1
|
Wang Z, Gou X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci 2020; 21:ijms21207638. [PMID: 33076465 PMCID: PMC7590044 DOI: 10.3390/ijms21207638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of protein kinase broadly involved in various signal pathways in eukaryotes. In plants, MAPK cascades regulate growth, development, stress responses and immunity by perceiving signals from the upstream regulators and transmitting the phosphorylation signals to the downstream signaling components. To reveal the interactions between MAPK cascades and their upstream regulators is important for understanding the functional mechanisms of MAPKs in the life span of higher plants. Typical receptor-like protein kinases (RLKs) are plasma membrane-located to perceive endogenous or exogenous signal molecules in regulating plant growth, development and immunity. MAPK cascades bridge the extracellular signals and intracellular transcription factors in many RLK-mediated signaling pathways. This review focuses on the current findings that RLKs regulate plant development through MAPK cascades and discusses questions that are worth investigating in the near future.
Collapse
|
2
|
Gao W, Feng Z, Bai Q, He J, Wang Y. Melatonin-Mediated Regulation of Growth and Antioxidant Capacity in Salt-Tolerant Naked Oat under Salt Stress. Int J Mol Sci 2019; 20:E1176. [PMID: 30866540 PMCID: PMC6429221 DOI: 10.3390/ijms20051176] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
Melatonin (MT; N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that has been demonstrated to play an important role in plant growth, development, and regulation of environmental stress responses. Studies have been conducted on the role of the exogenous application of MT in a few species, but the potential mechanisms of MT-mediated stress tolerance under salt stress are still largely unknown. In this study, naked oat seedlings under salt stress (150 mM NaCl) were pretreated with two different concentrations of MT (50 and 100 μM), and the effects of MT on the growth and antioxidant capacity of naked oat seedlings were analyzed to explore the regulatory effect of MT on salt tolerance. The results showed that pretreating with different concentrations of MT promoted the growth of seedlings in response to 150 mM NaCl. Different concentrations of MT reduced hydrogen peroxide, superoxide anion, and malondialdehyde contents. The exogenous application of MT also increased superoxide dismutase, peroxidase, catalase, and ascorbate peroxide activities. Chlorophyll content, leaf area, leaf volume, and proline increased in the leaves of naked oat seedlings under 150 mM NaCl stress. MT upregulated the expression levels of the lipid peroxidase genes lipoxygenase and peroxygenase, a chlorophyll biosynthase gene (ChlG), the mitogen-activated protein kinase genes Asmap1 and Aspk11, and the transcription factor genes (except DREB2), NAC, WRKY1, WRKY3, and MYB in salt-exposed MT-pretreated seedlings when compared with seedlings exposed to salt stress alone. These results demonstrate an important role of MT in the relief of salt stress and, therefore, provide a reference for managing salinity in naked oat.
Collapse
Affiliation(s)
- Wenying Gao
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zheng Feng
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an 710069, China.
| | - Qingqing Bai
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinjin He
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an 710069, China.
| | - Yingjuan Wang
- Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biothchnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Neupane S, Schweitzer SE, Neupane A, Andersen EJ, Fennell A, Zhou R, Nepal MP. Identification and Characterization of Mitogen-Activated Protein Kinase (MAPK) Genes in Sunflower ( Helianthus annuus L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E28. [PMID: 30678298 PMCID: PMC6409774 DOI: 10.3390/plants8020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that regulate biotic and abiotic stresses in plants through signaling cascades comprised of three major subfamilies: MAP Kinase (MPK), MAPK Kinase (MKK), and MAPKK Kinase (MKKK). The main objectives of this research were to conduct genome-wide identification of MAPK genes in Helianthus annuus and examine functional divergence of these genes in relation to those in nine other plant species (Amborella trichopoda, Aquilegia coerulea, Arabidopsis thaliana, Daucus carota, Glycine max, Oryza sativa, Solanum lycopersicum, Sphagnum fallax, and Vitis vinifera), representing diverse taxonomic groups of the Plant Kingdom. A Hidden Markov Model (HMM) profile of the MAPK genes utilized reference sequences from A. thaliana and G. max, yielding a total of 96 MPKs and 37 MKKs in the genomes of A. trichopoda, A. coerulea, C. reinhardtii, D. carota, H. annuus, S. lycopersicum, and S. fallax. Among them, 28 MPKs and eight MKKs were confirmed in H. annuus. Phylogenetic analyses revealed four clades within each subfamily. Transcriptomic analyses showed that at least 19 HaMPK and seven HaMKK genes were induced in response to salicylic acid (SA), sodium chloride (NaCl), and polyethylene glycol (Peg) in leaves and roots. Of the seven published sunflower microRNAs, five microRNA families are involved in targeting eight MPKs. Additionally, we discussed the need for using MAP Kinase nomenclature guidelines across plant species. Our identification and characterization of MAP Kinase genes would have implications in sunflower crop improvement, and in advancing our knowledge of the diversity and evolution of MAPK genes in the Plant Kingdom.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Sarah E Schweitzer
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Anne Fennell
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
4
|
Wang B, Qin X, Wu J, Deng H, Li Y, Yang H, Chen Z, Liu G, Ren D. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity. Sci Rep 2016; 6:25646. [PMID: 27160427 PMCID: PMC4861982 DOI: 10.1038/srep25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/20/2016] [Indexed: 12/02/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6F364L and MPK6F368L mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinghua Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Juan Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongying Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Wu L, Zu X, Zhang H, Wu L, Xi Z, Chen Y. Overexpression of ZmMAPK1 enhances drought and heat stress in transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2015; 88:429-43. [PMID: 26008677 DOI: 10.1007/s11103-015-0333-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/17/2015] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signal transduction cascades play a crucial role in the response to extracellular stimuli in eukaryotes. A number of MAPK family genes have been isolated in plants, but the maize MAPK genes have been little studied. Here, we studied the role of maize MAP kinase 1 (ZmMAPK1) using gene expression, protein subcellular localization, transformation in Arabidopsis, expression patterns of the stress-responsive genes and physiological parameter analysis. Our physiological parameter analysis suggested that over-expression ZmMAPK1 can increase proline content and decrease malondialdehyde content under drought, and prevent chlorophyll loss and the production of scavenger reactive oxygen species under heat stress. The resistance characteristics of the over-expression of ZmMAPK1 were associated with a significant increase in survival rate. These results suggest that ZmMAPK1 plays a positive role in response to drought and heat stress in Arabidopsis, and provide new insights into the mechanisms of action of MAPK in response to abiotic stress in plants.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University, Synergetic Innovation Center of Henan Grain Crops, 63 Nongye Road, Zhengzhou, 450002, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Stanko V, Giuliani C, Retzer K, Djamei A, Wahl V, Wurzinger B, Wilson C, Heberle-Bors E, Teige M, Kragler F. Timing is everything: highly specific and transient expression of a MAP kinase determines auxin-induced leaf venation patterns in Arabidopsis. MOLECULAR PLANT 2014; 7:1637-1652. [PMID: 25064848 PMCID: PMC4228985 DOI: 10.1093/mp/ssu080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.
