1
|
Xu G, Liu Y, Yu S, Kong D, Tang K, Dai Z, Sun J, Cheng C, Deng C, Yang Z, Tang Q, Li C, Su J, Zhang X. CsMIKC1 regulates inflorescence development and grain production in Cannabis sativa plants. HORTICULTURE RESEARCH 2024; 11:uhae161. [PMID: 39108581 PMCID: PMC11298619 DOI: 10.1093/hr/uhae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 10/13/2024]
Abstract
Female inflorescence is the primary output of medical Cannabis. It contains hundreds of cannabinoids that accumulate in the glandular trichomes. However, little is known about the genetic mechanisms governing Cannabis inflorescence development. In this study, we reported the map-based cloning of a gene determining the number of inflorescences per branch. We named this gene CsMIKC1 since it encodes a transcription factor that belongs to the MIKC-type MADS subfamily. Constitutive overexpression of CsMIKC1 increases inflorescence number per branch, thereby promoting flower production as well as grain yield in transgenic Cannabis plants. We further identified a plant-specific transcription factor, CsBPC2, promoting the expression of CsMIKC1. CsBPC2 mutants and CsMIKC1 mutants were successfully created using the CRISPR-Cas9 system; they exhibited similar inflorescence degeneration and grain reduction. We also validated the interaction of CsMIKC1 with CsVIP3, which suppressed expression of four inflorescence development-related genes in Cannabis. Our findings establish important roles for CsMIKC1 in Cannabis, which could represent a previously unrecognized mechanism of inflorescence development regulated by ethylene.
Collapse
Affiliation(s)
- Gencheng Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongbei Liu
- School of Pharmacy, Hunan Vocational College of Science and Technology, Changsa, Hunan 410004, China
| | - Shuhao Yu
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA
| | - Dejing Kong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Kailei Tang
- The College of Agriculture, Yunan University, Kunming, Yunnan 650504, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Jian Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Huazhi Biotech Co., Ltd, Changsha, Hunan 410128, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| |
Collapse
|
2
|
Guerrero-Méndez C, Abraham-Juárez MJ. Factors specifying sex determination in maize. PLANT REPRODUCTION 2024; 37:171-178. [PMID: 37966579 PMCID: PMC11180155 DOI: 10.1007/s00497-023-00485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023]
Abstract
Plant architecture is an important feature for agronomic performance in crops. In maize, which is a monoecious plant, separation of floral organs to produce specific gametes has been studied from different perspectives including genetic, biochemical and physiological. Maize mutants affected in floral organ development have been key to identifying genes, hormones and other factors like miRNAs important for sex determination. In this review, we describe floral organ formation in maize, representative mutants and genes identified with a function in establishing sexual identity either classified as feminizing or masculinizing, and its relationship with hormones associated with sexual organ identity as jasmonic acid, brassinosteroid and gibberellin. Finally, we discuss the challenges and scopes of future research in maize sex determination.
Collapse
Affiliation(s)
- Cristina Guerrero-Méndez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821, Irapuato, Mexico
| | - María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821, Irapuato, Mexico.
| |
Collapse
|
3
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
4
|
Wang Q, Chen X, Liu X, Gao G, Dong B, Wang Y, Zhong S, Deng J, Fang Q, Zhao H. OfBFT genes play an essential role in the proliferate flower formation of Osmanthus fragrans. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108463. [PMID: 38442625 DOI: 10.1016/j.plaphy.2024.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Floral organ development is one of the most vital events in flowering plants and is closely related to ornamental properties. The proliferate flower (a new branch or flower occurring in the centre of a flower) in plants is an interesting type, while the specific molecular mechanism remains largely unknown. Osmanthus fragrans 'Tianxiang Taige' has two different flower morphologies: normal flower and proliferate flower. Phenotypic observation suggested that a normal flower was composed of calyx, petal, stamen and pistil (reduced to leaf-like carpel). While in proliferate flower, the leaf-like carpel continued to grow and was replaced by a new branch. Paraffin section indicated that the re-growth of leaf carpels might be the main reason for proliferate flower formation. Transcriptome sequencing of normal and proliferate flower was performed, and the expression levels of related genes were analysed. Among the differentially expressed genes, OfBFT-a and OfBFT-b had differential expression during the proliferate flower formation process. The expression patterns revealed that both OfBFT-a and OfBFT-b were highly accumulated in carpels, and were significantly downregulated during the proliferate flower development process. Subcellular localization indicated that OfBFT-a and OfBFT-b proteins were located in the nucleus. Functional studies in 'Tianxiang Taige' and Arabidopsis showed that OfBFT-a and OfBFT-b had important roles in floral organ development, especially the proliferate flower formation process by downregulating the accumulation of AG and SEP3 homologous genes. These results may shed new light on the study of proliferate flower formation and flower morphology breeding in flowering plants.
