1
|
Muhammad T, Yang T, Wang B, Yang H, Tuerdiyusufu D, Wang J, Yu Q. Comprehensive genomic characterization and expression analysis of calreticulin gene family in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1397765. [PMID: 38711609 PMCID: PMC11070585 DOI: 10.3389/fpls.2024.1397765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Calreticulin (CRT) is a calcium-binding endoplasmic reticulum (ER) protein that has been identified for multiple cellular processes, including protein folding, regulation of gene expression, calcium (Ca2+) storage and signaling, regeneration, and stress responses. However, the lack of information about this protein family in tomato species highlights the importance of functional characterization. In the current study, 21 CRTs were identified in four tomato species using the most recent genomic data and performed comprehensive bioinformatics and SlCRT expression in various tissues and treatments. In the bioinformatics analysis, we described the physiochemical properties, phylogeny, subcellular positions, chromosomal location, promoter analysis, gene structure, motif distribution, protein structure and protein interaction. The phylogenetic analysis classified the CRTs into three groups, consensus with the gene architecture and conserved motif analyses. Protein structure analysis revealed that the calreticulin domain is highly conserved among different tomato species and phylogenetic groups. The cis-acting elements and protein interaction analysis indicate that CRTs are involved in various developmental and stress response mechanisms. The cultivated and wild tomato species exhibited similar gene mapping on chromosomes, and synteny analysis proposed that segmental duplication plays an important role in the evolution of the CRTs family with negative selection pressure. RNA-seq data analysis showed that SlCRTs were differentially expressed in different tissues, signifying the role of calreticulin genes in tomato growth and development. qRT-PCR expression profiling showed that all SlCRTs except SlCRT5 were upregulated under PEG (polyethylene glycol) induced drought stress and abscisic acid (ABA) treatment and SlCRT2 and SlCRT3 were upregulated under salt stress. Overall, the results of the study provide information for further investigation of the functional characterization of the CRT genes in tomato.
Collapse
Affiliation(s)
- Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Diliaremu Tuerdiyusufu
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
2
|
Ren J, Song P, Li R, Wang Q, Zhao B, Wang B, Li Q. TaCRT3 Is a Positive Regulator of Resistance to Blumeria graminis f. sp. tritici in Wheat. PHYTOPATHOLOGY 2024; 114:641-652. [PMID: 38038706 DOI: 10.1094/phyto-08-23-0276-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most prevalent diseases of wheat worldwide and can lead to severe yield reductions. Identifying genes involved in powdery mildew resistance will be useful for disease resistance breeding and control. Calreticulin (CRT) is a member of multigene family widely found in higher plants and is associated with a variety of plant physiological functions and defense responses. However, the role of CRT in wheat resistance to powdery mildew remains unclear. TaCRT3 was identified from the proteomic sequence of an incompatible interaction between the wheat (Triticum aestivum) cultivar Xingmin 318 and the Bgt isolate E09. Following analysis of transient expression of the GFP-TaCRT3 fusion protein in Nicotiana benthamiana leaves, TaCRT3 was localized in the nucleus, cytoplasm, and cell membrane. Transcript expression levels of TaCRT3 were significantly upregulated in the wheat-Bgt incompatible interaction. More critically, knockdown of TaCRT3 using virus-induced gene silencing resulted in attenuated resistance to Bgt in wheat. Histological analysis showed a significant increase in Bgt development in TaCRT3-silenced plants, whereas the pathogen-related gene was significantly downregulated in TaCRT3-silenced leaves. In addition, overexpression of TaCRT3 in wheat enhanced the resistance to powdery mildew, the growth of Bgt was significantly inhibited, and the area of H2O2 near the infection site and the expression of defense-related genes of the salicylic acid pathway significantly increased. These findings imply that TaCRT3 may act as a disease resistance factor that positively regulates resistance to powdery mildew, during which SA signaling is probably activated.
Collapse
Affiliation(s)
- Jun Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Panpan Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruobing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingjie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Wang J, Li R, Mao X, Jing R. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1557. [PMID: 28955354 PMCID: PMC5601976 DOI: 10.3389/fpls.2017.01557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/25/2017] [Indexed: 05/16/2023]
Abstract
Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.
Collapse
Affiliation(s)
- Jiping Wang
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Runzhi Li
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
4
|
Sougrakpam Y, Deswal R. Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:473-484. [PMID: 27924120 PMCID: PMC5120047 DOI: 10.1007/s12298-016-0390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 05/09/2023]
Abstract
Hippophae rhamnoides is a hardy shrub capable of growing under extreme environmental conditions namely, high salt, drought and cold. Its ability to grow under extreme conditions and its wide application in pharmaceutical and nutraceutical industry calls for its in-depth analysis. N-glycoproteome mining by con A affinity chromatography from seedling was attempted. The glycoproteome was resolved on first and second dimension gel electrophoresis. A total of 48 spots were detected and 10 non-redundant proteins were identified by MALDI-TOF/TOF. Arabidopsis thaliana protein disulfide isomerase-like 1-4 (ATPDIL1-4) electron transporter, protein disulphide isomerase, calreticulin 1 (CRT1), glycosyl hydrolase family 38 (GH 38) protein, phantastica, maturase k, Arabidopsis trithorax related protein 6 (ATXR 6), cysteine protease inhibitor were identified out of which ATXR 6, phantastica and putative ATPDIL1-4 electron transporter are novel glycoproteins. Calcium binding protein CRT1 was validated for its calcium binding by stains all staining. GO analysis showed involvement of GH 38 and ATXR 6 in glycan and lysine degradation pathways. This is to our knowledge the first report of glycoproteome analysis for any Elaeagnaceae member.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Singh M, Metwal M, Kumar VA, Kumar A. Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:672-9. [PMID: 25684084 DOI: 10.1002/jsfa.7139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/31/2015] [Accepted: 02/12/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Attempts were made to identify and characterize the calcium binding proteins (CaBPs) in grain filling stages of finger millet using proteomics, bioinformatics and molecular approaches. RESULTS A distinctly observed blue color band of 48 kDa stained by Stains-all was eluted and analyzed as calreticulin (CRT) using nano liquid chromatography-tandem mass spectrometry (nano LC-MS). Based on the top hits of peptide mass fingerprinting results, conserved primers were designed for isolation of the CRT gene from finger millet using calreticulin sequences of different cereals. The deduced nucleotide sequence analysis of 600 bp amplicon showed up to 91% similarity with CRT gene(s) of rice and other plant species and designated as EcCRT1. Transcript profiling of EcCRT1 showed different levels of relative expression at different stages of developing spikes. The higher expression of EcCRT1 transcripts and protein were observed in later stages of developing spikes which might be due to greater translational synthesis of EcCRT1 protein during seed maturation in finger millet. CONCLUSIONS Preferentially higher synthesis of this CaBP during later stages of grain filling may be responsible for the sequestration of calcium in endoplasmic reticulum of finger millet grains.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, 63145, Udham Singh Nagar, India
| | - Mamta Metwal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, 63145, Udham Singh Nagar, India
| | - Vandana A Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, 63145, Udham Singh Nagar, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, 63145, Udham Singh Nagar, India
| |
Collapse
|
6
|
