collapse
Affiliation(s)
- Holly Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
3
|
Galindo A. Unveiling the TRAPP: The role of plant TRAPPII in adaptive growth decisions. J Cell Biol 2024; 223:e202404039. [PMID: 38652246 PMCID: PMC11040504 DOI: 10.1083/jcb.202404039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The regulation of intracellular membrane traffic is coupled with the cell's need to respond to environmental stimuli, which ultimately is critical for different processes such as cell growth and development. In this issue, Wiese et al. (https://www.doi.org/10.1083/jcb.202311125) explore the role of the trans-Golgi network (TGN) in stress response, exposing its role in mediating adaptive growth decisions.
Collapse
Affiliation(s)
- Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
4
|
Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. J Cell Biol 2024; 223:e202311125. [PMID: 38558238 PMCID: PMC10983811 DOI: 10.1083/jcb.202311125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
Collapse
Affiliation(s)
- Christian Wiese
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Abele
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin Al
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Alexander Steiner
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nils Kalbfuß
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Strohmayr
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raksha Ravikumar
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Barbara Brunschweiger
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Farhah F. Assaad
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537966. [PMID: 37986925 PMCID: PMC10659361 DOI: 10.1101/2023.04.24.537966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi Network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the interactome of the Transport Protein Particle II (TRAPPII) complex, required for TGN structure and function. We identified physical and genetic interactions between TRAPPII and shaggy-like kinases (GSK3/AtSKs). Kinase assays and pharmacological inhibition provided in vitro and in vivo evidence that AtSKs target the TRAPPII-specific subunit AtTRS120/TRAPPC9. GSK3/AtSK phosphorylation sites in AtTRS120/TRAPPC9 were mutated, and the resulting AtTRS120 phosphovariants subjected to a variety of single and multiple stress conditions in planta . The non-phosphorylatable TRS120 mutant exhibited enhanced adaptation to multiple stress conditions and to osmotic stress whereas the phosphomimetic version was less resilient. Higher order inducible trappii atsk mutants had a synthetically enhanced defect in root gravitropism. Our results suggest that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the TRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
Collapse
|
6
|
Zhao R, Li N, Lin Q, Li M, Shen X, Peng Y, Du Y, Ning Q, Li Y, Zhan J, Yang F, Xu F, Zhang Z, Liu L. ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by mediating vesicle aggregation and tethering in maize. PLANT, CELL & ENVIRONMENT 2023; 46:975-990. [PMID: 36515184 DOI: 10.1111/pce.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus. ZmBET5L1 knock-out increased the primary root elongation rate under 20% polyethylene glycol-simulated osmotic stress and the survival rate under drought stress compared to wild-type seedlings. In addition, we found that ZmBET5L1 moderates PIN1 polar localization and auxin flow to maintain normal root growth. ZmBET5L1 knock-out optimized auxin flow to the lateral side of the root and promoted its growth to generate a robust root, which may be related to improved osmotic stress tolerance. Together, these findings demonstrate that ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by regulating vesicle transport and auxin distribution. This study has improved our understanding of the role of tethering factors in response to abiotic stresses and identified desirable variants for breeding osmotic stress tolerance in maize.
Collapse
Affiliation(s)
- Ran Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Nan Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qianrun Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Manfei Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Shandong, Tai-An, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Xu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
8
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Cai Y, Zhang W, Fu Y, Shan Z, Xu J, Wang P, Kong F, Jin J, Yan H, Ge X, Wang Y, You X, Chen J, Li X, Chen W, Chen X, Ma J, Tang X, Zhang J, Bao Y, Jiang L, Wang H, Wan J. Du13 encodes a C 2 H 2 zinc-finger protein that regulates Wx b pre-mRNA splicing and microRNA biogenesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1387-1401. [PMID: 35560858 PMCID: PMC9241381 DOI: 10.1111/pbi.13821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Abstract
Amylose content is a crucial physicochemical property responsible for the eating and cooking quality of rice (Oryza sativa L.) grain and is mainly controlled by the Waxy (Wx) gene. Previous studies have identified several Dull genes that modulate the expression of the Wxb allele in japonica rice by affecting the splicing efficiency of the Wxb pre-mRNA. Here, we uncover dual roles for a novel Dull gene in pre-mRNA splicing and microRNA processing. We isolated the dull mutant, du13, with a dull endosperm and low amylose content. Map-based cloning showed that Du13 encodes a C2 H2 zinc-finger protein. Du13 coordinates with the nuclear cap-binding complex to regulate the splicing of Wxb transcripts in rice endosperm. Moreover, Du13 also regulates alternative splicing of other protein-coding transcripts and affects the biogenesis of a subset of microRNAs. Our results reveal an evolutionarily conserved link between pre-mRNA splicing and microRNA biogenesis in rice endosperm. Our findings also provide new insights into the functions of Dull genes in rice and expand our knowledge of microRNA biogenesis in monocots.