Collapse
Affiliation(s)
- Qianqian Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xin Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaohan Liu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ge Gao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yiguang Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinping Deng
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
5
|
Yang X, Zhang M, Xi D, Yin T, Zhu L, Yang X, Zhou X, Zhang H, Liu X. Genome-wide identification and expression analysis of the MADS gene family in sweet orange ( Citrus sinensis) infested with pathogenic bacteria. PeerJ 2024; 12:e17001. [PMID: 38436028 PMCID: PMC10909352 DOI: 10.7717/peerj.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.
Collapse
Affiliation(s)
- Xiuyao Yang
- Southwest Forestry University, Kunming, China
| | | | - Dengxian Xi
- Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Southwest Forestry University, Kunming, China
| | - Ling Zhu
- Southwest Forestry University, Kunming, China
| | - Xiujia Yang
- Southwest Forestry University, Kunming, China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Economic Crops, Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Ruili, China
| | | | | |
Collapse
|
6
|
Shen C, Zhang Y, Li G, Shi J, Wang D, Zhu W, Yang X, Dreni L, Tucker MR, Zhang D. MADS8 is indispensable for female reproductive development at high ambient temperatures in cereal crops. THE PLANT CELL 2023; 36:65-84. [PMID: 37738656 PMCID: PMC10734617 DOI: 10.1093/plcell/koad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/24/2023]
Abstract
Temperature is a major factor that regulates plant growth and phenotypic diversity. To ensure reproductive success at a range of temperatures, plants must maintain developmental stability of their sexual organs when exposed to temperature fluctuations. However, the mechanisms integrating plant floral organ development and temperature responses are largely unknown. Here, we generated barley and rice loss-of-function mutants in the SEPALLATA-like MADS-box gene MADS8. The mutants in both species form multiple carpels that lack ovules at high ambient temperatures. Tissue-specific markers revealed that HvMADS8 is required to maintain floral meristem determinacy and ovule initiation at high temperatures, and transcriptome analyses confirmed that temperature-dependent differentially expressed genes in Hvmads8 mutants predominantly associate with floral organ and meristem regulation. HvMADS8 temperature-responsive activity relies on increased binding to promoters of downstream targets, as revealed by a cleavage under targets and tagmentation (CUT&Tag) analysis. We also demonstrate that HvMADS8 directly binds to 2 orthologs of D-class floral homeotic genes to activate their expression. Overall, our findings revealed a new, conserved role for MADS8 in maintaining pistil number and ovule initiation in cereal crops, extending the known function of plant MADS-box proteins in floral organ regulation.
Collapse
Affiliation(s)
- Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Gang Li
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite campus, Adelaide, South Australia 5064, Australia
| |
Collapse
|
7
|
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. TRENDS IN PLANT SCIENCE 2023; 28:1438-1450. [PMID: 37673701 DOI: 10.1016/j.tplants.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Hulled grains, while providing natural protection for seeds, pose a challenge to manual threshing due to the pair of glumes tightly encasing them. Based on natural evolution and artificial domestication, gramineous crops evolved various hull-like floral organs. Recently, progress has been made in uncovering novel domesticated genes associated with cereal threshability and deciphering common regulatory modules pertinent to the specification of hull-like floral organs. Here we review morphological similarities, principal regulators, and common mechanisms implicated in the easy-threshing traits of crops. Understanding the shared and unique features in the developmental process of cereal threshability may not only shed light on the convergent evolution of cereals but also facilitate the de novo domestication of wild cereal germplasm resources through genome-editing technologies.