Niedojadło K, Lenartowski R, Lenartowska M, Bednarska-Kozakiewicz E. Late progamic phase and fertilization affect calreticulin expression in the Hyacinthus orientalis female gametophyte. PLANT CELL REPORTS 2015; 34:2201-15. [PMID: 26354004 PMCID: PMC4636998 DOI: 10.1007/s00299-015-1863-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 05/11/2023]
Abstract
Calreticulin expression is upregulated during sexual reproduction of Hyacinthus orientalis, and the protein is localized both in the cytoplasm and a highly specialized cell wall within the female gametophyte. Several evidences indicate calreticulin (CRT) as an important calcium (Ca(2+))-binding protein that is involved in the generative reproduction of higher plants, including both pre-fertilization and post-fertilization events. Because CRT is able to bind and sequester exchangeable Ca(2+), it can serve as a mobile intracellular store of easily releasable Ca(2+) and control its local cytosolic concentrations in the embryo sac. This phenomenon seems to be essential during the late progamic phase, gamete fusion, and early embryogenesis. In this report, we demonstrate the differential expression of CRT within Hyacinthus female gametophyte cells before and during anthesis, during the late progamic phase when the pollen tube enters the embryo sac, and at the moment of fertilization and zygote/early endosperm activation. CRT mRNA and the protein localize mainly to the endoplasmic reticulum (ER) and Golgi compartments of the cells, which are involved in sexual reproduction events, such as those in sister synergids, the egg cell, the central cell, zygote and the developing endosperm. Additionally, immunogold research demonstrates selective CRT distribution in the filiform apparatus (FA), a highly specific component of the synergid cell wall. In the light of our previous data showing the total transcriptional activity of the Hyacinthus female gametophyte and the results presented here, we discuss the possible functions of CRT with respect to the critical role of Ca(2+) homeostasis during key events of sexual plant reproduction. Moreover, we propose that the elevated expression of CRT within the female gametophyte is a universal phenomenon in the cells involved in double fertilization in higher plants.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
7
|
Xiang Y, Lu YH, Song M, Wang Y, Xu W, Wu L, Wang H, Ma Z. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) Improves Salinity Tolerance in Tobacco. PLoS One 2015; 10:e0140591. [PMID: 26469859 PMCID: PMC4607401 DOI: 10.1371/journal.pone.0140591] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022] Open
Abstract
Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.
Collapse
Affiliation(s)
- Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yun Hai Lu
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Song
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Qufu Normal University, College of Life Sciences, Qufu, China
| | - Yun Wang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wenqi Xu
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lintao Wu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hancheng Wang
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC PLANT BIOLOGY 2015; 15:97. [PMID: 25888100 PMCID: PMC4407426 DOI: 10.1186/s12870-015-0471-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination. RESULTS The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes. CONCLUSION Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and proteomic changes. The first process is a rapid water uptake, in which the seed coat becomes softer and the physical state of storage materials change gradually. Then the germinated seed enters the second process (a plateau phase) and the third process (the embryonic axes elongation). Seed embryo and endosperm display distinct differentially expressed proteins, and their synergistic expression mechanisms provide a basis for the normal germination of wheat seeds.
Collapse
Affiliation(s)
- Miao He
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Kun Dong
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Ting Zhang
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Zhiwei Cheng
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry, 434025, Jingzhou, China.
| |
Collapse
|
9
|
Lenartowski R, Suwińska A, Lenartowska M. Calreticulin expression in relation to exchangeable Ca(2+) level that changes dynamically during anthesis, progamic phase, and double fertilization in Petunia. PLANTA 2015; 241:209-27. [PMID: 25262422 PMCID: PMC4282720 DOI: 10.1007/s00425-014-2178-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/15/2014] [Indexed: 05/25/2023]
Abstract
Calcium (Ca(2+)) plays essential roles in plant sexual reproduction, but the sites and the mechanism of Ca(2+) mobile storage during pollen-pistil interactions have not been fully defined. Because the Ca(2+)-buffering protein calreticulin (CRT) is able to bind and sequester Ca(2+), it can serve as a mobile intracellular store of easily releasable Ca(2+) and control its local concentration within the cytoplasm. Our previous studies showed an enhanced expression of Petunia hybrida CRT gene (PhCRT) during pistil transmitting tract maturation, pollen germination and tube outgrowth on the stigma, gamete fusion, and early embryogenesis. Here, we demonstrate that elevated expression of CRT results in the accumulation of this protein in response to anthesis, pollination, sperm cells deposition within the receptive synergid and fertilization, when the level of exchangeable Ca(2+) changes dynamically. CRT localizes mainly to the endoplasmic reticulum and Golgi compartments in the pistil transmitting tract cells, germinated pollen/tubes, and sporophytic/gametophytic cells of the ovule and corresponds with loosely bound Ca(2+). Additionally, the immunogold research shows, for the first time, highly selective CRT distribution in specific nuclear sub-domains. On the basis of our results, we discuss the possible functions of CRT with respect to the critical role of Ca(2+) homeostasis during key events of the multi-step process of generative reproduction in angiosperms.
Collapse
Affiliation(s)
- Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland,
| | | | | |
Collapse
|
10
|
Nardi MC, Giacomelli E, Dainese P, Fitchette-Lainé AC, Faye L, Baldan B, Navazio L, Mariani P. Ginkgo bilobaExpresses Calreticulin, the Major Calcium-Binding Reticuloplasmin in Eukaryotic Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00679.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Lenartowski R, Suwińska A, Prusińska J, Gumowski K, Lenartowska M. Molecular cloning and transcriptional activity of a new Petunia calreticulin gene involved in pistil transmitting tract maturation, progamic phase, and double fertilization. PLANTA 2014; 239:437-54. [PMID: 24213153 PMCID: PMC3902078 DOI: 10.1007/s00425-013-1971-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 05/25/2023]
Abstract
Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca²⁺-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca²⁺ storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma-style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis.
Collapse
Affiliation(s)
- Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland,
| | | | | | | | | |
Collapse
|
12
|
Kim JH, Nguyen NH, Nguyen NT, Hong SW, Lee H. Loss of all three calreticulins, CRT1, CRT2 and CRT3, causes enhanced sensitivity to water stress in Arabidopsis. PLANT CELL REPORTS 2013; 32:1843-53. [PMID: 24022063 DOI: 10.1007/s00299-013-1497-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 05/07/2023]
Abstract
The calreticulin triple knockout mutant shows growth defects in response to abiotic stress. The endoplasmic reticulum (ER) is an essential organelle that is responsible for the folding and maturation of proteins. During ER stress, unfolded protein aggregates accumulate in the cell, leading to the unfolded protein response (UPR). The UPR up-regulates the expression of ER-stress-responsive genes encoding calreticulin (CRT), an ER-localized Ca2+-binding protein. To understand the function of plant CRTs, we generated a triple knockout mutant, t123, which lacks CRT1, CRT2 and CRT3 and examined the roles of calreticulins in abiotic stress tolerance. A triple knockout mutant increased sensitivity to water stress which implies that calreticulins are involved in the Arabidopsis response to water stress. We identified that the cyclophilin AtCYP21-2, which is located in the ER, was specifically enhanced in the t123 mutants. Seed germination of the atcyp21-1 mutant was retarded by water stress. Taken together, these results suggest that regulatory proteins that serve to protect plants from water stress are folded properly in part with the help of calreticulins. The AtCYP21-2 may also participate in this protein-folding process in association with calreticulins.