Collapse
Affiliation(s)
- Vera Stanko
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Felix-Klein-Gymnasium, Böttingerstraße 17, D-37073 Göttingen, Germany
| | - Concetta Giuliani
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Austrian Centre of Industrial Biotechnology, Muthgasse 11, A-1190 Vienna, Austria
| | - Katarzyna Retzer
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Armin Djamei
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Bernhard Wurzinger
- Department of Biochemistry, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, Vienna, A-1030, Austria; Present address: Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Cathal Wilson
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria; Present address: Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131-Naples, Italy
| | - Erwin Heberle-Bors
- Department of Plant Molecular Biology, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna, A-1030, Austria
| | - Markus Teige
- Department of Biochemistry, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, Vienna, A-1030, Austria; Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria.
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany; Department of Biochemistry, Max. F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, Vienna, A-1030, Austria.
| |
Collapse
|
7
|
Heider H, Boscheinen O, Scharf KD. A Heat-Stress Pulse Inactivates a 50 kDa Myelin Basic Protein Kinase in Tomato. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00725.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wang L, Liu Y, Cai G, Jiang S, Pan J, Li D. Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco. J Biotechnol 2014; 172:18-29. [PMID: 24291188 DOI: 10.1016/j.jbiotec.2013.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades play pivotal roles in diverse signaling pathways related to plant biotic and abiotic stress responses. In this study, a group B MAPK gene in Zea mays, ZmSIMK1, was functionally analyzed. Quantitative real-time PCR (qRT-PCR) analysis indicated that ZmSIMK1 transcript could be induced by drought, salt, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and certain exogenous signaling molecules. Analysis of the ZmSIMK1 promoter revealed a group of putative cis-acting elements related to drought and defense responses. β-Glucuronidase (GUS) staining produced similar results as qRT-PCR. ZmSIMK1 was mainly localized in the nucleus, and further study indicated that the C-terminal domain (CD) was essential for targeting to the nucleus. Transgenic tobacco accumulated less reactive oxygen species (ROS), had higher levels of antioxidant enzyme activity and osmoregulatory substances and exhibited an increased germination rate compared with wild-type (WT) tobacco under drought stress. ROS-related and drought stress-responsive genes in transgenic tobacco were significantly upregulated compared with the same genes in WT lines under drought stress. Moreover, overexpression of ZmSIMK1 promoted the hypersensitive response (HR) and pathogen-related gene (PR) transcription in addition to triggering systemic acquired resistance (SAR) in tobacco.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shanshan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiaowen Pan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
9
|
Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Liu Y, Sun L, Li D. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. PLANTA 2012; 235:661-76. [PMID: 22006107 DOI: 10.1007/s00425-011-1510-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/19/2011] [Indexed: 05/18/2023]
Abstract
Plant mitogen-activated protein kinase (MAPK) cascades play a pivotal role in a range of biotic and abiotic stress responses. In this study, we isolated a novel group D MAPK gene, ZmMPK17, from maize (Zea mays L.). ZmMPK17 is localized mainly to the nucleus and its C-terminal domain extension is believed to be essential for this. Northern-blot analysis indicated that ZmMPK17 transcription is involved in response to exogenous signaling molecules such as abscisic acid, hydrogen peroxide, salicylic acid, jasmonic acid and ethylene and induced by low temperature and osmotic stress. Hydrogen peroxide and Ca²⁺ mediate PEG-induced downregulation of ZmMPK17 at transcription level and Ca²⁺ also mediates low temperature-induced expression of ZmMPK17. Overexpression of ZmMPK17 in tobacco (Nicotonia tobaccum) accumulated less reactive oxygen species under osmotic stress by affecting antioxidant defense systems. Transgenic tobacco exhibited enhanced tolerance to cold by means of an increased germination rate, and increased proline and soluble sugar levels relative to control plants. The transcription levels of NtERD10 genes were higher in ZmMPK17-overexpressing lines than in control plants under cold and osmotic stress conditions. ZmMPK17-overexpressing plants displayed enhanced resistance to viral pathogens, and the expression of the pathogenesis-related gene PR1a was significantly increased, indicating that ZmMPK17 might be involved in SA-mediated pathogen defense-signaling pathways.
Collapse
Affiliation(s)
- Jiaowen Pan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zaïdi I, Ebel C, Touzri M, Herzog E, Evrard JL, Schmit AC, Masmoudi K, Hanin M. TMKP1 is a novel wheat stress responsive MAP Kinase phosphatase localized in the nucleus. PLANT MOLECULAR BIOLOGY 2010; 73:325-38. [PMID: 20204675 DOI: 10.1007/s11103-010-9617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 02/17/2010] [Indexed: 05/13/2023]
Abstract
The regulation of plant signalling responses by Mitogen-Activated Protein Kinases (MAPKs)-mediated protein phosphorylation is well recognized. MAP kinase phosphatases (MKPs) are negative regulators of MAPKs in eukaryotes. We report here the identification and the characterization of TMKP1, the first wheat MKP (Triticum turgidum L. subsp. Durum). Expression profile analyses performed in two durum wheat cultivars showing a marked difference in salt and drought stress tolerance, revealed a differential regulation of TMKP1. Under salt and osmotic stress, TMKP1 is induced in the sensitive wheat variety and repressed in the tolerant one. A recombinant TMKP1 was shown to be an active phosphatase and capable to interact specifically with two wheat MAPKs (TMPK3 and TMPK6). In BY2 tobacco cells transiently expressing GFP::TMKP1, the fusion protein was localized into the nucleus. Interestingly, the deletion of the N-terminal non catalytic domain results in a strong accumulation of the truncated fusion protein in the cytoplasm. In addition, when expressed in BY2 cells, TMPK3 and TMPK6 fused to red fluorescent protein (RFP) were shown to be present predominantly in the nucleus. Surprisingly, when co-expressed with the N-terminal truncated TMKP1 fusion protein; both kinases are excluded from the nuclear compartment and accumulate in the cytoplasm. This strongly suggests that TMKP1 interacts in vivo with TMPK3 and TMPK6 and controls their subcellular localization. Taken together, our results show that the newly isolated wheat MKP might play an active role in modulating the plant cell responses to salt and osmotic stress responses.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Amino Acid Sequence
- Blotting, Western
- Cell Line
- Cell Nucleus/enzymology
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Confocal
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
- Triticum/enzymology
- Triticum/genetics
- Triticum/physiology
Collapse
Affiliation(s)
- Ikram Zaïdi
- Laboratoire de Génétique Moléculaire des Plantes du Centre de Biotechnologie de Sfax, Route Sidi Mansour BP, Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 2010; 37:4067-73. [DOI: 10.1007/s11033-010-0066-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 03/05/2010] [Indexed: 01/10/2023]
|
12
|
Rodriguez MCS, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:621-49. [PMID: 20441529 DOI: 10.1146/annurev-arplant-042809-112252] [Citation(s) in RCA: 685] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways.