Collapse
Affiliation(s)
- Peng Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
8
|
Selva C, Yang X, Shirley NJ, Whitford R, Baumann U, Tucker MR. HvSL1 and HvMADS16 promote stamen identity to restrict multiple ovary formation in barley. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5039-5056. [PMID: 37279531 PMCID: PMC10498024 DOI: 10.1093/jxb/erad218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Correct floral development is the result of a sophisticated balance of molecular cues. Floral mutants provide insight into the main genetic determinants that integrate these cues, as well as providing opportunities to assess functional variation across species. In this study, we characterize the barley (Hordeum vulgare) multiovary mutants mov2.g and mov1, and propose causative gene sequences: a C2H2 zinc-finger gene HvSL1 and a B-class gene HvMADS16, respectively. In the absence of HvSL1, florets lack stamens but exhibit functional supernumerary carpels, resulting in multiple grains per floret. Deletion of HvMADS16 in mov1 causes homeotic conversion of lodicules and stamens into bract-like organs and carpels that contain non-functional ovules. Based on developmental, genetic, and molecular data, we propose a model by which stamen specification in barley is defined by HvSL1 acting upstream of HvMADS16. The present work identifies strong conservation of stamen formation pathways with other cereals, but also reveals intriguing species-specific differences. The findings lay the foundation for a better understanding of floral architecture in Triticeae, a key target for crop improvement.
Collapse
Affiliation(s)
- Caterina Selva
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Neil J Shirley
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Ryan Whitford
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Ute Baumann
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia, Australia
| |
Collapse
|
9
|
Käppel S, Rümpler F, Theißen G. Cracking the Floral Quartet Code: How Do Multimers of MIKC C-Type MADS-Domain Transcription Factors Recognize Their Target Genes? Int J Mol Sci 2023; 24:8253. [PMID: 37175955 PMCID: PMC10178880 DOI: 10.3390/ijms24098253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
MADS-domain transcription factors (MTFs) are involved in the control of many important processes in eukaryotes. They are defined by the presence of a unique and highly conserved DNA-binding domain, the MADS domain. MTFs bind to double-stranded DNA as dimers and recognize specific sequences termed CArG boxes (such as 5'-CC(A/T)6GG-3') and similar sequences that occur hundreds of thousands of times in a typical flowering plant genome. The number of MTF-encoding genes increased by around two orders of magnitude during land plant evolution, resulting in roughly 100 genes in flowering plant genomes. This raises the question as to how dozens of different but highly similar MTFs accurately recognize the cis-regulatory elements of diverse target genes when the core binding sequence (CArG box) occurs at such a high frequency. Besides the usual processes, such as the base and shape readout of individual DNA sequences by dimers of MTFs, an important sublineage of MTFs in plants, termed MIKCC-type MTFs (MC-MTFs), has evolved an additional mechanism to increase the accurate recognition of target genes: the formation of heterotetramers of closely related proteins that bind to two CArG boxes on the same DNA strand involving DNA looping. MC-MTFs control important developmental processes in flowering plants, ranging from root and shoot to flower, fruit and seed development. The way in which MC-MTFs bind to DNA and select their target genes is hence not only of high biological interest, but also of great agronomic and economic importance. In this article, we review the interplay of the different mechanisms of target gene recognition, from the ordinary (base readout) via the extravagant (shape readout) to the idiosyncratic (recognition of the distance and orientation of two CArG boxes by heterotetramers of MC-MTFs). A special focus of our review is on the structural prerequisites of MC-MTFs that enable the specific recognition of target genes.
Collapse
Affiliation(s)
| | | | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany; (S.K.); (F.R.)
| |
Collapse
|
10
|
Liu G, Huang K, Ke J, Chen C, Bao GH, Wan X. Novel Camellia sinensis O-Methyltransferase Regulated by CsMADSL1 Specifically Methylates EGCG in Cultivar "GZMe4". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6706-6716. [PMID: 37094255 DOI: 10.1021/acs.jafc.2c06031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4″Me) in Camellia sinensis possesses numerous beneficial biological activities. However, the germplasm rich in EGCG4″Me and the O-methyltransferase responsible for EGCG4″Me biosynthesis are poorly understood. Herein, the content of EGCG3″Me and EGCG4″Me in the shoots of 13 cultivars was analyzed to demonstrate that EGCG4″Me is characteristically accumulated in the "GZMe4" cultivar but not in the other 12 cultivars. A novel O-methyltransferase (CsOMTL1) was identified from "GZMe4" using RNA-Seq and correlation analysis. Using the recombinant enzyme, EGCG4″Me was synthesized in vitro. Overexpression of CsOMTL1 via Agrobacterium-mediated genetic transformation caused constitutive accumulation of EGCG4″Me in C. sinensis callus. Moreover, the transcription factor CsMADSL1 localized in the nucleus activated the transcription of CsOMTL1 and specifically interacted with its promoter. Hence, our study identified a novel O-methyltransferase that characteristically catalyzes the synthesis of EGCG4″Me and a positive regulator of EGCG4″Me synthesis in "GZMe4", which might provide a strategy for the breeding of a tea cultivar rich in EGCG4″Me.