Collapse
|
13
|
Popłońska K. Occurrence of calreticulin during the exchange of nucleohistones into protamine-type proteins in Chara vulgaris spermiogenesis. PROTOPLASMA 2013; 250:43-51. [PMID: 22198493 PMCID: PMC3557377 DOI: 10.1007/s00709-011-0370-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/13/2011] [Indexed: 05/10/2023]
Abstract
During spermiogenesis of an alga Chara vulgaris, which resembles that of animals, nucleohistones are replaced by protamine-type proteins. This exchange takes place in a spermatid nucleus during the key V spermiogenesis stage, in which rough endoplasmic reticulum is the site of protamine-type protein synthesis and is also the pathway guiding the proteins to their destination, nucleus. In the present work, it was shown that a chaperon protein, calreticulin (CRT), abundantly present at this significant V stage of spermiogenesis in a few cellular compartments, i.e., a nucleus, lumen of cisternae, and vesicles of significantly swollen ER as well as outside these structures, e.g., in Golgi apparatus, could have taken part in the process of exchange of nuclear proteins. Colocalization of two proteins, protamine-type proteins, crucial for reproduction, and CRT, was especially visible in a nucleus, mainly on its peripheries where condensed chromatin was present. Localization of protamine-type proteins and CRT in nucleus is in agreement with our previous results showing that protamine-type proteins were twofold more labelled in the peripheral area in comparison to the nucleus center occupied by noncondensed chromatin. The role of CRT in the reproduction of both plants and animals is also discussed.
Collapse
Affiliation(s)
- Katarzyna Popłońska
- Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
14
|
Jaouannet M, Magliano M, Arguel MJ, Gourgues M, Evangelisti E, Abad P, Rosso MN. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:97-105. [PMID: 22857385 DOI: 10.1094/mpmi-05-12-0130-r] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root-knot nematodes (RKN) are obligate biotrophic parasites that settle close to the vascular tissues in roots, where they induce the differentiation of specialized feeding cells and maintain a compatible interaction for 3 to 8 weeks. Transcriptome analyses of the plant response to parasitic infection have shown that plant defenses are strictly controlled during the interaction. This suggests that, similar to other pathogens, RKN secrete effectors that suppress host defenses. We show here that Mi-CRT, a calreticulin (CRT) secreted by the nematode into the apoplasm of infected tissues, plays an important role in infection success, because Mi-CRT knockdown by RNA interference affected the ability of the nematodes to infect plants. Stably transformed Arabidopsis thaliana plants producing the secreted form of Mi-CRT were more susceptible to nematode infection than wild-type plants. They were also more susceptible to infection with another root pathogen, the oomycete Phytophthora parasitica. Mi-CRT overexpression in A. thaliana suppressed the induction of defense marker genes and callose deposition after treatment with the pathogen-associated molecular pattern elf18. Our results show that Mi-CRT secreted in the apoplasm by the nematode has a role in the suppression of plant basal defenses during the interaction.
Collapse
Affiliation(s)
- M Jaouannet
- Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Proietti S, Bertini L, Timperio AM, Zolla L, Caporale C, Caruso C. Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. MOLECULAR BIOSYSTEMS 2013; 9:1169-87. [DOI: 10.1039/c3mb25569g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Qiu Y, Xi J, Du L, Roje S, Poovaiah BW. A dual regulatory role of Arabidopsis calreticulin-2 in plant innate immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:489-500. [PMID: 21974727 DOI: 10.1111/j.1365-313x.2011.04807.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Calreticulin (CRT) is an endoplasmic reticulum-resident calcium-binding molecular chaperone that is highly conserved in multi-cellular eukaryotes. Higher plants contain two distinct groups of CRTs: CRT1/CRT2 and CRT3 isoforms. Previous studies have shown that bacterial elongation factor Tu receptor (EFR), a pattern-recognition receptor that is responsible for pathogen-associated molecular pattern-triggered immunity, is a substrate for Arabidopsis CRT3, suggesting a role for CRT3 in regulating plant defense against pathogens. Here we report that Arabidopsis CRT2 is another regulator of plant innate immunity. Despite significantly increased salicylic acid levels and constitutive expression of the systemic acquired resistance-associated marker genes PR1, PR2 and PR5, transgenic plants over-expressing CRT2 displayed reduced resistance to virulent Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A (45)Ca(2+) overlay assay and a domain-swapping experiment further demonstrated that the negatively charged C-terminal tail of CRT2 is responsible for its high calcium-binding capacity and function in regulating the endogenous salicylic acid level. In addition, over-expression of the His173 mutant of CRT2 greatly enhanced plant defense against PstDC3000, supporting the existence of a self-inhibition mechanism that can counteract the effects of salicylic acid-dependent immune responses. These results suggest that CRT2 functions through its N-terminal domain(s) as a self-modulator that can possibly prevent the salicylic acid-mediated runaway defense responses triggered by its C-terminal calcium-buffering activity in response to pathogen invasion.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | | | | | | | |
Collapse
|
17
|
Gupta D, Tuteja N. Chaperones and foldases in endoplasmic reticulum stress signaling in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:232-6. [PMID: 21427533 PMCID: PMC3121983 DOI: 10.4161/psb.6.2.15490] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 05/19/2023]
Abstract
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of the ER chaperones and foldases under stress conditions to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI), immunophilins, calnexin and calreticulin.
Collapse
Affiliation(s)
- Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
18
|
Christensen A, Svensson K, Thelin L, Zhang W, Tintor N, Prins D, Funke N, Michalak M, Schulze-Lefert P, Saijo Y, Sommarin M, Widell S, Persson S. Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLoS One 2010; 5:e11342. [PMID: 20596537 PMCID: PMC2893204 DOI: 10.1371/journal.pone.0011342] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 06/01/2010] [Indexed: 01/09/2023] Open
Abstract
Background Calreticulin (CRT) is a ubiquitous ER protein involved in multiple cellular processes in animals, such as protein folding and calcium homeostasis. Like in animals, plants have evolved divergent CRTs, but their physiological functions are less understood. Arabidopsis contains three CRT proteins, where the two CRTs AtCRT1a and CRT1b represent one subgroup, and AtCRT3 a divergent member. Methodology/Principal Findings Through expression of single Arabidopsis family members in CRT-deficient mouse fibroblasts we show that both subgroups have retained basic CRT functions, including ER Ca2+-holding potential and putative chaperone capabilities. However, other more general cellular defects due to the absence of CRT in the fibroblasts, such as cell adhesion deficiencies, were not fully restored. Furthermore, in planta expression, protein localization and mutant analyses revealed that the three Arabidopsis CRTs have acquired specialized functions. The AtCRT1a and CRT1b family members appear to be components of a general ER chaperone network. In contrast, and as recently shown, AtCRT3 is associated with immune responses, and is essential for responsiveness to the bacterial Pathogen-Associated Molecular Pattern (PAMP) elf18, derived from elongation factor (EF)-Tu. Whereas constitutively expressed AtCRT1a fully complemented Atcrt1b mutants, AtCRT3 did not. Conclusions/Significance We conclude that the physiological functions of the two CRT subgroups in Arabidopsis have diverged, resulting in a role for AtCRT3 in PAMP associated responses, and possibly more general chaperone functions for AtCRT1a and CRT1b.