Collapse
|
13
|
|
14
|
Lee MO, Cho K, Kim SH, Jeong SH, Kim JA, Jung YH, Shim J, Shibato J, Rakwal R, Tamogami S, Kubo A, Agrawal GK, Jwa NS. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. PLANTA 2008; 4:448-50. [PMID: 18066586 DOI: 10.1007/s00425-007-0672-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/15/2007] [Indexed: 05/18/2023]
Abstract
We report isolation and transcriptional profiling of rice (Oryza sativa L.) mitogen-activated protein kinase (MAPK), OsSIPK (salicylic acid-induced protein kinase). OsSIPK gene is located on chromosome 6 most probably existing as a single copy in the rice genome, and encodes 398 amino acid polypeptide having the MAPK family signature and phosphorylation activation motif TEY. Steady state mRNA analyses of OsSIPK showed weak constitutive expression in leaves of 2-week-old rice seedlings. A time course (30-120 min) experiment using a variety of elicitors and stresses revealed that the OsSIPK mRNA is strongly induced by jasmonic acid (JA), salicylic acid (SA), ethephon, abscisic acid, cycloheximide (CHX), JA/SA + CHX, cantharidin, okadaic acid, hydrogen peroxide, chitosan, sodium chloride, and cold stress (12 degrees C), but not with wounding by cut, gaseous pollutants ozone, and sulfur dioxide, high temperature, ultraviolet C irradiation, sucrose, and drought. Its transcription was also found to be tissue-specifically regulated, and followed a rhythmic dark induction in leaves. Finally, we showed that the OsSIPK protein is localized to the nucleus. From these results, OsSIPK can be implicated in diverse stimuli-responsive signaling cascades and transcription of certain genes.
Collapse
Affiliation(s)
- Mi-Ok Lee
- Department of Molecular Biology, College of Natural Science, Sejong University, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Soliman GA, Ishida-Takahashi R, Gong Y, Jones JC, Leshan RL, Saunders TL, Fingar DC, Myers MG. A simple qPCR-based method to detect correct insertion of homologous targeting vectors in murine ES cells. Transgenic Res 2007; 16:665-70. [PMID: 17570071 DOI: 10.1007/s11248-007-9110-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/22/2007] [Indexed: 02/07/2023]
Abstract
The identification of correctly targeted embryonic stem (ES) cell clones from among the large number of random integrants that result from most selection paradigms remains an important hurdle in the generation of animals bearing homologously targeted transgenes. Given the limitations inherent to Southern blotting and standard PCR, we utilized quantitative real-time polymerase chain reaction (qPCR) to rapidly identify murine ES cell clones containing insertions at the correct genomic locus. Importantly, this approach is useful for screening ES clones from conditional/insertional "knock-in" strategies in which there is no loss of genetic material. Simple validation avoids the generation of assays prone to false negative results. In this method, probe and primer sets that span an insertion site detect and quantify the unperturbed gene relative to an irrelevant reference gene, allowing ES cell clones to be screened for loss of detection of one copy of the gene (functional loss of homozygousity (LOH)) that occurs when the normal DNA is disrupted by the insertion event. Simply stated, detected gene copy number falls from two to one in correctly targeted clones. We have utilized such easily designed and validated qPCR LOH assays to rapidly and accurately identify insertions in multiple target sites (including the Lepr and mTOR loci) in murine ES cells, in order to generate transgenic animals.
Collapse
Affiliation(s)
- Ghada A Soliman
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mishra NS, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys 2006; 452:55-68. [PMID: 16806044 DOI: 10.1016/j.abb.2006.05.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.
Collapse
Affiliation(s)
- Neeti Sanan Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
17
|
Guo X, Dong H, Zheng K, Luo H, Tan X, Fang Y, Wang Y, Deng Y, Dai C, Lou Y, Shao J, Shi W, Zhao D, Li D. Gene expression profiling under different photoperiod/temperature conditions in a photoperiod-/thermo-sensitive genic male sterile line of rice (Oryza sativa L.). CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-005-1087-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chitcholtan K, Garrill A. A beta4 integrin-like protein co-localises with a phosphotyrosine containing protein in the oomycete Achlya bisexualis: inhibition of tyrosine phosphorylation slows tip growth. Fungal Genet Biol 2005; 42:534-45. [PMID: 15893255 DOI: 10.1016/j.fgb.2005.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/10/2005] [Accepted: 03/16/2005] [Indexed: 11/21/2022]
Abstract
We present immunocytochemical data that indicate the presence of, and a close association between beta4 integrin-like proteins and proteins containing phosphorylated tyrosine residues in the oomycete Achlya bisexualis. When hyphae were plasmolysed, these proteins were present in wall-membrane attachment sites where there was also F-actin. A combination of immunoblots, ELISA, and a coupled enzyme assay suggest that phosphorylation may occur by both autophosphorylation and through the action of a tyrosine kinase. Tyrphostins, which are inhibitors of tyrosine kinases, abolished the anti-phosphotyrosine staining, inhibited the kinase activity, slowed tip growth and affected the organisation of the actin cytoskeleton, in a dose-dependent manner. By analogy with the integrins and associated kinases of the metazoa we suggest that these proteins could contribute to the process of tip growth by providing a means of bidirectional signaling between the cell wall and the cytoplasm.
Collapse
Affiliation(s)
- Kenny Chitcholtan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | |
Collapse
|
19
|
Huang HJ, Lin YM, Huang DD, Takahashi T, Sugiyama M. Protein tyrosine phosphorylation during phytohormone-stimulated cell proliferation in Arabidopsis Hypocotyls. PLANT & CELL PHYSIOLOGY 2003; 44:770-5. [PMID: 12881506 DOI: 10.1093/pcp/pcg082] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Very little is known about the molecular events triggering differentiated cells to re-enter the cell cycle. We have investigated the possible role of tyrosine phosphorylation in this process with hypocotyl explants of Arabidopsis thaliana. Phytohormone-stimulated cell cycle reactivation in hypocotyls was accompanied by tyrosine phosphorylation of several proteins. Such regulation of the tyrosine phosphorylation in these proteins was not observed in a callus-formation-deficient mutant, srd2, a result which suggests that the induction of tyrosine phosphorylation occurs as a specific event in callus cell proliferation. The promoter activity of cyclin-dependent kinase, CDKA;1, was also examined in phytohormone-stimulated hypocotyls. This study highlighted that protein tyrosine phosphorylation may play an important regulatory role in phytohormone-stimulated cell proliferation.
Collapse
Affiliation(s)
- Hao-Jen Huang
- Department of Biology, National Cheng Kung University, Tainan, 701 Taiwan.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The mitogen-activated protein kinase (MAP kinase) signal transduction cascades are routes through which eukaryotic cells deliver extracellular messages to the cytosol and nucleus. These signalling pathways direct cell division, cellular differentiation, metabolism, and both biotic and abiotic stress responses. In plants, MAP kinases and the upstream components of the cascades are represented by multigene families, organized into different pathways which are stimulated and interact in complex ways. Experimental strategies for the analysis of MAP kinase cascades include the yeast two-hybrid system; using this approach in vitro interactions between specific MAP kinase cascade components have been analysed and putative plant cascades postulated. Transient transformation of protoplasts with epitope-tagged kinases has allowed cascades to be tested in planta. There is clear evidence for the involvement of MAP kinases in plant cell division and in the regulation of auxin signalling. Biotic (pathogens and pathogen-derived elicitors from fungi, bacteria and viruses) and abiotic stresses including wounding, mechanical stimulation, cold, drought and ozone can elicit defence responses in plants through MAP kinase pathways. There are data suggesting that ABA signalling utilizes a MAP kinase pathway, and probably ethylene and perhaps cytokinins do so also. The objective of this paper is to review this rapidly advancing field. Contents Summary 67 I. Introduction 68 II. Background 68 III. MAP kinase targets and targeting specificity 69 IV. Assays and inhibitors 70 V. Two well characterized MAP kinase pathways, Hog1 and Sevenless 71 VI. MAP kinases in plants 73 VII. MAP kinases and cell division 76 VIII. MAP kinases and plant hormones 76 IX. MAP kinase and abiotic stress 78 X. MAP kinase and biotic stress 80 XI. Future perspectives for MAP kinase research in plants 83 Acknowledgements 84 References 84.
