1
|
Deng M, Hu X, Zhang Y, Zhang X, Ni H, Fu D, Chi L. Illuminating the Characteristics and Assembly of Prokaryotic Communities across a pH Gradient in Pit Muds for the Production of Chinese Strong-Flavor Baijiu. Foods 2024; 13:1196. [PMID: 38672869 PMCID: PMC11048939 DOI: 10.3390/foods13081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Pit mud (PM), as an important source of microorganisms, is necessary for Chinese strong-flavor baijiu (CSFB) production. Although it has been revealed that the PM prokaryotic community diversities are influenced by its quality, product area, ages, etc., the characteristics and assembly process of the prokaryotic community in PMs across a pH gradient are still unclear. In this study, the regular changes of α- and β-diversities of the prokaryotic community across a pH gradient in PMs were revealed, which could be divided into "stable", "relatively stable", and "drastically changed" periods. A total of 27 phyla, 53 classes, and 381 genera were observed in all given samples, dominated by Firmicutes, Bacteroidetes, Proteobacteria, Lactobacillus, Caproiciproducens, Proteiniphilum, etc. Meanwhile, the complexity of the network structure of the prokaryotic microbial communities is significantly influenced by pH. The community assembly was jointly shaped by deterministic and stochastic processes, with stochastic process contributing more. This study was a specialized report on elucidating the characteristics and assembly of PM prokaryotic communities across a pH gradient, and revealed that the diversity and structure of PM prokaryotic communities could be predictable, to some degree, which could contribute to expanding our understanding of prokaryotic communities in PM.
Collapse
Affiliation(s)
- Mingdong Deng
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiaolong Hu
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yong Zhang
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xinyu Zhang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710048, China
| | - Haifeng Ni
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Danyang Fu
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lei Chi
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
2
|
Blanco-Blanco J, Bravo M, Simón I, Fernández-Llario P, Fajardo-Olivares M, Fernández-Calderón MC, Cerrato R. Synergistic Activity of Ingulados Bacteria with Antibiotics against Multidrug-Resistant Pathogens. Antibiotics (Basel) 2024; 13:200. [PMID: 38534635 DOI: 10.3390/antibiotics13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial resistance is a critical challenge due to the overuse of conventional antimicrobials, and alternative solutions are urgently needed. This study investigates the efficacy of compounds derived from lactic acid bacteria (LAB) fermentation combined with antibiotics against multidrug-resistant pathogens isolated from clinical cases in a hospital setting. Strains of Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecium and faecalis were isolated and selected from blood, respiratory, and urine samples. They were tested against the fermentation products from the Ingulados LAB collection (BAL5, BAL6, BAL8, BAL13, and BAL16), recognized for their antimicrobial efficacy against veterinary pathogens. The activity against multidrug-resistant (MDR) pathogens was evaluated initially, followed by synergy tests using checkerboard assays and subsequent analysis. Bioinformatic assessments and supernatant treatments were performed to characterize the nature of the compounds responsible for the antimicrobial activity. Notably, BAL16 exhibited significant growth inhibition against multidrug-resistant E. faecium. Synergy tests highlighted its combined activity with tetracycline through FICI and surface analysis and bioinformatic analysis unveiled the protein fraction containing bacteriocins as the underlying mechanism. This study highlights BAL16 fermentation products potential as valuable antimicrobial agents against MDR E. faecium infections, attributed to bacteriocins. Further in-depth studies are necessary for complete bacteriocin characterization.