Collapse
Affiliation(s)
- Anna Christensen
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Karin Svensson
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | - Lisa Thelin
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Wenjing Zhang
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | - Nico Tintor
- Department of Plant Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Daniel Prins
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Norma Funke
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, Germany
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Yusuke Saijo
- Department of Plant Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Marianne Sommarin
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Susanne Widell
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, Germany
- * E-mail:
| |
Collapse
|
19
|
Lenartowska M, Lenartowski R, Smoliński DJ, Wróbel B, Niedojadło J, Jaworski K, Bednarska E. Calreticulin expression and localization in plant cells during pollen-pistil interactions. PLANTA 2009; 231:67-77. [PMID: 19820965 DOI: 10.1007/s00425-009-1024-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 09/21/2009] [Indexed: 05/24/2023]
Abstract
In this report, the distributions of calreticulin (CRT) and its transcripts in Haemanthus pollen, pollen tubes, and somatic cells of the hollow pistil were studied. Immunoblot analysis of protein extracts from mature anthers, dry and germinated pollen, growing pollen tubes, and unpollinated/pollinated pistils revealed a strong expression of CRT. Both in vitro and in situ studies confirmed the presence of CRT mRNA and protein in pollen/pollen tubes and somatic cells of the pistil transmitting tract. The co-localization of these molecules in ER of these cells suggests that the rough ER is a site of CRT translation. In the pistil, accumulation of the protein in pollen tubes, transmitting tract epidermis (tte), and micropylar cells of the ovule (mc) was correlated with the increased level of exchangeable calcium. Therefore, CRT as a Ca(2+)-binding/buffering protein, may be involved in mechanism of regulation calcium homeostasis in these cells. The functional role of the protein in pollen-pistil interactions, apart from its postulated function in cellular Ca(2+) homeostasis, is discussed.
Collapse
Affiliation(s)
- Marta Lenartowska
- Laboratory of Developmental Biology, Nicolaus Copernicus University, Gagarina 9, 87-100, Toruń, Poland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jia XY, He LH, Jing RL, Li RZ. Calreticulin: conserved protein and diverse functions in plants. PHYSIOLOGIA PLANTARUM 2009. [PMID: 19453510 DOI: 10.1111/j.1399-3054.2009.01223.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calreticulin (CRT) is a key Ca2+-binding protein mainly resident in the endoplasmic reticulum (ER), which is highly conserved and extensively expressed in all eukaryotic organisms investigated. The protein plays important roles in a variety of cellular processes including Ca2+ signaling and protein folding. Although calreticulin has been well characterized in mammalian systems, increased investigations have demonstrated that plant CRTs have a number of specific properties different from their animal counterparts. Recent developments on plant CRTs have highlighted the significance of CRTs in plants growth and development as well as biotic and abiotic stress responses. There are at least two distinct groups of calreticulin isoforms in higher plants. Glycosylation of CRT was uniquely observed in plants. In this article, we will describe our current understanding of plant calreticulin gene family, protein structure, cellular localization, and diverse functions in plants. We also discuss the prospects of using this information for genetic improvements of crop plants.
Collapse
Affiliation(s)
- Xiao-Yun Jia
- Center for Agricultural Biotechnology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | | | | |
Collapse
|
21
|
Jia XY, He LH, Jing RL, Li RZ. Calreticulin: conserved protein and diverse functions in plants. PHYSIOLOGIA PLANTARUM 2009; 136:127-38. [PMID: 19453510 DOI: 10.1111/j.1399-3054.2009.1223.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calreticulin (CRT) is a key Ca2+-binding protein mainly resident in the endoplasmic reticulum (ER), which is highly conserved and extensively expressed in all eukaryotic organisms investigated. The protein plays important roles in a variety of cellular processes including Ca2+ signaling and protein folding. Although calreticulin has been well characterized in mammalian systems, increased investigations have demonstrated that plant CRTs have a number of specific properties different from their animal counterparts. Recent developments on plant CRTs have highlighted the significance of CRTs in plants growth and development as well as biotic and abiotic stress responses. There are at least two distinct groups of calreticulin isoforms in higher plants. Glycosylation of CRT was uniquely observed in plants. In this article, we will describe our current understanding of plant calreticulin gene family, protein structure, cellular localization, and diverse functions in plants. We also discuss the prospects of using this information for genetic improvements of crop plants.
Collapse
Affiliation(s)
- Xiao-Yun Jia
- Center for Agricultural Biotechnology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | | | | |
Collapse
|
22
|
Wang Y, Zhu S, Liu S, Jiang L, Chen L, Ren Y, Han X, Liu F, Ji S, Liu X, Wan J. The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:606-17. [PMID: 19154227 DOI: 10.1111/j.1365-313x.2009.03801.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa L.) accumulates prolamines and glutelins as its major storage proteins. Glutelins are synthesized on rough endoplasmic reticulum as 57-kDa precursors; they are then sorted into protein storage vacuoles where they are processed into acidic and basic subunits. We report a novel rice glutelin mutant, W379, which accumulates higher levels of the 57-kDa glutelin precursor. Genetic analysis revealed that the W379 phenotype is controlled by a single recessive nuclear gene. Using a map-based cloning strategy, we identified this gene, OsVPE1, which is a homolog of the Arabidopsis betaVPE gene. OsVPE1 encodes a 497-amino-acid polypeptide. Nucleotide sequence analysis revealed a missense mutation in W379 that changes Cys269 to Gly. Like the wild-type protein, the mutant protein is sorted into vacuoles; however, the enzymatic activity of the mutant OsVPE1 is almost completely eliminated. Further, we show that OsVPE1 is incorrectly cleaved, resulting in a mature protein that is smaller than the wild-type mature protein. Taken together, these results demonstrate that OsVPE1 is a cysteine protease that plays a crucial role in the maturation of rice glutelins. Further, OsVPE1 Cys269 is a key residue for maintaining the Asn-specific cleavage activity of OsVPE1.