Collapse
Affiliation(s)
- Peter C Morris
- Heriot-Watt University, Department of Biological Sciences, Riccarton, Edinburgh, EH14 4AS
| |
Collapse
|
21
|
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| |
Collapse
|
22
|
Ligterink W, Hirt H. Mitogen-activated protein [MAP] kinase pathways in plants: versatile signaling tools. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 201:209-75. [PMID: 11057833 DOI: 10.1016/s0074-7696(01)01004-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are important signaling tools in all eukaryotes, and function in mediating an enormous variety of external signals to appropriate cellular responses. MAPK pathways have been studied extensively in yeast and mammalian cells, and a large body of knowledge on their functioning has accumulated, which is summarized briefly. Plant MAPK pathways have attracted increasing interest, resulting in the isolation of a large number of different components of MAPK cascades. Studies on the functions of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, as well as in the signaling of most plant hormones and in developmental processes. Finally, the involvement of various plant phosphatases in the inactivation of MAPKs is discussed.
Collapse
Affiliation(s)
- W Ligterink
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Austria
| | | |
Collapse
|
23
|
Bögre L, Meskiene I, Heberle-Bors E, Hirt H. Stressing the role of MAP kinases in mitogenic stimulation. PLANT MOLECULAR BIOLOGY 2000; 43:705-18. [PMID: 11089871 DOI: 10.1023/a:1006301614690] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In yeast and animal cells, distinct subfamilies of mitogen-activated protein kinases (MAPKs) have evolved for transmitting different types of signals, such as the extracellular signal-regulated kinase (ERK) for mitogenic stimuli and differentiation, p38 and JUN kinase (JNK) for stress factors. Based on sequence analysis, the presently known plant MAPKs are most similar to ERKs, even though compelling evidence implies a role in various forms of biotic and abiotic stress responses. However, knowledge of their involvement in controlling proliferation is just emerging. A subgroup of the plant MAPKs, containing the alfalfa MMK3 and tobacco NTF6, are only active in mitotic cells and their localisation to the cell plate suggests a role in cytokinesis. An upstream regulator of MAPKs, the tobacco NPK1, appears to be also activated during mitosis. NPK1 might be associated and regulated by a microtubule motor protein. The localisation of NPK1 to the cell plate and its mitosis-specific activation suggest that together with NTF6 it could constitute a mitotic MAPK signalling module in tobacco. NPK1 appears to have a second role in repression of auxin-induced gene expression. MAPKs might also be involved in signalling within the meristems as suggested by the recruitement of a small G-protein to the CLAVATA 1 receptor-like protein kinase upon activation. In animal and yeast cells some of the small G-proteins relay signals from receptors to MAPK pathways.
Collapse
Affiliation(s)
- L Bögre
- School of Biological Sciences, Royal Holloway and Bedford New College, University of London, Egham, Surrey, UK.
| | | | | | | |
Collapse
|
24
|
Or E, Vilozny I, Eyal Y, Ogrodovitch A. The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase GDBRPK. PLANT MOLECULAR BIOLOGY 2000; 43:483-94. [PMID: 11052200 DOI: 10.1023/a:1006450516982] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alterations in gene expression during early stages of dormancy release in grapevine buds were analyzed to facilitate the identification of gene products that may mediate the signal transduction of a dormancy-release signal, or derepression of meristematic activity. In the present report we describe the identification of GDBRPK, a transcript for an SNF-like protein kinase that is up-regulated upon chemical induction of dormancy release by hydrogen cyanamide (HC). Since SNF and SNF-like protein kinases are known as sensors of stress signals, we hypothesize that GDBRPK may be involved in the perception of a stress signal induced by HC. We also describe a simultaneous and remarkable induction of both PDC and ADH transcripts that was observed shortly after HC application, and was of a transient nature. These data may imply that HC application leads to a transient respiratory stress, which likely results in a temporary increase in the AMP/ATP ratio. Since AMP is known as a stress signal that is sensed by SNF-like kinases, we suggest that the SNF-like GDBRPK could serve as the sensor of this signal.
Collapse
MESH Headings
- Alcohol Dehydrogenase/drug effects
- Alcohol Dehydrogenase/metabolism
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- Cyanamide/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Fermentation/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Molecular Sequence Data
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyruvate Decarboxylase/drug effects
- Pyruvate Decarboxylase/metabolism
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Rosales/drug effects
- Rosales/genetics
- Rosales/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- E Or
- Department of Tree Breeding, Institute of Horticulture, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel.
| | | | | | | |
Collapse
|
25
|
Corellou F, Potin P, Brownlee C, Kloareg B, Bouget FY. Inhibition of the establishment of zygotic polarity by protein tyrosine kinase inhibitors leads to an alteration of embryo pattern in Fucus. Dev Biol 2000; 219:165-82. [PMID: 10694414 DOI: 10.1006/dbio.1999.9603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fucoid algae, including the genus Fucus and Pelvetia, are recognized as model systems to study early embryogenesis in plants. In particular the zygotes of these fucoid algae are highly suitable experimental systems for investigating the establishment of polarity and its requirement for later embryogenesis. However, the transduction pathways involved in the initiation of polarization are still poorly understood, and the link between the early polarization processes and embryo long-term patterning has never been experimentally demonstrated. We, therefore, have investigated the putative role of protein phosphorylation in the regulation of early embryogenesis, using a combined pharmacological and biochemical approach. Among the various protein kinase inhibitors tested, a subset of well-known PTK inhibitors, including genistein, prevented germination but had no effect on growth of germinated zygotes and embryos. Inhibition of germination appeared to be a direct consequence of prevention of polarization since genistein and other PTK inhibitors specifically inhibited axis formation in a light-independent manner. Genistein inhibited cellular events associated with polarization such as polarized secretion of cell wall sulfated compounds. Anchorage of F-actin at the rhizoid pole was also inhibited and F-actin redistributed in response to a new light vector. Zygotes inhibited in the polarization process over the period of axis formation recovered from the treatment and displayed differentiated cellular structures after a few days. However, they exhibited a deeply disorganized pattern, suggesting that the early polarization process is essential for normal patterning of the embryo. Western blot analysis of protein phosphorylation showed that the patterns of protein phosphorylation changed during development and were disturbed by treatments with genistein. This drug also inhibited in vitro autophosphorylation. The nature of the genistein-sensitive kinases required for polarization and long-term patterning is discussed in light of these data.
Collapse
Affiliation(s)
- F Corellou
- Station Biologique, Roscoff, F-29680, France
| | | | | | | | | |
Collapse
|
26
|
Abstract
The activation of two tobacco MAP kinases, SIPK and WIPK, by a variety of pathogen-associated stimuli and other stresses have been analyzed (Table 1). SIPK was activated by SA, a CWD carbohydrate elicitor and two elicitins from Phytophthora spp, bacterial harpin, TMV, and Avr9 from Cladosporium fulvum. In addition to these pathogen-associated stimuli, wounding also activated SIPK, suggesting that this enzyme is involved in multiple signal transduction pathways. In all cases tested, SIPK activation was exclusively post-translational via tyrosine and threonine/serine phosphorylation. WIPK was activated by only a subset of these stimuli, including infection by TMV or harpin-producing Pseudomonas syringae (preliminary unpubl. result) and treatment with the CWD elicitor, elicitins or Avr9. In contrast to SIPK, WIPK was activated at multiple levels. Low level activation (e.g. by the CWD elicitor) appeared to be primarily post-translational whereas dramatic increases in kinase activity (e.g. by TMV or elicitins) required not only post-translational phosphorylation, but also preceding rises in mRNA levels and de novo synthesis of WIPK protein. Interestingly, under conditions where the same stimulus activated both of these kinases, their kinetics of activation appeared to be distinct. SIPK was the first to be activated. Activation of the low basal level of WIPK protein present before treatment exhibited similar kinetics to that of SIPK; however, the appearance of high levels of WIPK enzyme activity was delayed, perhaps reflecting the need for WIPK transcription and de novo protein synthesis.