Collapse
Affiliation(s)
- Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yushuang Fu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Zhuangzhuang Shan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jiahuan Xu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xinyuan Ge
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yongxiang Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xin Li
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Weiwei Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yiqun Bao
- College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
10
|
cAMP Is a Promising Regulatory Molecule for Plant Adaptation to Heat Stress. Life (Basel) 2022; 12:life12060885. [PMID: 35743916 PMCID: PMC9225146 DOI: 10.3390/life12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
With gradual warming or increased frequency and magnitude of high temperature, heat stress adversely affects plant growth and eventually reduces plant productivity and quality. Plants have evolved complex mechanisms to sense and respond to heat stress which are crucial to avoiding cell damage and maintaining cellular homeostasis. Recently, 33″,55″-cyclic adenosine monophosphate (cAMP) has been proved to be an important signaling molecule participating in plant adaptation to heat stress by affecting multi-level regulatory networks. Significant progress has been made on many fronts of cAMP research, particularly in understanding the downstream signaling events that culminate in the activation of stress-responsive genes, mRNA translation initiation, vesicle trafficking, the ubiquitin-proteasome system, autophagy, HSPs-assisted protein processing, and cellular ion homeostasis to prevent heat-related damage and to preserve cellular and metabolic functions. In this present review, we summarize recent works on the genetic and molecular mechanisms of cAMP in plant response to heat stress which could be useful in finding thermotolerant key genes to develop heat stress-resistant varieties and that have the potential for utilizing cAMP as a chemical regulator to improve plant thermotolerance. New directions for future studies on cAMP are discussed.
Collapse
|
11
|
Reyes AV, Shrestha R, Baker PR, Chalkley RJ, Xu SL. Application of Parallel Reaction Monitoring in 15N Labeled Samples for Quantification. FRONTIERS IN PLANT SCIENCE 2022; 13:832585. [PMID: 35592564 PMCID: PMC9111532 DOI: 10.3389/fpls.2022.832585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Accurate relative quantification is critical in proteomic studies. The incorporation of stable isotope 15N to plant-expressed proteins in vivo is a powerful tool for accurate quantification with a major advantage of reducing preparative and analytical variabilities. However, 15N labeling quantification has several challenges. Less identifications are often observed in the heavy-labeled samples because of incomplete labeling, resulting in missing values in reciprocal labeling experiments. Inaccurate quantification can happen when there is contamination from co-eluting peptides or chemical noise in the MS1 survey scan. These drawbacks in quantification can be more pronounced in less abundant but biologically interesting proteins, which often have very few identified peptides. Here, we demonstrate the application of parallel reaction monitoring (PRM) to 15N labeled samples on a high resolution, high mass accuracy Orbitrap mass spectrometer to achieve reliable quantification even of low abundance proteins in samples.