Collapse
Affiliation(s)
- Javier Blanco-Blanco
- Ingulados, S.L., 10004 Cáceres, Spain
- Biosanitary Research University Institute of Extremadura (INUBE), 06080 Badajoz, Spain
| | | | | | | | | | - María Coronada Fernández-Calderón
- Biosanitary Research University Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- Department of Biomedical Sciences, University of Extremadura, 06006 Badajoz, Spain
- Networking Biomedical Research Centre on Bioenineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | | |
Collapse
|
3
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Colucci Cante R, Recupero A, Prata T, Nigro F, Passannanti F, Gallo M, Lentini G, Nigro R, Budelli AL. Valorisation through Lactic Fermentation of Industrial Wastewaters from a Bean Blanching Treatment. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In recent years, scientific research and industries have been focusing on the application of biological treatments aimed at imparting functional properties to waste products from food industries according to the principles on which the circular economy model is based, namely, the recovery, valorisation, and reuse of wastes. This work aimed at exploring the possibility of valorising waters from the blanching process of dried navy beans through lactic acid fermentation using Lacticaseibacillus paracasei CBA L74 as a starter. Two samples at different solid concentrations (0.75 °Bx and 1.25 °Bx) were fermented, and, in both cases, a bacterial load of 8 Logs and a lactic acid concentration of approximately 1.3 g/L were reached, despite the lack of nutrients. An unusual pH trend, characterised by an initial decrease and unexpected final rise, was observed during the fermentation of both samples: simultaneously, an increase in protein content was observed, suggesting that the proteolytic action of the microorganism could be responsible for the release of pH-increasing substances. In both cases, a slight increase in total polyphenols (approximately 23.3–33.72%) and flavonoids (approximately 42.3–52%) due to fermentation was observed, with a corresponding improvement in antioxidant capacity (approximately 25.32–37.72%). A significant increase in saponin concentration was determined for the most concentrated blanching water (from 2.87 ± 0.28 to 6.68 ± 0.69 mgOAE/mL), leading to an improvement in foaming properties and an enhanced capacity to produce stable emulsions. The obtained results confirmed the possibility of reducing water consumption from blanching operations, as well as finding valorisation opportunities for this side stream through a safe and inexpensive fermentation treatment.
Collapse
Affiliation(s)
- Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
| | - Angelica Recupero
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
| | - Tommaso Prata
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia 68, 80121 Naples, Italy
| | - Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia 68, 80121 Naples, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia 68, 80121 Naples, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy
| | - Andrea Luigi Budelli
- Heinz Innovation Center, Nieuwe Dukenburgseweg 19, 6534 AD Nijmegen Postbus 57, NL-6500 AB Nijmegen, The Netherlands
| |
Collapse
|
5
|
Whole-Genome Sequence of Lactiplantibacillus plantarum Mut-3, Isolated from Indonesian Fermented Soybean (Tempeh). Microbiol Resour Announc 2023; 12:e0051322. [PMID: 36840600 PMCID: PMC10019267 DOI: 10.1128/mra.00513-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Lactiplantibacillus plantarum Mut-3 was isolated from tempeh. After whole-genome sequencing, analysis of its possibility as a probiotic candidate was performed using subsystem analysis with RAST with the SEED viewer.
Collapse
|
6
|
Aworh OC. African traditional foods and sustainable food security. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Shafique B, Ranjha MMAN, Murtaza MA, Walayat N, Nawaz A, Khalid W, Mahmood S, Nadeem M, Manzoor MF, Ameer K, Aadil RM, Ibrahim SA. Recent Trends and Applications of Nanoencapsulated Bacteriocins against Microbes in Food Quality and Safety. Microorganisms 2022; 11:microorganisms11010085. [PMID: 36677377 PMCID: PMC9864013 DOI: 10.3390/microorganisms11010085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized peptides or proteins produced by bacterial strains and can inhibit pathogenic bacteria. Numerous factors influence the potential activity of bacteriocins in food matrices. For example, food additives usage, chemical composition, physical conditions of food, and sensitivity of proteolytic enzymes can constrain the application of bacteriocins as beneficial food preservatives. However, novel bacteriocin nanoencapsulation has appeared as an encouraging solution. In this review, we highlight the bacteriocins produced by Gram-negative bacteria and Gram-positive bacteria including lactic acid bacteria that have shown positive results as potential food preservatives. In addition, this review encompasses the major focus on bacteriocins encapsulation with nanotechnology to enhance the antimicrobial action of bacteriocins. Several strategies can be employed to encapsulate bacteriocins; however, the nanotechnological approach is one of the most effective strategies for avoiding limitations. Nanoparticles such as liposomes, chitosan, protein, and polysaccharides have been discussed to show their importance in the nanoencapsulation method. The nanoparticles are combined with bacteriocins to develop the nano-encapsulated bacteriocins from Gram-negative and Gram-positive bacteria including LAB. In food systems, nanoencapsulation enhances the stability and antimicrobial functionality of active peptides. This nanotechnological application provides a formulation of a broad range of antimicrobial peptides at the industry-scale level. Nano-formulated bacteriocins have been discussed along with examples to show a broader antimicrobial spectrum, increase bacteriocins' applicability, extend antimicrobial spectrum and enhance stability.