Collapse
Affiliation(s)
- S Zhang
- Department of Biochemistry, University of Missouri, Columbia 65211, USA
| | | |
Collapse
|
27
|
Liu Y, Zhang S, Klessig DF. Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:118-24. [PMID: 10656593 DOI: 10.1094/mpmi.2000.13.1.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A tobacco MAP kinase termed SIPK (Salicylic acid-Induced Protein Kinase) is activated in response to a variety of stress signals, including pathogen attack and wounding (S. Zhang and D.F. Klessig, Proc. Natl. Acad. Sci. USA 95:7225-7230, 1998; S. Zhang and D.F. Klessig, Proc. Natl. Acad. Sci. USA 95:7433-7438, 1998). Using the yeast two-hybrid system, we have identified a gene encoding a protein that interacts with SIPK but not the wounding induced protein kinase (WIPK), which is another tobacco MAP kinase. Sequence analysis indicated that this SIPK-interacting protein is a member of the MAP kinase kinase family; thus, it was named SIPK kinase (SIPKK). Co-immunoprecipitation experiments demonstrated that SIPKK and SIPK interact in vitro. Consistent with its putative function as a kinase, SIPKK phosphorylated myelin basic protein in vitro. Interestingly, SIPKK was induced at the mRNA level after Tobacco mosaic virus (TMV) infection or wounding, albeit with kinetics that are too slow to account for the activation of SIPK following these stimuli.
Collapse
Affiliation(s)
- Y Liu
- Waksman Institute and The Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway 08854-8020, USA
| | | | | |
Collapse
|
28
|
Abstract
One of the most severe environmental stresses that plants encounter during their life cycle is wounding. Plants respond to wound stress by activating a set of genes that encode proteins involved in healing injured tissues. In recent years, mitogen-activated protein kinases have been implicated to be key signal molecules in the initial signal transduction pathways that mediate this stress to expression of genes.
Collapse
Affiliation(s)
- S Seo
- Department of Molecular Genetics, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | |
Collapse
|
29
|
Abstract
Mitogen-activated protein kinase (MAPK) pathways are protein kinase cascades that have a function in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different signals and have a role in a wide variety of physiological processes. In plants there is evidence for a role of MAPKs in the signaling of pathogens, abiotic stresses, plant hormones, and cell cycle cues. A large number of distinct MAPKs in plants have been identified that are all most similar to the animal ERK MAPKs. By sequence alignment all available full length plant MAPKs can be grouped into five subfamilies. Functional data exist for members of four subfamilies and show that different subfamilies encode MAPKs for specific functions. Analysis of partial MAPK sequences from full length, truncated cDNAs and expressed sequence tags (ESTs) revealed the presence of two new subfamilies in the plant MAPK superfamily. Signature sequences valid for the superfamily of plant MAPKs and each subfamily were derived and should help in future classification of novel MAPKs. The future challenge is to unambiguously assign functions to each MAPK and decipher the other partners of their signaling pathways.
Collapse
Affiliation(s)
- W Ligterink
- Institute of Microbiology and Genetics, Vienna Biocenter, Austria
| |
Collapse
|
30
|
Schoenbeck MA, Samac DA, Fedorova M, Gregerson RG, Gantt JS, Vance CP. The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:882-93. [PMID: 10517028 DOI: 10.1094/mpmi.1999.12.10.882] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Development of root nodules, specifically induction of cortical cell division for nodule initiation, requires expression of specific genes in the host and microsymbiont. A full-length cDNA clone and the corresponding genomic clone encoding a MAP (mitogen-activated protein) kinase homolog were isolated from alfalfa (Medicago sativa). The genomic clone, TDY1, encodes a 68.9-kDa protein with 47.7% identity to MMK4, a previously characterized MAP kinase homolog from alfalfa. TDY1 is unique among the known plant MAP kinases, primarily due to a 230 amino acid C-terminal domain. The putative activation motif, Thr-Asp-Tyr (TDY), also differs from the previously reported Thr-Glu-Tyr (TEY) motif in plant MAP kinases. TDY1 messages were found predominantly in root nodules, roots, and root tips. Transgenic alfalfa and Medicago truncatula containing a chimeric gene consisting of 1.8 kbp of 5' flanking sequence of the TDY1 gene fused to the beta-glucuronidase (GUS) coding sequence exhibited GUS expression primarily in the nodule parenchyma, meristem, and vascular bundles, root tips, and root vascular bundles. Stem internodes stained intensely in cortical parenchyma, cambial cells, and primary xylem. GUS activity was observed in leaf mesophyll surrounding areas of mechanical wounding and pathogen invasion. The promoter was also active in root tips and apical meristems of transgenic tobacco. Expression patterns suggest a possible role for TDY1 in initiation and development of nodules and roots, and in localized responses to wounding.
Collapse
Affiliation(s)
- M A Schoenbeck
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | |
Collapse
|
31
|
Guillén G, Valdés-López V, Noguez R, Olivares J, Rodríguez-Zapata LC, Pérez H, Vidali L, Villanueva MA, Sánchez F. Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:497-508. [PMID: 10504572 DOI: 10.1046/j.1365-313x.1999.00542.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Actin-binding proteins such as profilins participate in the restructuration of the actin cytoskeleton in plant cells. Profilins are ubiquitous actin-, polyproline-, and inositol phospholipid-binding proteins, which in plants are encoded by multigene families. By 2D-PAGE and immunoblotting, we detected as much as five profilin isoforms in crude extracts from nodules of Phaseolus vulgaris. However, by immunoprecipitation and gel electrophoresis of in vitro translation products from nodule RNA, only the most basic isoform of those found in nodule extracts, was detected. Furthermore, a bean profilin cDNA probe hybridised to genomic DNA digested with different restriction enzymes, showed either a single or two bands. These data indicate that profilin in P. vulgaris is encoded by only two genes. In root nodules only one gene is expressed, and a single profilin transcript gives rise to multiple profilin isoforms by post-translational modifications of the protein. By in vivo 32P-labelling and immunoprecipitation with both, antiprofilin and antiphosphotyrosine-specific antibodies, we found that profilin is phosphorylated on tyrosine residues. Since chemical (TLC) and immunological analyses, as well as plant tyrosine phosphatase (AtPTP1) treatments of profilin indicated that tyrosine residues were phosphorylated, we concluded that tyrosine kinases must exist in plants. This finding will focus research on tyrosine kinases/tyrosine phosphatases that could participate in novel regulatory functions/pathways, involving not only this multifunctional cytoskeletal protein, but other plant proteins.