Collapse
Affiliation(s)
- Guangjin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chenhui Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guan-Hu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Du Q, Wu Z, Liu P, Qing J, He F, Du L, Sun Z, Zhu L, Zheng H, Sun Z, Yang L, Wang L, Du H. The chromosome-level genome of Eucommia ulmoides provides insights into sex differentiation and α-linolenic acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1118363. [PMID: 37063180 PMCID: PMC10102601 DOI: 10.3389/fpls.2023.1118363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Eucommia ulmoides Oliver is a typical dioecious plant endemic to China that has great medicinal and economic value. Here, we report a high-quality chromosome-level female genome of E. ulmoides obtained by PacBio and Hi-C technologies. The size of the female genome assembly was 1.01 Gb with 17 pseudochromosomes and 31,665 protein coding genes. In addition, Hi-C technology was used to reassemble the male genome released in 2018. The reassembled male genome was 1.24 Gb with the superscaffold N50 (48.30 Mb), which was increased 25.69 times, and the number of predicted genes increased by 11,266. Genome evolution analysis indicated that E. ulmoides has undergone two whole-genome duplication events before the divergence of female and male, including core eudicot γ whole-genome triplication event (γ-WGT) and a recent whole genome duplication (WGD) at approximately 27.3 million years ago (Mya). Based on transcriptome analysis, EuAP3 and EuAG may be the key genes involved in regulating the sex differentiation of E. ulmoides. Pathway analysis showed that the high expression of ω-3 fatty acid desaturase coding gene EU0103017 was an important reason for the high α-linolenic acid content in E. ulmoides. The genome of female and male E. ulmoides presented here is a valuable resource for the molecular biological study of sex differentiation of E. ulmoides and also will provide assistance for the breeding of superior varieties.
Collapse
Affiliation(s)
- Qingxin Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Zixian Wu
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Panfeng Liu
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Jun Qing
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Feng He
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Lanying Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Zhiqiang Sun
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongchu Zheng
- Product Department, Henan Jinduzhong Agricultural Science and Technology Co., Ltd., Yanling, China
| | - Zongyi Sun
- Operation Department, Grandomics Biosciences Co., Ltd., Wuhan, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Lu Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Hongyan Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| |
Collapse
|
12
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
13
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
14
|
Zhou G, Yin H, Chen F, Wang Y, Gao Q, Yang F, He C, Zhang L, Wan Y. The genome of Areca catechu provides insights into sex determination of monoecious plants. THE NEW PHYTOLOGIST 2022; 236:2327-2343. [PMID: 36089819 DOI: 10.1111/nph.18471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The areca palm (Areca catechu) has a monoecious spadix, with male flowers on the apical side and females on the basal side. Here, we applied multiomics analysis to investigate sex determination and floral organ development in areca palms. We generated a chromosome-level reference genome of A. catechu with 16 pseudochromosomes, composed of 2.73 Gb and encoding 31 406 genes. Data from RNA-seq and ATAC-seq (assay for transposase accessible chromatin sequencing) suggested that jasmonic acid (JA) synthesis and signal transduction-related genes were differentially expressed between female and male flowers via epigenetic modifications. JA concentration in female flowers was c. 10 times than that in males on the same inflorescence, while JA concentration in hermaphroditic flowers of abnormal inflorescences was about twice that in male flowers of normal inflorescences. JA promotes the development of female flower organs by decreasing the expression of B-function genes, including AGL16, AP3, PIb and PIc. There is also a region on pseudochromosome 15 harboring sex-related genes, including CYP703, LOG, GPAT, AMS and BiP. Among them, CYP703, AMS and BiP were specifically expressed in male flowers.