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Waseem Khalid
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Mahmood
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528011, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| |
Collapse
|
8
|
Lahiri D, Nag M, Dutta B, Sarkar T, Pati S, Basu D, Abdul Kari Z, Wei LS, Smaoui S, Wen Goh K, Ray RR. Bacteriocin: A natural approach for food safety and food security. Front Bioeng Biotechnol 2022; 10:1005918. [PMID: 36353741 PMCID: PMC9637989 DOI: 10.3389/fbioe.2022.1005918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
The call to cater for the hungry is a worldwide problem in the 21st century. Food security is the utmost prime factor for the increasing demand for food. Awareness of human health when using chemical preservatives in food has increased, resulting in the use of alternative strategies for preserving food and enhancing its shelf-life. New preservatives along with novel preservation methods have been instigated, due to the intensified demand for extended shelf-life, along with prevention of food spoilage of dairy products. Bacteriocins are the group of ribosomally synthesized antimicrobial peptides; they possess a wide range of biological activities, having predominant antibacterial activity. The bacteriocins produced by the lactic acid bacteria (LAB) are considered to be of utmost importance, due to their association with the fermentation of food. In recent times among various groups of bacteriocins, leaderless and circular bacteriocins are gaining importance, due to their extensive application in industries. These groups of bacteriocins have been least studied as they possess peculiar structural and biosynthetic mechanisms. They chemically possess N-to-C terminal covalent bonds having a predominant peptide background. The stability of the bacteriocins is exhibited by the circular structure. Up till now, very few studies have been performed on the molecular mechanisms. The structural genes associated with the bacteriocins can be combined with the activity of various proteins which are association with secretion and maturation. Thus the stability of the bacteriocins can be used effectively in the preservation of food for a longer period of time. Bacteriocins are thermostable, pH-tolerant, and proteolytically active in nature, which make their usage convenient to the food industry. Several research studies are underway in the domain of biopreservation which can be implemented in food safety and food security.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation and Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Debarati Basu
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Slim Smaoui
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| |
Collapse
|
9
|
Iseppi R, Zurlini C, Cigognini IM, Cannavacciuolo M, Sabia C, Messi P. Eco-Friendly Edible Packaging Systems Based on Live- Lactobacillus kefiri MM5 for the Control of Listeria monocytogenes in Fresh Vegetables. Foods 2022; 11:foods11172632. [PMID: 36076818 PMCID: PMC9455171 DOI: 10.3390/foods11172632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023] Open
Abstract
To meet consumer requirements for high quality food free of chemical additives, according to the principles of sustainability and respect for the environment, new “green” packaging solutions have been explored. The antibacterial activity of edible bioactive films and coatings, based on biomolecules from processing by-products and biomasses, added with the bacteriocin producer Lactobacillus kefiri MM5, has been determined in vegetables against L. monocytogenes NCTC 10888 (i) “in vitro” by a modified agar diffusion assay and (ii) “on food” during storage of artificially contaminated raw vegetable samples, after application of active films and coatings. Both polysaccharides-based and proteins-based films and coatings showed excellent antilisterial activity, especially at 10 and 20 days. Protein-based films displayed a strong activity against L. monocytogenes in carrots and zucchini samples (p < 0.0001). After 10 days, both polysaccharide-based and protein-based films demonstrated more enhanced activity than coatings towards the pathogen. These edible active packagings containing live probiotics can be used both to preserve the safety of fresh vegetables and to deliver a beneficial probiotic bacterial strain. The edible ingredients used for the formulation of both films and coatings are easily available, at low cost and environmental impact.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Chiara Zurlini