Collapse
Affiliation(s)
- G Guillén
- Plant Molecular Biology Department, Institute of Biotechnology UNAM, Cuernavaca, Orelos, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Takezawa D. Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein kinase in wheat. PLANT MOLECULAR BIOLOGY 1999; 40:921-933. [PMID: 10527417 DOI: 10.1023/a:1006263607135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat cultured cells were used to study the role of Ca2+ in regulating protein kinases during the induction of defense-related genes by fungal elicitor treatments. Manipulation of intracellular Ca2+ concentrations by treatment with calcium ionophore A23187 in the presence of high extracellular Ca2+ resulted in the induction of mRNA expression of WCK-1, a gene encoding mitogen-activated protein (MAP) kinase. The induction of WCK-1 mRNA by A23187 did not occur when extracellular Ca2+ was chelated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The WCK-1 mRNA was also induced by Typhula ishikariensis-derived elicitors, suggesting a possible involvement of WCK-1 in the plant defense response against pathogens. BAPTA and a calcium channel blocker, La3+, inhibited the elicitor-induced expression of the WCK-1 mRNA. A recombinant fusion protein of WCK-1 (GST-WCK-1) autophosphorylated at the Tyr residue and exhibited an autophosphorylation-dependent protein kinase activity towards myelin basic protein. Alteration of Tyr-196 in the conserved 'TEY' motif in GST-WCK-1 to Phe by site-directed mutagenesis abolished the autophosphorylation. The GST-WCK-1 protein was activated by elicitor-treated wheat cell extracts but not by the control extract. These results suggest that fungal elicitors activate WCK-1, a specific MAP kinase in wheat. Furthermore, the results suggest a possible involvement of Ca2+ in enhancing the MAP kinase signaling cascade in plants by controlling the levels of the MAP kinase transcripts.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Basidiomycota/chemistry
- Basidiomycota/growth & development
- Calcimycin/pharmacology
- Chelating Agents/pharmacology
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Escherichia coli/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Glutathione Transferase/genetics
- Ionophores/pharmacology
- Mitogen-Activated Protein Kinases/genetics
- Molecular Sequence Data
- Plant Proteins
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Triticum/cytology
- Triticum/enzymology
- Triticum/genetics
Collapse
Affiliation(s)
- D Takezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1963] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
34
|
Islas-Flores I, Oropeza C, Hernandez-Sotomayor SM. Protein phosphorylation during coconut zygotic embryo development. PLANT PHYSIOLOGY 1998; 118:257-63. [PMID: 9733545 PMCID: PMC34863 DOI: 10.1104/pp.118.1.257] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/1998] [Accepted: 05/28/1998] [Indexed: 05/21/2023]
Abstract
Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L. ) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [gamma-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60(src) (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species.
Collapse
Affiliation(s)
- I Islas-Flores
- Unidad de Biologia Experimental, Centro de Investigacion Cientifica de Yucatan, Apdo. Postal 87, Cordemex, Yucatan 97310, Mexico
| | | | | |
Collapse
|
35
|
Zhang S, Klessig DF. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci U S A 1998; 95:7225-30. [PMID: 9618567 PMCID: PMC22786 DOI: 10.1073/pnas.95.12.7225] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been demonstrated that both salicylic acid and fungal elicitors activate a 48-kDa mitogen-activated protein kinase termed salicylic acid-induced protein kinase (SIPK) in tobacco suspension cells. Here, we show that infiltration of these agents into tobacco leaves also activates SIPK. Of particular interest, infiltration of water alone activated a kinase of the same size, possibly because of wounding and/or osmotic stresses. The kinetics of kinase activation, however, differ for these different treatments. Various mechanical stresses, including cutting and wounding by abrasion, also activated a 48-kDa kinase. By using an immune-complex kinase assay with antibodies specific for SIPK or wounding-induced protein kinase, we demonstrate that this wounding-activated 48-kDa kinase is SIPK, rather than wounding-induced protein kinase, as reported [Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. & Ohashi, Y. (1995) Science 270, 1988-1992]. Activation of SIPK after wounding was associated with tyrosine phosphorylation but not with increases in SIPK mRNA or protein levels. Thus, the same mitogen-activated protein kinase, SIPK, appears to facilitate signaling for two distinct pathways that lead to disease resistance responses and wounding responses.
Collapse
Affiliation(s)
- S Zhang
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
36
|
Zhang S, Du H, Klessig DF. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. THE PLANT CELL 1998. [PMID: 9501116 DOI: 10.2307/3870600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two purified proteinaceous fungal elicitors, parasiticein (an alpha elicitin) and cryptogein (a beta elicitin), as well as a fungal cell wall-derived carbohydrate elicitor all rapidly activated a 48-kD kinase in tobacco suspension cells. The maximum activation of this kinase paralleled or preceded medium alkalization and activation of the defense gene phenylalanine ammonia-lyase (PAL). In addition, the two elicitins, which also induced hypersensitive cell death, activated a 44- and a 40-kD kinase with delayed kinetics. By contrast, the cell wall-derived elicitor only weakly activated the 44-kD kinase and failed to activate the 40-kD kinase. The size and substrate preference of the 48-kD kinase are reminiscent of the recently purified and cloned salicylic acid-induced protein (SIP) kinase, which is a member of the mitogen-activated protein kinase family. Antibodies raised against a peptide corresponding to the unique N terminus of SIP kinase immunoreacted with the 48-kD kinase activated by all three elicitors from Phytophthora spp. In addition, the cell wall elicitor and the salicylic acid-activated 48-kD kinase copurified through several chromatography steps and comigrated on two-dimensional gels. Based on these results, all three fungal elicitors appear to activate the SIP kinase. In addition, inhibition of SIP kinase activation by kinase inhibitors correlated with the suppression of cell wall elicitor-induced medium alkalization and PAL gene activation, suggesting a regulatory function for the SIP kinase in these defense responses.
Collapse
Affiliation(s)
- S Zhang
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, USA
| | | | | |
Collapse
|
37
|
Zhang S, Du H, Klessig DF. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. THE PLANT CELL 1998; 10:435-50. [PMID: 9501116 PMCID: PMC144006 DOI: 10.1105/tpc.10.3.435] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two purified proteinaceous fungal elicitors, parasiticein (an alpha elicitin) and cryptogein (a beta elicitin), as well as a fungal cell wall-derived carbohydrate elicitor all rapidly activated a 48-kD kinase in tobacco suspension cells. The maximum activation of this kinase paralleled or preceded medium alkalization and activation of the defense gene phenylalanine ammonia-lyase (PAL). In addition, the two elicitins, which also induced hypersensitive cell death, activated a 44- and a 40-kD kinase with delayed kinetics. By contrast, the cell wall-derived elicitor only weakly activated the 44-kD kinase and failed to activate the 40-kD kinase. The size and substrate preference of the 48-kD kinase are reminiscent of the recently purified and cloned salicylic acid-induced protein (SIP) kinase, which is a member of the mitogen-activated protein kinase family. Antibodies raised against a peptide corresponding to the unique N terminus of SIP kinase immunoreacted with the 48-kD kinase activated by all three elicitors from Phytophthora spp. In addition, the cell wall elicitor and the salicylic acid-activated 48-kD kinase copurified through several chromatography steps and comigrated on two-dimensional gels. Based on these results, all three fungal elicitors appear to activate the SIP kinase. In addition, inhibition of SIP kinase activation by kinase inhibitors correlated with the suppression of cell wall elicitor-induced medium alkalization and PAL gene activation, suggesting a regulatory function for the SIP kinase in these defense responses.