Collapse
Affiliation(s)
- Yihua Wang
- Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu M, Dai S, McClung S, Yan X, Chen S. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics 2009; 8:752-66. [PMID: 19106087 PMCID: PMC2667361 DOI: 10.1074/mcp.m800343-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/02/2008] [Indexed: 12/28/2022] Open
Abstract
Guard cells are highly specialized cells that form tiny pores called stomata on the leaf surface. The opening and closing of stomata control leaf gas exchange and water transpiration as well as allow plants to quickly respond and adjust to new environmental conditions. Mesophyll cells are specialized for photosynthesis. Despite the phenotypic and obvious functional differences between the two types of cells, the full protein components and their functions have not been explored but are addressed here through a global comparative proteomics analysis of purified guard cells and mesophyll cells. With the use of isobaric tags for relative and absolute quantification (iTRAQ) tagging and two-dimensional liquid chromatography mass spectrometry, we identified 1458 non-redundant proteins in both guard cells and mesophyll cells of Brassica napus leaves. Based on stringent statistical criteria, a total of 427 proteins were quantified, and 74 proteins were found to be enriched in guard cells. Proteins involved in energy (respiration), transport, transcription (nucleosome), cell structure, and signaling are preferentially expressed in guard cells. We observed several well characterized guard cell proteins. By contrast, proteins involved in photosynthesis, starch synthesis, disease/defense/stress, and other metabolisms are preferentially represented in mesophyll cells. Of the identified proteins, 110 have corresponding microarray data obtained from Arabidopsis guard cells and mesophyll cells. About 72% of these proteins follow the same trend of expression at the transcript and protein levels. For the rest of proteins, the correlation between proteomics data and the microarray data is poor. This highlights the importance of quantitative profiling at the protein level. Collectively this work represents the most extensive proteomic description of B. napus guard cells and has improved our knowledge of the functional specification of guard cells and mesophyll cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Botany, Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
24
|
Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 2009; 41:531-8. [DOI: 10.1016/j.biocel.2008.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
|
25
|
|
26
|
Samaj J, Salaj J, Obert B, Baluska F, Menzel D, Volkmann D. Calreticulin mRNA and protein are localized to protein bodies in storage maize callus cells. PLANT CELL REPORTS 2008; 27:231-9. [PMID: 17882422 DOI: 10.1007/s00299-007-0447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/15/2007] [Accepted: 09/03/2007] [Indexed: 05/10/2023]
Abstract
Maize callus cells possess numerous protein bodies which develop as sub-compartments of the endoplasmic reticulum. We localized maize calreticulin mRNAs and protein in maize callus cells using in situ hybridization and immunocytochemistry. Calreticulin mRNAs were selectively targeted to the endoplasmic reticulum (ER) subdomains surrounding protein bodies. Profilin mRNAs, used as a positive control for in situ hybridization experiments, showed distinct and rather diffuse localization pattern. Using both, immunofluorescence and immunogold electron microscopy localization techniques, calreticulin was found to be enriched around and within protein bodies in maize callus storage cells. As a positive control for reticuloplasmins, HDEL antibody revealed labelling of protein bodies and of the nuclear envelope. The identity of protein bodies was confirmed by specific binding of an alpha zein antibody. These data suggest that calreticulin mRNA is targeted towards protein body forming subdomains of the ER, and that calreticulin is localized and enriched in these protein bodies. The possibility that calreticulin plays an important role in zein retention within the ER and/or its assembly and packaging into protein bodies during protein body biogenesis in maize callus is discussed.
Collapse
Affiliation(s)
- Jozef Samaj
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Gao J, Luo J, Fan R, Fingerle V, Guan G, Liu Z, Li Y, Zhao H, Ma M, Liu J, Liu A, Ren Q, Dang Z, Sugimoto C, Yin H. Cloning and characterization of a cDNA clone encoding calreticulin from Haemaphysalis qinghaiensis (Acari: Ixodidae). Parasitol Res 2007; 102:737-46. [DOI: 10.1007/s00436-007-0826-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 11/23/2007] [Indexed: 11/29/2022]
|
28
|
Abstract
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.
Collapse
Affiliation(s)
- Reiko Urade
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
29
|
Nardi MC, Feron R, Navazio L, Mariani P, Pierson E, Wolters-Arts M, Knuiman B, Mariani C, Derksen J. Expression and localization of calreticulin in tobacco anthers and pollen tubes. PLANTA 2006; 223:1263-71. [PMID: 16320066 DOI: 10.1007/s00425-005-0175-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/01/2005] [Indexed: 05/05/2023]
Abstract
The developmental expression pattern and localization of calreticulin were studied in Nicotiana tabacum L. anthers, pollen and pollen tubes. High transcript and protein levels were detected throughout anther development. Immunolocalization of calreticulin in the anthers showed particular dense label in tapetum and pollen at developmental stage 2, when the tapetum is highly active and the pollen tetrads are formed. Much lower transcript and protein levels were detected in dry and hydrated pollen and in pollen tubes. Immunofluorescence labeling of both chemically fixed and cryo-fixed and freeze-substituted pollen tubes showed the presence of calreticulin in Golgi apparatus and endoplasmic reticulum (ER). Calreticulin was seen throughout the stacks in the Golgi apparatus and in the areas with coated-Golgi vesicles but much less so in the ER. Calreticulin was not found in the secretory vesicles. A relatively intense label was occasionally seen adjacent to the wall of the tube. No significant label was observed in mitochondria, vacuoles, generative cells, cell wall or callose plugs. The present results are consistent with a role of calreticulin in Ca2+-dependent folding of secreted glycoproteins in tapetum, pollen and pollen tubes.
Collapse
Affiliation(s)
- Maria Chiara Nardi
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Expression and thermotolerance of calreticulin during pollen development in tobacco. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0007-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Harper JF, Harmon A. Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 2005; 6:555-66. [PMID: 16072038 DOI: 10.1038/nrm1679] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A unique family of protein kinases has evolved with regulatory domains containing sequences that are related to Ca(2+)-binding EF-hands. In this family, the archetypal Ca(2+)-dependent protein kinases (CDPKs) have been found in plants and some protists, including the malarial parasite, Plasmodium falciparum. Recent genetic evidence has revealed isoform-specific functions for a CDPK that is essential for Plasmodium berghei gametogenesis, and for a related chimeric Ca(2+) and calmodulin-dependent protein kinase (CCaMK) that is essential to the formation of symbiotic nitrogen-fixing nodules in plants. In Arabidopsis thaliana, the analysis of 42 isoforms of CDPK and related kinases is expected to delineate Ca(2+) signalling pathways in all aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey F Harper
- Department of Biochemistry, MS200, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
32
|
Tamura K, Yamada K, Shimada T, Hara-Nishimura I. Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:393-402. [PMID: 15255868 DOI: 10.1111/j.1365-313x.2004.02141.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Soluble endoplasmic reticulum (ER)-resident proteins have very long lives because of their ER residency. This residency depends largely on ER-retrieval signals at their C-terminus. We examined the long-term destiny of endogenous ER-resident proteins, a lumenal binding protein (BiP) and a protein disulfide isomerase (PDI), with cultured cells of Arabidopsis. ER residents, in contrast to vacuolar proteinases, were considerably degraded in cells at the stationary phase. A subcellular fractionation analysis suggested that ER residents were transported into the vacuoles, which accumulated the residents lacking the ER-retrieval signals. We showed that the PDI located in the vacuoles had high mannose glycans, but not complex glycans, which suggested that the ER resident was transported to the vacuoles independent of the medial/trans-Golgi complex. To visualize the pathway of transport of ER-resident proteins, tobacco BY-2 cells were transformed with a chimeric gene encoding an ER-targeted green fluorescent protein (30 kDa GFP-HDEL). In the transformed cells at the stationary phase, GFP fluorescence was observed in the vacuoles. A subcellular fractionation revealed that a trimmed form of 27 kDa GFP was localized in the vacuoles. Treatment with E-64d, an inhibitor of papain-type cysteine proteinases that inhibits the degradation of GFP in the vacuoles, resulted in a stable accumulation of 27 kDa GFP in the vacuoles, even in the logarithmic phase. Our results suggest that endogenous ER residents are transported constitutively to the vacuoles by bypassing the Golgi complex and are then degraded.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
33
|
Persson S, Rosenquist M, Svensson K, Galvão R, Boss WF, Sommarin M. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. PLANT PHYSIOLOGY 2003; 133:1385-96. [PMID: 14563927 PMCID: PMC281633 DOI: 10.1104/pp.103.024943] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 06/05/2003] [Accepted: 08/01/2003] [Indexed: 05/20/2023]
Abstract
Calreticulin (CRT) is a multifunctional protein mainly localized to the endoplasmic reticulum in eukaryotic cells. Here, we present the first analysis, to our knowledge, of evolutionary diversity and expression profiling among different plant CRT isoforms. Phylogenetic studies and expression analysis show that higher plants contain two distinct groups of CRTs: a CRT1/CRT2 group and a CRT3 group. To corroborate the existence of these isoform groups, we cloned a putative CRT3 ortholog from Brassica rapa. The CRT3 gene appears to be most closely related to the ancestral CRT gene in higher plants. Distinct tissue-dependent expression patterns and stress-related regulation were observed for the isoform groups. Furthermore, analysis of posttranslational modifications revealed differences in the glycosylation status among members within the CRT1/CRT2 isoform group. Based on evolutionary relationship, a new nomenclature for plant CRTs is suggested. The presence of two distinct CRT isoform groups, with distinct expression patterns and posttranslational modifications, supports functional specificity among plant CRTs and could account for the multiple functional roles assigned to CRTs.