Collapse
Affiliation(s)
- Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Hainan Yazhou Bay Seed Laboratory, College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Yicheng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fusun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chaozhu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
15
|
Heisler MG, Jönsson H, Wenkel S, Kaufmann K. Context-specific functions of transcription factors controlling plant development: From leaves to flowers. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102262. [PMID: 35952407 DOI: 10.1016/j.pbi.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plant development is regulated by transcription factors that often act in more than one process and stage of development. Yet the molecular mechanisms that govern the functional diversity and specificity of these proteins remains far from understood. Flower development provides an ideal context to study these mechanisms since the development of distinct floral organs depends on similar but distinct combinations of transcriptional regulators. Recent work also highlights the importance of leaf polarity regulators as additional key factors in flower initiation, floral organ morphogenesis, and possibly floral organ positioning. A detailed understanding of how these factors work in combination will enable us to address outstanding questions in flower development including how distinct shapes and positions of floral organs are generated. Experimental approaches and computer-based modeling will be required to characterize gene-regulatory networks at the level of single cells.
Collapse
Affiliation(s)
- Marcus G Heisler
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK; Computational Biology and Biological Physics, Lund University, Sweden
| | - Stephan Wenkel
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kerstin Kaufmann
- Humboldt-Universität zu Berlin, Institute of Biology, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
16
|
Wang Y, Bi X, Zhong J. Revisiting the origin and identity specification of the spikelet: A structural innovation in grasses (Poaceae). PLANT PHYSIOLOGY 2022; 190:60-71. [PMID: 35640983 PMCID: PMC9434286 DOI: 10.1093/plphys/kiac257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/03/2022] [Indexed: 05/06/2023]
Abstract
Spikelets are highly specialized and short-lived branches and function as a constitutional unit of the complex grass inflorescences. A series of genetic, genomic, and developmental studies across different clades of the family have called for and permitted a synthesis on the regulation and evolution of spikelets, and hence inflorescence diversity. Here, we have revisited the identity specification of a spikelet, focusing on the diagnostic features of a spikelet from morphological, developmental, and molecular perspectives. Particularly, recent studies on a collection of barley (Hordeum vulgare L.), wheat (Triticum spp.), and rice (Oryza sativa L.) mutants have highlighted a set of transcription factors that are important in the control of spikelet identity and the patterning of floral parts of a spikelet. In addition, we have endeavored to clarify some puzzling issues on the (in)determinacy and modifications of spikelets over the course of evolution. Meanwhile, genomes of two sister taxa of the remaining grass species have again demonstrated the importance of genome duplication and subsequent gene losses on the evolution of spikelets. Accordingly, we argue that changes in the orthologs of spikelet-related genes could be critical for the development and evolution of the spikelet, an evolutionary innovation in the grass family. Likewise, the conceptual discussions on the regulation of a fundamental unit of compound inflorescences could be translated into other organismal groups where compound structures are similarly formed, permitting a comparative perspective on the control of biological complexity.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinshun Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
17
|
Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 2022; 12:5793. [PMID: 35388069 PMCID: PMC8986816 DOI: 10.1038/s41598-022-09582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e−04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.
Collapse
|
18
|
Abraham-Juárez MJ, Barnes AC, Aragón-Raygoza A, Tyson D, Kur A, Strable J, Rellán-Álvarez R. The arches and spandrels of maize domestication, adaptation, and improvement. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102124. [PMID: 34715472 DOI: 10.1016/j.pbi.2021.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, 36821, Mexico
| | - Allison C Barnes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Unidad de Genómica Avanzada, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Guanajuato, Mexico
| | - Destiny Tyson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andi Kur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
19
|
Zeng Z, Chen S, Xu M, Wang M, Chen Z, Wang L, Pang J. Cloning, Expression, and Tobacco Overexpression Analyses of a PISTILLATA/ GLOBOSA-like ( OfGLO1) Gene from Osmanthus fragrans. Genes (Basel) 2021; 12:1748. [PMID: 34828354 PMCID: PMC8623234 DOI: 10.3390/genes12111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
GLOBOSA (GLO), a B-class MADS-box gene, is involved in floral organ determination but has rarely been studied in Osmanthus fragrans, which is a very popular ornamental tree species in China. Here, the full-length cDNA of a homologous GLO1 gene (named OfGLO1) was cloned from a flower bud of O. fragrans using the RACE technique. The OfGLO1 has a 645 bp open reading frame, encoding 214 amino acids. Similar to other PI/GLO proteins, OfGLO1 has two conserved domains, MADS MEF2-like and K-box, and a 16-amino-acid PI motif in the C terminal region. Our phylogeny analysis classified OfGLO1 as a PI-type member of the B-class MADS-box gene family. The qRT-PCR assay showed that the expression of OfGLO1 in O. fragrans was continuously upregulated from the tight bud stage to the full flowering stage but barely expressed in the pistils, sepals, and non-floral organs, such as root, leaf, and stem. The genetic effect of OfGLO1 was assayed by ectopic expression in tobacco plants. Compared with the wild-type, OfGLO1 transformants showed reduced plant size, earlier flowering, shorter stamens, and lower seed setting rates. Furthermore, some stamens were changed into petal-like structures. These findings indicate that OfGLO1 plays an important role in the regulation of flower development. This study improved our understanding of class B gene function in woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiliang Pang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (S.C.); (M.X.); (M.W.); (Z.C.); (L.W.)