Collapse
Affiliation(s)
- S Zhang
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, USA
| | | | | |
Collapse
|
38
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Li D, Rogers L, Kolattukudy PE. Cloning and expression of cDNA encoding a mitogen-activated protein kinase from a phytopathogenic filamentous fungus. Gene 1997; 195:161-6. [PMID: 9305760 DOI: 10.1016/s0378-1119(97)00124-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned a mitogen-activated protein kinase (MAPK) designated Fusarium solani f. sp. pisi mitogen-activated protein kinase (FsMAPK) from the phytopathogenic filamentous fungus F. solani f. sp. pisi T8 strain. A single open reading frame (ORF) of 1068 bp encoding a polypeptide of 355 amino acids (aa) with a predicted molecular mass of 41,194 Da was found in the cloned 1583-bp cDNA insert. FsMAPK is highly homologous to SPK1 of fission yeast, FUS3 of budding yeast, MsERK1 of alfalfa, Sur-1 of nematode, and hERK1 of human. That this gene is expressed in F. solani f. sp. pisi was shown by the finding that immunoblot of the fungal extracts with anti-FsMAPK antibodies (Ab) raised in a rabbit against the FsMAPK, expressed in Escherichia coli (E. coli), detected the corresponding protein. DNA blot analysis indicated that Fsmapk is present as a single copy in the fungal genome.
Collapse
Affiliation(s)
- D Li
- Neurobiotechnology, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
40
|
Douglas P, Pigaglio E, Ferrer A, Halfords NG, MacKintosh C. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem J 1997; 325 ( Pt 1):101-9. [PMID: 9245257 PMCID: PMC1218556 DOI: 10.1042/bj3250101] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported previously for the SNF1-like enzyme, HRK-A. Our results indicate a considerable complexity of kinase cascades mediating the regulation of assimilatory and biosynthetic pathways in response to environmental stimuli in plants.
Collapse
Affiliation(s)
- P Douglas
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee, DD1 4HN, Scotland, U.K
| | | | | | | | | |
Collapse
|
41
|
Abstract
The involvement of phosphorylation/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses myelin basic protein as a substrate. This kinase is called the p48 SIP kinase (for SA-Induced Protein kinase). Biologically active analogs of SA, which induce pathogenesis-related genes and enhanced resistance, also activated this kinase, whereas inactive analogs did not. Phosphorylation of a tyrosine residue(s) in the SIP kinase was associated with its activation. The SIP kinase was purified to homogeneity from SA-treated tobacco suspension culture cells. The purified SIP kinase is strongly phosphorylated on a tyrosine residue(s), and treatment with either protein tyrosine or serine/threonine phosphatases abolished its activity. Using primers corresponding to the sequences of internal tryptic peptides, we cloned the SIP kinase gene. Analysis of the SIP kinase sequence indicates that it belongs to the MAP kinase family and that it is distinct from the other plant MAP kinases previously implicated in stress responses, suggesting that different members of the MAP kinase family are activated by different stresses.
Collapse
Affiliation(s)
- S Zhang
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855-0759, USA
| | | |
Collapse
|
42
|
Mori IC, Muto S. Abscisic Acid Activates a 48-Kilodalton Protein Kinase in Guard Cell Protoplasts. PLANT PHYSIOLOGY 1997; 113:833-839. [PMID: 12223647 PMCID: PMC158203 DOI: 10.1104/pp.113.3.833] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A 49- and a 46-kD Ca2+-independent protein kinase and a 53-kD Ca2+-dependent protein kinase were detected in Vicia faba guard cell protoplasts (GCPs) by an in-gel protein kinase assay using myelin basic protein as a substrate. A 48-kD protein kinase designated as abscisic acid (ABA)-responsive protein kinase (ABR kinase) appeared when GCPs were treated with ABA. The activation of ABR kinase was suppressed by the protein kinase inhibitor staurosporine, indicating that a putative activator protein kinase phosphorylates and activates ABR kinase. The treatment of GCPs with 1,2-bis(o-aminophenoxy)ethan-N,N,N',N'-tetraacetic acid, a calcium chelator, suppressed the activation of ABR kinase, suggesting that an influx of extracellular Ca2+ is required for the activation. Staurosporine and K-252a inhibited both the activity of ABR kinase and the stomatal closure induced by ABA treatment of V. faba epidermal peels. These results suggest that ABR kinase and its activator kinase may consist of a protein kinase cascade in a signal transduction pathway linking ABA perception to stomatal closure. The mobility of the 53-kD Ca2+-dependent protein kinase in sodium dodecyl sulfate-polyacrylamide gel was shifted upon Ca2+ binding to the enzyme, thus exhibiting the characteristics of a Ca2+-dependent or calmodulin-like domain protein kinase. This kinase may be the activator of ABR kinase.
Collapse
Affiliation(s)
- I. C. Mori
- Graduate School of Agricultural Sciences (I.C.M., S.M.), and Nagoya University Bioscience Center (S.M.), Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | | |
Collapse
|
43
|
Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol 1997; 15:15-9. [PMID: 9032988 DOI: 10.1016/s0167-7799(96)10074-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have essential roles in diverse intracellular signaling processes in plants, animals and yeasts. In plants, transcription of genes encoding protein kinases involved in MAPK cascades is upregulated by environmental stresses and plant hormones; in addition, MAPK-like kinase activities are transiently activated in response to environmental stresses. Consequently, MAPK cascades are now thought to have important roles in stress signal transduction pathways in higher plants.
Collapse
Affiliation(s)
- T Mizoguchi
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Japan
| | | | | |
Collapse
|
44
|
Tong CG, Kendrick RE, Roux SJ. Red light-induced appearance of phosphotyrosine-like epitopes on nuclear proteins from pea (Pisum sativum L.) plumules. Photochem Photobiol 1996; 64:863-6. [PMID: 8931387 DOI: 10.1111/j.1751-1097.1996.tb01848.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As assayed by western blot analysis, red light induces the appearance of epitopes recognized by anti-phosphotyrosine antibodies in several pea nuclear proteins. The immunostaining is blocked by preadsorbing the antibodies with phosphotyrosine but not by preadsorbing them with phosphoserine or phosphothreonine. This light response is observed whether the red light irradiation is given to pea plumules or nuclei isolated from the plumules. The red-light-induced response seen in plumules is reversible by a subsequent far-red-light irradiation, indicating that the likely photoreceptor for this response may be phytochrome. By immunoblot analysis pea phytochrome A, but not phytochrome B, can be detected in proteins extracted from pea nuclear chromatin-matrix preparations. Phytochrome A and the protein bands immunostained by anti-phosphotyrosine antibodies can be solubilized from unirradiated pea chromatin by 0.3 M NaCl, but irradiating this preparation with red light does not induce the appearance of phosphotyrosine-like epitopes in any nuclear proteins. These results suggest that the association of phytochrome with purified pea nuclei is such that its conversion to the far-red light-absorbing form can induce a post-translational epitope change in nuclear proteins in vivo.