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale F. Tanara 31/A, 43121 Parma, Italy
| | - Ilaria Maria Cigognini
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale F. Tanara 31/A, 43121 Parma, Italy
| | - Mariarosaria Cannavacciuolo
- SSICA-Stazione Sperimentale per l’Industria delle Conserve Alimentari, Viale F. Tanara 31/A, 43121 Parma, Italy
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
10
|
Śmiałek J, Bzowska M, Hinz A, Mężyk-Kopeć R, Sołtys K, Mak P. Bacteriocin BacSp222 and Its Succinylated Forms Exhibit Proinflammatory Activities Toward Innate Immune Cells . J Inflamm Res 2022; 15:4601-4621. [PMID: 35982757 PMCID: PMC9381015 DOI: 10.2147/jir.s362066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose The zoonotic opportunistic pathogen Staphylococcus pseudintermedius 222 produces BacSp222 - an atypical peptide exhibiting the features of a bacteriocin, a virulence factor, and a molecule modulating the host inflammatory reaction. The peptide is secreted in an unmodified form and, additionally, two forms modified posttranslationally by succinylation. This study is a comprehensive report focusing on the proinflammatory properties of such molecules. Methods The study was performed on mouse monocyte/macrophage-like and endothelial cell lines as well as human neutrophils. The following peptides were studied: BacSp222, its succinylated forms, the form deprived of formylated methionine, and a reference bacteriocin - nisin. The measurements of the nitric oxide (NO) level, induced NO synthase (iNOS) expression, the profile of secreted cytokines, NF-kappa-B activation, reactive oxygen species (ROS) biosynthesis, and the formation of extracellular traps were conducted to evaluate the proinflammatory activity of the studied peptides. Results BacSp222 and its succinylated forms effectively induced NO production and iNOS expression when combined with IFN-gamma in macrophage-like cells. All natural BacSp222 forms used alone or with IFN-gamma stimulated the production of TNF-alpha, MCP-1, and IL-1-alpha, while the co-stimulation with IFN-gamma increased IL-10 and IL-27. Upregulated TNF-alpha secretion observed after BacSp222 exposition resulted from increased expression but not from membrane TNF-alpha proteolysis. In neutrophils, all forms of bacteriocin upregulated IL-8, but did not induce ROS production or NETs formation. In all experiments, the activities of deformylated bacteriocin were lower or unequivocal in comparison to other forms of the peptide. Conclusion All naturally secreted forms of BacSp222 exhibit proinflammatory activity against monocyte-macrophage cells and neutrophils, confirming that the biological role of BacSp222 goes beyond bactericidal and cytotoxic effects. The atypical posttranslational modification (succinylation) does not diminish its immunomodulatory activity in contrast to the lower antibacterial potential or cytotoxicity of such modified form established in previous studies.
Collapse
Affiliation(s)
- Justyna Śmiałek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Renata Mężyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamilla Sołtys
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Martinenghi LD, Leisner JJ. Scientists’ Assessments of Research on Lactic Acid Bacterial Bacteriocins 1990–2010. Front Microbiol 2022; 13:908336. [PMID: 35722309 PMCID: PMC9204228 DOI: 10.3389/fmicb.2022.908336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
The antimicrobial activity of bacteriocins from lactic acid bacteria has constituted a very active research field within the last 35 years. Here, we report the results of a questionnaire survey with assessments of progress within this field during the two decades of the 1990s and the 2000s by 48 scientists active at that time. The scientists had research positions at the time ranging from the levels of Master’s and Ph.D. students to principal investigators in 19 Asian, European, Oceanian and North American countries. This time period was evaluated by the respondents to have resulted in valuable progress regarding the basic science of bacteriocins, whereas this was not achieved to the same degree with regard to their applications. For the most important area of application, food biopreservation, there were some success stories, but overall the objectives had not been entirely met due to a number of issues, such as limited target spectrum, target resistance, poor yield as well as economic and regulatory challenges. Other applications of bacteriocins such as enhancers of the effects of probiotics or serving as antimicrobials in human clinical or veterinary microbiology, were not evaluated as having been implemented successfully to any large extent at the time. However, developments in genomic and chemical methodologies illustrate, together with an interest in combining bacteriocins with other antimicrobials, the current progress of the field regarding potential applications in human clinical microbiology and food biopreservation. In conclusion, this study illuminates parameters of importance not only for R&D of bacteriocins, but also for the broader field of antimicrobial research.