| |
Collapse
|
20
|
Zhao J, Gong P, Liu H, Zhang M, He C. Multiple and integrated functions of floral C-class MADS-box genes in flower and fruit development of Physalis floridana. PLANT MOLECULAR BIOLOGY 2021; 107:101-116. [PMID: 34424500 DOI: 10.1007/s11103-021-01182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
This work reveals potentially multiple and integrated roles in flower and fruit development of floral C-class MADS-box genes in Physalis. The Physalis fruit features a morphological novelty, the Chinese lantern. Floral C-class MADS-domain AGAMOUS-like (AG-like) proteins can interact with the identified regulators of this novel structure. However, the developmental role of the floral C-class genes is unknown in Physalis. Here, we characterized two AG-like genes from Physalis floridana, designated PFAG1 and PFAG2. The two paralogous genes shared around 61.0% of sequence identity and had similar expression domains, with different expression levels in the floral and berry development. However, the genes had distinct expression patterns in leaf and calyx development. Protein-protein interaction analyses revealed that PFAG1 and PFAG2 could commonly or specifically dimerize with certain floral MADS-domain proteins as well as non-MADS-domain proteins involved in various floral developmental processes. Gene downregulation analyses demonstrated that PFAG1 may repress PFAG2, but PFAG2 did not affect PFAG1. Downregulating PFAG1 led to incomplete floral homeotic variation in the stamens and carpels, and alteration of petal coloration pattern, while downregulating PFAG2 did not result in any floral homeotic variation. PFAG1 affected pollen maturation, while PFAG2 affected female fertility. However, simultaneously downregulating PFAG1 and PFAG2 caused loss of the complete C-function, indicating that the two PFAG genes interact to determine the identity and functionality of androecia and gynoecia organs. Their potential roles in regulating fruit size and the Chinese lantern are also discussed. Our results reveal functional divergence of floral C-class MADS-box genes in Physalis, demonstrating that they may play multiple and integrated roles in flower and fruit development.
Collapse
Affiliation(s)
- Jing Zhao
- Life Science College, Northwest Normal University, Lanzhou, 730070, Gansu, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongyan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingshu Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Song GQ, Han X, Ryner JT, Thompson A, Wang K. Utilizing MIKC-type MADS-box protein SOC1 for yield potential enhancement in maize. PLANT CELL REPORTS 2021; 40:1679-1693. [PMID: 34091722 PMCID: PMC8376726 DOI: 10.1007/s00299-021-02722-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 05/26/2023]
Abstract
Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12-18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.
Collapse
Affiliation(s)
- Guo-Qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xue Han
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA
| | - John T Ryner
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Addie Thompson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Kan Wang
- Department of Agronomy, Crop Bioengineering Center, Iowa State University, Ames, IA, 50011-1051, USA
| |
Collapse
|
22
|
The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat Commun 2021; 12:4760. [PMID: 34362909 PMCID: PMC8346517 DOI: 10.1038/s41467-021-24978-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF. MADS transcription factors regulate multiple aspects of plant development. Here the authors show that the intervening I domain is conserved in both type I and type II plant MADS lineages and contributes to the functional identity of the protein by influencing both DNA binding activity and dimerisation specificity.