Collapse
Affiliation(s)
- C G Tong
- Department of Botany, University of Texas, Austin 78713, USA
| | | | | |
Collapse
|
45
|
Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A 1996; 93:11274-9. [PMID: 8855346 PMCID: PMC38320 DOI: 10.1073/pnas.93.20.11274] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Yeast and animals use mitogen-activated protein (MAP) kinase cascades to mediate stress and extracellular signals. We have tested whether MAP kinases are involved in mediating environmental stress responses in plants. Using specific peptide antibodies that were raised against different alfalfa MAP kinases, we found exclusive activation of p44MMK4 kinase in drought- and cold-treated plants. p44MMK4 kinase was transiently activated by these treatments and was correlated with a shift in the electrophoretic mobility of the p44MMK4 protein. Although transcript levels of the MMK4 gene accumulated after drought and cold treatment, no changes in p44MMK4 steady state protein levels were observed, indicating a posttranslational activation mechanism. Extreme temperatures, drought, and salt stress are considered to be different forms of osmotic stress. However, high salt concentrations or heat shock did not induce activation of p44MMK4, indicating the existence of distinct mechanisms to mediate different stresses in alfalfa. Stress adaptation in plants is mediated by abscisic acid (ABA)-dependent and ABA-independent processes. Although ABA rapidly induced the transcription of an ABA-inducible marker gene, MMK4 transcript levels did not increase and p44MMK4 kinase was not activated. These data indicate that the MMK4 kinase pathway mediates drought and cold signaling independently of ABA.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Red/far-red light signal transduction by the phytochrome family of photoreceptors regulates plant growth and development. We investigated the possibility that tyrosine kinases and/or phosphatases are involved in phytochrome-mediated signal transduction using crude extracts of oat seedlings that are grown in the dark. We found that a 124 kDa protein was tyrosine-phosphorylated as determined by Western blotting with a phosphotyrosine-specific monoclonal antibody. The 124 kDa protein was recognized by the anti-phosphotyrosine antibody in anti-phytochrome A immunoprecipitates. The level of anti-phosphotyrosine antibody binding to the 124 kDa protein(s) in phytochrome immunoprecipitates that had been treated with red light prior to immunoprecipitation decreased relative to dark controls. These results suggest that either phytochrome from dark-grown seedlings is tyrosine phosphorylated or that it co-immunoprecipitates with a phosphotyrosine-containing protein of the same molecular weight. The implications of these results in the regulation of (a) the putative Ser/Thr kinase activity of the photoreceptor and (b) the binding of signaling molecules, such as phospholipase C to phytochrome, are discussed.
Collapse
Affiliation(s)
- D Sommer
- Department of Chemistry, University of Nebraska-Lincoln 68588, USA
| | | | | |
Collapse
|
47
|
Waga I, Kume K, Ferby I, Honda Z, Shimizu T. Micro-trap phosphorylation assay of mitogen-activated protein (MAP) kinases to detect their activation by lipopolysaccharides. J Immunol Methods 1996; 190:71-7. [PMID: 8601713 DOI: 10.1016/0022-1759(95)00266-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We designed a microplate-based assay method for mitogen-activated protein (MAP) kinase. Using anion-exchanger resin, MAP kinases from murine macrophages were partially purified in 96-well plates. The activities of these purified enzymes correlated well with those detected in heretofore used assays. The micro-trap phosphorylation assay has advantages over conventional methods (immunoprecipitation, Western blotting for the detection of mobility shift, or kinase detection assay in myelin basic protein (MBP)-containing gel), in terms of sensitivity, economy and rapid execution for hundreds of samples. Using micro-trap phosphorylation assay, it was demonstrated that MAP kinase activities in macrophages were persistently increased by lipopolysaccharide (LPS) stimulation, and this activation was inhibited by polymyxin B or tyrosine kinase inhibitors. This method is expected to give a wide range of application, such as determining effects of drug inhibitors or antisense oligonucleotides on MAP kinases, or measuring the various protein kinases after specificity controls were done.
Collapse
Affiliation(s)
- I Waga
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Jonak C, Kiegerl S, Lloyd C, Chan J, Hirt H. MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:686-94. [PMID: 7476871 DOI: 10.1007/bf02191708] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termed MMK2. The predicted amino acid sequence of MMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termed MMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness of MMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeast MPK1(SLT2) kinase by MMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, Biocenter Vienna, Austria
| | | | | | | | | |
Collapse
|
49
|
Wilson C, Anglmayer R, Vicente O, Heberle-Bors E. Molecular cloning, functional expression in Escherichia coli, and characterization of multiple mitogen-activated-protein kinases from tobacco. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:249-57. [PMID: 7588752 DOI: 10.1111/j.1432-1033.1995.249_1.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A screening of four tobacco cDNA libraries by PCR, using degenerate oligonucleotides corresponding to motifs conserved in mitogen-activated-protein kinases from animals and yeasts, resulted in the isolation of five different PCR fragments that showed high sequence similarity to mitogen-activated-protein kinases from other organisms. Full-length cDNAs were obtained for two of these, ntf4 and ntf6, and we have previously reported the isolation of one of the other cDNAs, ntf3 [Wilson, C., Eller, N., Gartner, A., Vicente, O. & Heberle-Bors, E. (1993) Plant Mol. Biol. 23, 543-551]. The three cDNAs, ntf3, ntf4 and ntf6, as well as a mutated form of ntf3, were fused to the glutathione-S-transferase gene and expressed as fusion proteins in Escherichia coli. All three wild-type recombinant proteins, with or without the glutathione-S-transferase fragment, are capable of autophosphorylation and phosphorylate myelin basic protein, in a reaction that is more strongly supported by Mn2+ than by Mg2+, while the kinase-negative Ntf3 mutant did not show any activity. Western-blot analysis showed that the recombinant proteins autophosphorylate on tyrosine residues and are recognized by antibodies prepared against mammalian mitogen-activated-protein kinases.
Collapse
Affiliation(s)
- C Wilson
- Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | |
Collapse
|
50
|
Devitt ML, Stafstrom JP. Cell cycle regulation during growth-dormancy cycles in pea axillary buds. PLANT MOLECULAR BIOLOGY 1995; 29:255-65. [PMID: 7579177 DOI: 10.1007/bf00043650] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accumulation patterns of mRNAs corresponding to histones H2A and H4, ribosomal protein genes rpL27 and rpL34, MAP kinase, cdc2 kinase and cyclin B were analyzed during growth-dormancy cycles in pea (Pisum sativum cv. Alaska) axillary buds. The level of each of these mRNAs was low in dormant buds on intact plants, increased when buds were stimulated to grow by decapitating the terminal bud, decreased when buds ceased growing and became dormant, and then increased when buds began to grow again. Flow cytometry was used to determine nuclear DNA content during these developmental transitions. Dormant buds contain G1 and G2 nuclei (about 3:1 ratio), but only low levels of S phase nuclei. It is hypothesized that cells in dormant buds are arrested at three points in the cell cycle, in mid-G1, at the G1/S boundary and near the S/G2 boundary. Based on the accumulation of histone H2A and H4 mRNAs, which are markers for S phase, cells arrested at the G1/S boundary enter S within one hour of decapitation. The presence of a cell population arrested in mid-G1 is indicated by a second peak of histone mRNA accumulation 6 h after the first peak. Based on the accumulation of cyclin B mRNA, a marker for late G2 and mitosis, cells arrested at G1/S begin to divide between 12 and 18 h after decapitation. A small increase in the level of cyclin B mRNA at 6 h after decapitation may represent mitosis of the cells that has been arrested near the S/G2 boundary. Accumulation of MAP kinase, cdc2 kinase, rpL27 and rpL34 mRNAs are correlated with cell proliferation but not with a particular phase of the cell cycle.
Collapse
Affiliation(s)
- M L Devitt
- Plant Molecular Biology Center, Northern Illinois University, DeKalb 60115, USA
| | | |
Collapse
|