Collapse
Affiliation(s)
- Staffan Persson
- Department of Plant Biochemistry, Lund University, 22100 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. PLANT PHYSIOLOGY 2002; 130:675-87. [PMID: 12376635 PMCID: PMC166597 DOI: 10.1104/pp.002550] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2002] [Revised: 02/28/2002] [Accepted: 06/11/2002] [Indexed: 05/18/2023]
Abstract
A vacuole membrane-associated calcium-binding protein with an apparent mass of 45 kD was purified from celery (Apium graveolens). This protein, VCaB45, is enriched in highly vacuolate tissues and is located within the lumen of vacuoles. Antigenically related proteins are present in many dicotyledonous plants. VCaB45 contains significant amino acid identity with the dehydrin family signature motif, is antigenically related to dehydrins, and has a variety of biochemical properties similar to dehydrins. VCaB45 migrates anomalously in sodium dodecyl sulfate-polyacrylamide gel electrophoresis having an apparent molecular mass of 45 kD. The true mass as determined by matrix-assisted laser-desorption ionization time of flight was 16.45 kD. VCaB45 has two characteristic dissociation constants for calcium of 0.22 +/- 0.142 mM and 0.64 +/- 0.08 mM, and has an estimated 24.7 +/- 11.7 calcium-binding sites per protein. The calcium-binding properties of VCaB45 are modulated by phosphorylation; the phosphorylated protein binds up to 100-fold more calcium than the dephosphorylated protein. VCaB45 is an "in vitro" substrate of casein kinase II (a ubiquitous eukaryotic kinase), the phosphorylation resulting in a partial activation of calcium-binding activity. The vacuole localization, calcium binding, and phosphorylation of VCaB45 suggest potential functions.
Collapse
Affiliation(s)
- Bruce J Heyen
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA
| | | | | | | | | | | |
Collapse
|
36
|
Yuasa K, Maeshima M. Organ specificity of a vacuolar Ca2+-binding protein RVCaB in radish and its expression under Ca2+-deficient conditions. PLANT MOLECULAR BIOLOGY 2001; 47:633-640. [PMID: 11725948 DOI: 10.1023/a:1012355205991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Radish vacuoles contain a new type of Ca2+-binding protein (RVCaB) with high capacity and low affinity for Ca2+. The protein is able to stimulate Ca2+ uptake into vacuoles, which is driven by Ca2+-ATPase and Ca2+/H+ antiporter. In the present study, we found that the level of RVCaB mRNA is high in seedling hypocotyls and mature taproots but low in young roots and mature leaves. The RVCaB protein was abundant in hypocotyls and taproots but absent in leaves. The levels of the transcript and protein of RVCaB in taproots were gradually increased during maturation. The level of RVCaB mRNA in seedling hypocotyls doubled within a few hours when the growth medium was changed from 10 mM CaCl2 to water, although the level was strongly suppressed in 100 mM CaCl2. This response of the RVCaB gene was specific to Ca2+ and did not occur with other ions including K+ and Mg2+. RVCaB functioning as a Ca2+-sequestering protein in taproot vacuoles to provide for the Ca2+ deficiency is discussed.
Collapse
Affiliation(s)
- K Yuasa
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | |
Collapse
|
37
|
Persson S, Wyatt SE, Love J, Thompson WF, Robertson D, Boss WF. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants. PLANT PHYSIOLOGY 2001; 126:1092-104. [PMID: 11457960 PMCID: PMC116466 DOI: 10.1104/pp.126.3.1092] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 03/14/2001] [Accepted: 04/16/2001] [Indexed: 05/21/2023]
Abstract
To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.
Collapse
Affiliation(s)
- S Persson
- Dpartment of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Navazio L, Mariani P, Sanders D. Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets. PLANT PHYSIOLOGY 2001; 125:2129-38. [PMID: 11299392 PMCID: PMC88868 DOI: 10.1104/pp.125.4.2129] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2000] [Accepted: 01/10/2001] [Indexed: 05/18/2023]
Abstract
The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling.
Collapse
Affiliation(s)
- L Navazio
- The Plant Laboratory, Department of Biology, University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
39
|
Yuasa K, Maeshima M. Purification, properties, and molecular cloning of a novel Ca(2+)-binding protein in radish vacuoles. PLANT PHYSIOLOGY 2000; 124:1069-78. [PMID: 11080284 PMCID: PMC59206 DOI: 10.1104/pp.124.3.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2000] [Accepted: 08/04/2000] [Indexed: 05/19/2023]
Abstract
To understand the roles of plant vacuoles, we have purified and characterized a major soluble protein from vacuoles of radish (Raphanus sativus cv Tokinashi-daikon) taproots. The results showed that it is a novel radish vacuole Ca(2+)-binding protein (RVCaB). RVCaB was released from the vacuolar membrane fraction by sonication, and purified by ion exchange and gel filtration column chromatography. RVCaB is an acidic protein and migrated on sodium dodecyl sulfate-polyacrylamide gel with an apparent molecular mass of 43 kD. The Ca(2+)-binding activity was confirmed by the (45)Ca(2+)-overlay assay. RVCaB was localized in the lumen, as the protein was recovered in intact vacuoles prepared from protoplasts and was resistant to trypsin digestion. Plant vacuoles store Ca(2+) using two active Ca(2+) uptake systems, namely Ca(2+)-ATPase and Ca(2+)/H(+) antiporter. Vacuolar membrane vesicles containing RVCaB accumulated more Ca(2+) than sonicated vesicles depleted of the protein at a wide range of Ca(2+) concentrations. A cDNA (RVCaB) encoding a 248-amino acid polypeptide was cloned. Its deduced sequence was identical to amino acid sequences obtained from several peptide fragments of the purified RVCaB. The deduced sequence is not homologous to that of other Ca(2+)-binding proteins such as calreticulin. RVCaB has a repetitive unique acidic motif, but not the EF-hand motif. The recombinant RVCaB expressed in Escherichia coli-bound Ca(2+) as evidenced by staining with Stains-all and migrated with an apparent molecular mass of 44 kD. These results suggest that RVCaB is a new type Ca(2+)-binding protein with high capacity and low affinity for Ca(2+) and that the protein could function as a Ca(2+)-buffer and/or Ca(2+)-sequestering protein in the vacuole.