Collapse
|
12
|
Feito J, Araújo C, Gómez-Sala B, Contente D, Campanero C, Arbulu S, Saralegui C, Peña N, Muñoz-Atienza E, Borrero J, del Campo R, Hernández PE, Cintas LM. Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Effects of lactic acid bacteria with bacteriocinogenic potential on the chemical composition and fermentation profile of forage peanut (Arachis pintoi) silage. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101594] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Bindu A, Lakshmidevi N. In vitro and in silico approach for characterization of antimicrobial peptides from potential probiotic cultures against Staphylococcus aureus and Escherichia coli. World J Microbiol Biotechnol 2021; 37:172. [PMID: 34518944 DOI: 10.1007/s11274-021-03135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
The focus of the present study was to characterize antimicrobial peptide produced by potential probiotic cultures of Enterococcus durans DB-1aa (MCC4243), Lactiplantibacillus plantarum Cu2-PM7 (MCC4246) and Limosilactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus MTCC 96 and Escherichia coli MTCC118. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound of all the three selected cultures after ion-exchange chromatography was found to be thermoresistant and stable under a wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, α-amylase and lipase. Comparatively, bacteriocins from L. fermentum Cu3-PM8 and L. plantarum Cu2-PM7 showed higher stability under studied parameter, hence was taken up for further investigation. The apparent molecular weight of bacteriocin from L. fermentum MCC4233 and L. plantarum MCC4246 was found to be 3.5 kDa. Further, plantaricin gene from MCC4246 was characterized in silico. The translated partial amino acid sequence of the plnA gene in MCC4246 displayed 48 amino acids showing 100 % similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 β sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The predicted properties of the peptide included an isoelectric point of 10.82 and a hydrophobicity of 48.6 %. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts "KSSAYSLQMGATAIKQVKKLFKKWGW" to be a peptide responsible for antimicrobial activity. The study provides information about a broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as a biopreservative agent.
Collapse
Affiliation(s)
- Amrutha Bindu
- DOS in Microbiology, University of Mysore, Manasa Gangothri, Mysore, 570005, India
| | - N Lakshmidevi
- DOS in Microbiology, University of Mysore, Manasa Gangothri, Mysore, 570005, India.
| |
Collapse
|
16
|
Teso-Pérez C, Martínez-Bueno M, Peralta-Sánchez JM, Valdivia E, Maqueda M, Fárez-Vidal ME, Martín-Platero AM. Enterocin Cross-Resistance Mediated by ABC Transport Systems. Microorganisms 2021; 9:microorganisms9071411. [PMID: 34208875 PMCID: PMC8306556 DOI: 10.3390/microorganisms9071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
In their struggle for life, bacteria frequently produce antagonistic substances against competitors. Antimicrobial peptides produced by bacteria (known as bacteriocins) are active against other bacteria, but harmless to their producer due to an associated immunity gene that prevents self-inhibition. However, knowledge of cross-resistance between different types of bacteriocin producer remains very limited. The immune function of certain bacteriocins produced by the Enterococcus genus (known as enterocins) is mediated by an ABC transporter. This is the case for enterocin AS-48, a gene cluster that includes two ABC transporter-like systems (Transporter-1 and 2) and an immunity protein. Transporter-2 in this cluster shows a high similarity to the ABC transporter-like system in MR10A and MR10B enterocin gene clusters. The aim of our study was to determine the possible role of this ABC transporter in cross-resistance between these two different types of enterocin. To this end, we designed different mutants (Tn5 derivative and deletion mutants) of the as-48 gene cluster in Enterococcus faecalis and cloned them into the pAM401 shuttle vector. Antimicrobial activity assays showed that enterocin AS-48 Transporter-2 is responsible for cross-resistance between AS-48 and MR10A/B enterocin producers and allowed identification of the MR10A/B immunity gene system. These findings open the way to the investigation of resistance beyond homologous bacteriocins.