Collapse
|
23
|
Hsin KT, Yang TJ, Lee YH, Cheng YS. Phylogenetic and Structural Analysis of NIN-Like Proteins With a Type I/II PB1 Domain That Regulates Oligomerization for Nitrate Response. FRONTIERS IN PLANT SCIENCE 2021; 12:672035. [PMID: 34135927 PMCID: PMC8200828 DOI: 10.3389/fpls.2021.672035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Absorption of macronutrients such as nitrogen is a critical process for land plants. There is little information available on the correlation between the root evolution of land plants and the protein regulation of nitrogen absorption and responses. NIN-like protein (NLP) transcription factors contain a Phox and Bem1 (PB1) domain, which may regulate nitrate-response genes and seem to be involved in the adaptation to growing on land in terms of plant root development. In this report, we reveal the NLP phylogeny in land plants and the origin of NLP genes that may be involved in the nitrate-signaling pathway. Our NLP phylogeny showed that duplication of NLP genes occurred before divergence of chlorophyte and land plants. Duplicated NLP genes may lost in most chlorophyte lineages. The NLP genes of bryophytes were initially monophyletic, but this was followed by divergence of lycophyte NLP genes and then angiosperm NLP genes. Among those identified NLP genes, PB1, a protein-protein interaction domain was identified across our phylogeny. To understand how protein-protein interaction mediate via PB1 domain, we examined the PB1 domain of Arabidopsis thaliana NLP7 (AtNLP7) in terms of its molecular oligomerization and function as representative. Based on the structure of the PB1 domain, determined using small-angle x-ray scattering (SAXS) and site-directed mutagenesis, we found that the NLP7 PB1 protein forms oligomers and that several key residues (K867 and D909/D911/E913/D922 in the OPCA motif) play a pivotal role in the oligomerization of NLP7 proteins. The fact that these residues are all conserved across land plant lineages means that this oligomerization may have evolved after the common ancestor of extant land plants colonized the land. It would then have rapidly become established across land-plant lineages in order to mediate protein-protein interactions in the nitrate-signaling pathway.
Collapse
Affiliation(s)
- Kuan-Ting Hsin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Sheng Cheng
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Mao WT, Hsu WH, Li JY, Yang CH. Distance-based measurement determines the coexistence of B protein hetero- and homodimers in lily tepal and stamen tetrameric complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1357-1373. [PMID: 33277739 DOI: 10.1111/tpj.15117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The floral quartet model proposes that plant MADS box proteins function as higher order tetrameric complexes. However, in planta evidence for MADS box tetramers remains scarce. Here, we applied a strategy using in vivo fluorescence resonance energy transfer (FRET) based on the distance change and distance symmetry of stable tetrameric complexes in tobacco (Nicotiana benthamiana) leaf cells to improve the accuracy of the estimation of heterotetrameric complex formation. This measuring system precisely verified the stable state of Arabidopsis petal (AP3/PI/SEP3/AP1) and stamen (AP3/PI/SEP3/AG) complexes and showed that the lily (Lilium longiflorum) PI co-orthologs LMADS8 and LMADS9 likely formed heterotetrameric petal complexes with Arabidopsis AP3/SEP3/AP1, which rescued petal defects of pi mutants. However, L8/L9 did not form heterotetrameric stamen complexes with Arabidopsis AP3/SEP3/AG to rescue the stamen defects of the pi mutants. Importantly, this system was applied successfully to find complicated tepal and stamen heterotetrameric complexes in lily. We found that heterodimers of B function AP3/PI orthologs (L1/L8) likely coexist with the homodimers of PI orthologs (L8/L8, L9/L9) to form five (two most stable and three stable) tepal- and four (one most stable and three stable) stamen-related heterotetrameric complexes with A/E and C/E function proteins in lily. Among these combinations, L1 preferentially interacted with L8 to form the most stable heterotetrameric complexes, and the importance of the L8/L8 and L9/L9 homodimers in tepal/stamen formation in lily likely decreased to a minor part during evolution. The system provides substantial improvements for successfully estimating the existence of unknown tetrameric complexes in plants.
Collapse
Affiliation(s)
- Wan-Ting Mao
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Jen-Ying Li
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan ROC
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| |
Collapse
|
25
|
Hughes PW. Fine Tuning Floral Morphology: MADS-Box Protein Complex Formation in Maize. THE PLANT CELL 2020; 32:3376-3377. [PMID: 33004615 PMCID: PMC7610295 DOI: 10.1105/tpc.20.00818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- P William Hughes
- Department of Ecology,Environment, and Plant SciencesStockholm UniversityStockholm, Sweden
| |
Collapse
|