Collapse
Affiliation(s)
- K Yuasa
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
40
|
Li Z, Komatsu S. Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice cultured suspension cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:737-45. [PMID: 10651810 DOI: 10.1046/j.1432-1327.2000.01052.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A full-length cDNA clone encoding a phosphoprotein (pp56) involved in the regeneration of rice (Oryza sativa L.)-cultured suspension cells was isolated by screening a rice cultured suspension cell cDNA library. The 1558-bp cDNA sequence contains an ORF encoding an acidic (pI 4.38) protein of 424 amino acids (47.9 kDa), sharing 70-93% and 50-53% homology with other plant and mammalian calreticulins, respectively. Sequence analysis of the cDNA clone revealed several significant conserved motifs, including a calreticulin family repeat motif in the central domain and two calreticulin family motifs in the N-domain, indicating that this gene is a rice calreticulin (CRO1). The CRO1 gene in long-term rice cultured suspension cells shows constitutive expression in both suspension culture and regeneration media. In contrast, expression of the CRO1 gene in short-term rice cultured suspension cells, which possess regeneration potential, is increased dramatically when these cells are transferred to the regeneration medium. After approximately 2 weeks in the regeneration medium, the expression of the CRO1 gene reverts to constitutive levels. These results demonstrate the presence of calreticulin in rice cultured suspension cells and its developmental regulation during the regeneration of rice cultured suspension cells.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Biology, National Institute of Agrobiological Resources, Tsukuba, Japan
| | | |
Collapse
|
41
|
Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999. [PMID: 10567207 DOI: 10.1042/0264-6021:3440281] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology.
Collapse
Affiliation(s)
- M Michalak
- MRC Group in Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, 3-56 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Developments in fluorescence microscopy and the availability of fluorescently labeled antibodies and probes for localization of molecules and organelles have made the microscope an indispensable tool with which one can map specific molecules to subcellular loci allowing deep insight into cell and organelle biology. Furthermore, confocal microscopy permits analysis of the three dimensional architecture of cells that could not be accomplished by conventional light microscopy. The goal of fluorescence protein tracing by microscopy is to visualize cellular constituents and general cytoarchitecture as close to native organization as possible. To achieve this, and to preserve cellular structure in the best possible manner, the specimen is usually fixed chemically. Here I review several standard fixation, permeabilization and labeling schemes followed by examples of several standard imaging techniques.
Collapse
Affiliation(s)
- M Opas
- Department of Anatomy & Cell Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
43
|
Lantin S, O'Brien M, Matton DP. Fertilization and wounding of the style induce the expression of a highly conserved plant gene homologous to a Plasmodium falciparum surface antigen in the wild potato Solanum chacoense Bitt. PLANT MOLECULAR BIOLOGY 1999; 41:115-124. [PMID: 10561073 DOI: 10.1023/a:1006318024577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pistil tissues are actively involved in pollen tube growth and respond to the presence of the growing pollen tubes by modulating the expression of specific genes. Once fertilization has occurred, complex developmental programs lead to embryogenesis, ovary maturation, and seed set. In order to understand the early events that follow pollination and fertilization we have used a subtractive hybridization approach to characterize genes which are related to pollination and fertilization events. One cDNA clone isolated and named SPP30 (Solanum pollinated pistil) was found to share significant sequence identities with a Plasmodium falciparum (malaria parasite) surface antigen and a yeast gene of unknown function. Searches in recent EST databases also revealed that SPP30 homologues are found in both monocot and dicot species. The presence of this conserved gene in evolutionarily distant organisms such as yeast, Plasmodium, and plants suggests that it codes for an essential cellular function. This is also strengthened by its extremely high sequence conservation in both monocots and dicots where virtually all substitutions tolerated are conservative.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/genetics
- Antigens, Surface/genetics
- Base Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/analysis
- DNA, Plant/genetics
- Gene Dosage
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Molecular Sequence Data
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Structures/drug effects
- Plant Structures/genetics
- Plant Structures/physiology
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reproduction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanum tuberosum/genetics
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- S Lantin
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Qc, Canada
| | | | | |
Collapse
|
44
|
Baluska F, Samaj J, Napier R, Volkmann D. Maize calreticulin localizes preferentially to plasmodesmata in root apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:481-8. [PMID: 10504570 DOI: 10.1046/j.1365-313x.1999.00530.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Using a polyclonal antibody raised against calreticulin purified and sequenced from maize, we performed an immunocytological study to characterize putative domain-specific subcellular distributions of endoplasmic reticulum (ER)-resident calreticulin in meristematic cells of maize root tip. At the light microscopy level, calreticulin was immunolocalized preferentially at cellular peripheries, in addition to nuclear envelopes and cytoplasmic structures. Punctate labelling at the longitudinal walls and continuous labelling at the transverse walls was characteristic. Immunogold electron microscopy revealed plasmodesmata as the most prominently labelled cell periphery structure. In order to further probe the ER-domain-specific distribution of maize calreticulin at plasmodesmata, root apices were exposed to mannitol-induced osmotic stress. Plasmolysis was associated with prominent accumulations of calreticulin at callose-enriched plasmodesmata and pit fields while the contracting protoplasts were depleted of calreticulin. In contrast, other ER-resident proteins recognized by HDEL peptide and BiP antibodies localized exclusively to contracted protoplasts. This finding reveals that, in plasmolysed cells, calreticulin enriched ER domains at plasmodesmata and pit fields are depleted of other ER-resident proteins containing the HDEL retention peptide.
Collapse
Affiliation(s)
- F Baluska
- Institute of Botany, Rheinische Friedrich-Wilhelms University Bonn, Department of Plant Cell Biology, Bonn, Germany.
| | | | | | | |
Collapse
|
45
|
Gomord V, Wee E, Faye L. Protein retention and localization in the endoplasmic reticulum and the golgi apparatus. Biochimie 1999; 81:607-18. [PMID: 10433115 DOI: 10.1016/s0300-9084(99)80118-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein transport along the secretory pathway is supported by a noria of vesicles that bud and fuse, load and unload their cargo from one compartment into the other. However, despite this constant flow-through of proteins and lipids the various compartments of the secretory pathway are able to maintain their own specific composition. Here, we discuss recent insights into mechanisms of protein retention and localization that are necessary for the maintenance of endoplasmic reticulum (ER)- and Golgi-associated typical functions such as protein folding and glycosylation in plant cells.