Collapse
Affiliation(s)
- Andres V. Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Peter R. Baker
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
12
|
Shrestha R, Reyes AV, Baker PR, Wang ZY, Chalkley RJ, Xu SL. 15N Metabolic Labeling Quantification Workflow in Arabidopsis Using Protein Prospector. FRONTIERS IN PLANT SCIENCE 2022; 13:832562. [PMID: 35242158 PMCID: PMC8885517 DOI: 10.3389/fpls.2022.832562] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 05/23/2023]
Abstract
Metabolic labeling using stable isotopes is widely used for the relative quantification of proteins in proteomic studies. In plants, metabolic labeling using 15N has great potential, but the associated complexity of data analysis has limited its usage. Here, we present the 15N stable-isotope labeled protein quantification workflow utilizing open-access web-based software Protein Prospector. Further, we discuss several important features of 15N labeling required to make reliable and precise protein quantification. These features include ratio adjustment based on labeling efficiency, median and interquartile range for protein ratios, isotope cluster pattern matching to flag incorrect monoisotopic peak assignment, and caching of quantification results for fast retrieval.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Andres V. Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Peter R. Baker
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Robert J. Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
13
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
14
|
Kuo EY, Lee TM. Molecular Mechanisms Underlying the Acclimation of Chlamydomonas reinhardtii Against Nitric Oxide Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:690763. [PMID: 34421944 PMCID: PMC8374494 DOI: 10.3389/fpls.2021.690763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The acclimation mechanism of Chlamydomonas reinhardtii to nitric oxide (NO) was studied by exposure to S-nitroso-N-acetylpenicillamine (SNAP), a NO donor. Treatment with 0.1 or 0.3 mM SNAP transiently inhibited photosynthesis within 1 h, followed by a recovery, while 1.0 mM SNAP treatment caused irreversible photosynthesis inhibition and mortality. The SNAP effects are avoided in the presence of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO). RNA-seq, qPCR, and biochemical analyses were conducted to decode the metabolic shifts under NO stress by exposure to 0.3 mM SNAP in the presence or absence of 0.4 mM cPTIO. These findings revealed that the acclimation to NO stress comprises a temporally orchestrated implementation of metabolic processes: (1). modulation of NADPH oxidase (respiratory burst oxidase-like 2, RBOL2) and ROS signaling pathways for downstream mechanism regulation, (2). trigger of NO scavenging elements to reduce NO level; (3). prevention of photo-oxidative risk through photosynthesis inhibition and antioxidant defense system induction; (4). acclimation to nitrogen and sulfur shortage; (5). attenuation of transcriptional and translational activity together with degradation of damaged proteins through protein trafficking machinery (ubiquitin, SNARE, and autophagy) and molecular chaperone system for dynamic regulation of protein homeostasis. In addition, the expression of the gene encoding NADPH oxidase, RBOL2, showed a transient increase while that of RBOL1 was slightly decreased after NO challenge. It reflects that NADPH oxidase, a regulator in ROS-mediated signaling pathway, may be involved in the responses of Chlamydomonas to NO stress. In conclusion, our findings provide insight into the molecular events underlying acclimation mechanisms in Chlamydomonas to NO stress.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40:e107608. [PMID: 34018214 PMCID: PMC8204870 DOI: 10.15252/embj.2020107608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo‐EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII‐specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease‐causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur‐TRAPP.
Collapse
Affiliation(s)
| | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Liu D, Luo Y, Zheng X, Wang X, Chou M, Wei G. TRAPPC13 Is a Novel Target of Mesorhizobium amorphae Type III Secretion System Effector NopP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:511-523. [PMID: 33630651 DOI: 10.1094/mpmi-12-20-0354-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dongying Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zheng
- Shaanxi Hydrogeology Engineering Geology and Environmental Geology Survey Center, Shaanxi Institute of Geological Survey, Xi'an, Shaanxi 710054, China
| | - Xinye Wang
- Moutai Institute, Renhuai, Guizhou 564500, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Chen Y, Heazlewood JL. Organellar Proteomic Profiling to Analyze Membrane Trafficking Pathways. TRENDS IN PLANT SCIENCE 2021; 26:299-300. [PMID: 33309103 DOI: 10.1016/j.tplants.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Nilo-Poyanco R, Moraga C, Benedetto G, Orellana A, Almeida AM. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics 2021; 22:17. [PMID: 33413072 PMCID: PMC7788829 DOI: 10.1186/s12864-020-07299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile
| | - Carol Moraga
- Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Inria Grenoble Rhône-Alpes, 38334, Montbonnot, France
| | - Gianfranco Benedetto
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
- Center for Genome Regulation, Blanco Encalada, 2085, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
| |
Collapse
|
19
|
Hughes PW. It's a TRAPP! Arabidopsis Transport Protein Particle (TRAPP) Complexes Contain a Novel Plant-Specific Subunit. THE PLANT CELL 2020; 32:2081-2082. [PMID: 32409320 PMCID: PMC7346575 DOI: 10.1105/tpc.20.00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- P William Hughes
- Department of Ecology, Environment, and Plant Sciences,Stockholm University114 18 Stockholm, Sweden
| |
Collapse
|