Collapse
Affiliation(s)
- V Gomord
- Laboratoire des Transports Intracellulaires, CNRS-ESA 6037, IFRMP 23, Université de Rouen, Mont-Saint-Aignan, France
| | | | | |
Collapse
|
46
|
Furuyama T, Dzelzkalns VA. A novel calcium-binding protein is expressed in Brassica pistils and anthers late in flower development. PLANT MOLECULAR BIOLOGY 1999; 39:729-737. [PMID: 10350087 DOI: 10.1023/a:1006169808171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe the cloning and characterization of PCP, a novel calcium-binding protein that is expressed predominantly in the pistils and anthers of Brassica flowers late in flower development. A PCP cDNA - isolated from a subtracted cDNA library enriched in transcripts present in the pistil late in flower development - potentially encodes a 175 amino acid protein with a calculated molecular weight of 19.1 kDa. Other than limited homology to a repetitive C-terminal polyacidic region of PCP, none of the sequences in the GenBank database shares identity to PCP. This unique protein was purified from an Escherichia coli expression system and shown to bind calcium in a specific manner, both in a protein blot assay and by equilibrium dialysis. PCP binds 29 mol of calcium per mol of PCP protein with an apparent affinity constant of 3.2 x 10(2)/M, values consistent with the presence of a high capacity/low-affinity calcium-binding domain. PCP-specific mRNAs are detected predominantly in the stigma and style of pistils excised from open flowers; much lower levels of expression are seen in anthers of open flowers and in root and leaf tissue. Expression in the pistil steadily increases during flower development and peaks at flower opening. A PCP-specific antibody first detects the protein in pistils at one day prior to flowering, with higher levels of the protein seen in the pistils of open flowers. A low level of the protein is present in anthers of open flowers; however, PCP is not detected in either root or leaf extracts. The pattern of PCP expression is consistent with a possible role for PCP in pollen-pistil interactions or in pistil development. The results are also discussed in light of the central role calcium maintains in pollen tube growth and fertilization.
Collapse
Affiliation(s)
- T Furuyama
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | | |
Collapse
|
47
|
Galili G, Sengupta-Gopalan C, Ceriotti A. The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. PLANT MOLECULAR BIOLOGY 1998. [PMID: 9738958 DOI: 10.1023/a:1006011919671] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endoplasmic reticulum (ER) is the port of entry of proteins into the endomembrane system, and it is also involved in lipid biosynthesis and storage. This organelle contains a number of soluble and membrane-associated enzymes and molecular chaperones, which assist the folding and maturation of proteins and the deposition of lipid storage compounds. The regulation of translocation of proteins into the ER and their subsequent maturation within the organelle have been studied in detail in mammalian and yeast cells, and more recently also in plants. These studies showed that in general the functions of the ER in protein synthesis and maturation have been highly conserved between the different organisms. Yet, the ER of plants possesses some additional functions not found in mammalian and yeast cells. This compartment is involved in cell to cell communication via the plasmodesmata, and, in specialized cells, it serves as a storage site for proteins. The plant ER is also equipped with enzymes and structural proteins which are involved in the process of oil body biogenesis and lipid storage. In this review we discuss the components of the plant ER and their function in protein maturation and biogenesis of oil bodies. Due to the large number of cited papers, we were not able to cite all individual references and in many cases we refer the readers to reviews and references therein. We apologize to the authors whose references are not cited.
Collapse
Affiliation(s)
- G Galili
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
48
|
Crofts AJ, Leborgne-Castel N, Pesca M, Vitale A, Denecke J. BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. THE PLANT CELL 1998; 10:813-24. [PMID: 9596639 PMCID: PMC144022 DOI: 10.1105/tpc.10.5.813] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BiP is found in association with calreticulin, both in the presence and absence of endoplasmic reticulum stress. Although the BiP-calreticulin complex can be disrupted by ATP, several properties suggest that the calreticulin associated with BiP is neither unfolded nor partially or improperly folded. (1) The complex is stable in vivo and does not dissociate during 8 hr of chase. (2) When present in the complex, calreticulin masks epitopes at the C terminus of BiP that are not masked when BiP is bound to an assembly-defective protein. And (3) overproduction of calreticulin does not lead to the recruitment of more BiP into complexes with calreticulin. The BiP-calreticulin complex can be disrupted by low pH but not by divalent cation chelators. When the endoplasmic reticulum retention signal of BiP is removed, complex formation with calreticulin still occurs, and this explains the poor secretion of the truncated molecule. Gel filtration experiments showed that BiP and calreticulin are present in distinct high molecular weight complexes in which both molecules interact with each other. The possible functions of this complex are discussed.
Collapse
Affiliation(s)
- AJ Crofts
- The Plant Laboratory, Department of Biology, University of York, P.O. Box 373, York, YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Crofts AJ, Leborgne-Castel N, Pesca M, Vitale A, Denecke J. BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. THE PLANT CELL 1998; 10:813-824. [PMID: 9596639 DOI: 10.2307/3870667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BiP is found in association with calreticulin, both in the presence and absence of endoplasmic reticulum stress. Although the BiP-calreticulin complex can be disrupted by ATP, several properties suggest that the calreticulin associated with BiP is neither unfolded nor partially or improperly folded. (1) The complex is stable in vivo and does not dissociate during 8 hr of chase. (2) When present in the complex, calreticulin masks epitopes at the C terminus of BiP that are not masked when BiP is bound to an assembly-defective protein. And (3) overproduction of calreticulin does not lead to the recruitment of more BiP into complexes with calreticulin. The BiP-calreticulin complex can be disrupted by low pH but not by divalent cation chelators. When the endoplasmic reticulum retention signal of BiP is removed, complex formation with calreticulin still occurs, and this explains the poor secretion of the truncated molecule. Gel filtration experiments showed that BiP and calreticulin are present in distinct high molecular weight complexes in which both molecules interact with each other. The possible functions of this complex are discussed.
Collapse
Affiliation(s)
- AJ Crofts
- The Plant Laboratory, Department of Biology, University of York, P.O. Box 373, York, YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Navazio L, Nardi MC, Pancaldi S, Dainese P, Baldan B, Fitchette-Lainé AC, Faye L, Meggio F, Martin W, Mariani P. Functional conservation of calreticulin in Euglena gracilis. J Eukaryot Microbiol 1998; 45:307-13. [PMID: 9627991 DOI: 10.1111/j.1550-7408.1998.tb04541.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calreticulin is the major high capacity, low affinity Ca2+ binding protein localized within the endoplasmic reticulum. It functions as a reservoir for triggered release of Ca2+ by the endoplasmic reticulum and is thus integral to eukaryotic signal transduction pathways involving Ca2+ as a second messenger. The early branching photosynthetic protist Euglena gracilis is shown to possess calreticulin as its major high capacity Ca2+ binding protein. The protein was purified, microsequenced and cloned. Like its homologues from higher eukaryotes, calreticulin from Euglena possesses a short signal peptide for endoplasmic reticulum import and the C-terminal retention signal KDEL, indicating that these components of the eukaryotic protein routing apparatus were functional in their present form prior to divergence of the euglenozoan lineage. A gene phylogeny for calreticulin and calnexin sequences in the context of eukaryotic homologues indicates i) that these Ca2+ binding endoplasmic reticulum proteins descend from a gene duplication that occurred in the earliest stages of eukaryotic evolution and furthermore ii) that Euglenozoa express the calreticulin protein of the kinetoplastid (trypanosomes and their relatives) lineage, rather than that of the eukaryotic chlorophyte which gave rise to Euglena's plastids. Evidence for conservation of endoplasmic reticulum routing and Ca2+ binding function of calreticulin from Euglena traces the functional history of Ca2+ second messenger signal transduction pathways deep into eukaryotic evolution.
Collapse
Affiliation(s)
- L Navazio
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|