Collapse
Affiliation(s)
- Claudia Teso-Pérez
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.M.-B.); (J.M.P.-S.); (E.V.); (M.M.)
- Correspondence: (C.T.-P.); (M.E.F.-V.); (A.M.M.-P.)
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.M.-B.); (J.M.P.-S.); (E.V.); (M.M.)
| | - Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.M.-B.); (J.M.P.-S.); (E.V.); (M.M.)
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.M.-B.); (J.M.P.-S.); (E.V.); (M.M.)
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.M.-B.); (J.M.P.-S.); (E.V.); (M.M.)
| | - M. Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biomédica IBS, Granada, Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
- Correspondence: (C.T.-P.); (M.E.F.-V.); (A.M.M.-P.)
| | - Antonio M. Martín-Platero
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain; (M.M.-B.); (J.M.P.-S.); (E.V.); (M.M.)
- Correspondence: (C.T.-P.); (M.E.F.-V.); (A.M.M.-P.)
| |
Collapse
|
17
|
Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655. ACTA ACUST UNITED AC 2021; 31:e00654. [PMID: 34258243 PMCID: PMC8254086 DOI: 10.1016/j.btre.2021.e00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
The genomes and proteomes of 12 Bifidobacterium and 46 Lactobacillus were reviewed and then compared for bacteriocin identification. NCBI-Genome, UniProt-Proteome, Bactibase, and BAGL4 databases, as well as BLASTP, and Clustal Omega can be used for bacteriocin mining. Lactobacillus species have more diversity and abundance of bacteriocin compared to Bifidobacterium species. Notably, L. sakei, L. plamtarum, L. reuteri, L. fermentum, and L. casei had the highest pathogen inhibition (E. coli MG 1655); respectively. A set of Lactobacillus bacteria including L. sakei, L. reuteri, L. fermentum, and L. casei can be proposed as a biosecure and safe solution to control gastrointestinal pathogens.
Bacteriocins are a large family of bacterial peptides or proteins, ribosomally synthesized with antimicrobial activity against other bacteria. We investigated and compared the genomes and proteomes of 12 Bifidobacterium and 46 Lactobacillus species for bacteriocins using NCBI-Genome, UniProt-Proteome, Bactibase, and BAGL4 databases. Selected Lactobacillus species were examined for bile salt resistance, acid and pH resistance, pepsin and trypsin enzyme resistance, and antibiotic resistance. Also, the antimicrobial activity of selected Lactobacillus species was evaluated against E. coli MG 1655. Results showed that Lactobacillus species have more diversity and abundance of bacteriocin compared to Bifidobacterium species. Notably, L. sakei, L. plamtarum, L. reuteri, L. fermentum, and L. casei had the highest pathogen inhibition; respectively. Therefore, a combination of these Lactobacillus species can be suggested as a biochemical and safe solution to control gastrointestinal pathogens and suitable alternatives to antibiotics and chemicals in food technology.
Collapse
|
18
|
Chelliah R, Kim EJ, Daliri EBM, Antony U, Oh DH. In Vitro Probitotic Evaluation of Saccharomyces boulardii with Antimicrobial Spectrum in a Caenorhabditis elegans Model. Foods 2021; 10:foods10061428. [PMID: 34203095 PMCID: PMC8235530 DOI: 10.3390/foods10061428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, we screened for potential probiotic yeast that could survive under extreme frozen conditions. The antimicrobial and heat-stable properties of the isolated yeast strains Saccharomyces boulardii (S. boulardii) (KT000032, KT000033, KT000034, KT000035, KT000036, and KT000037) was analyzed and compared with commercial probiotic strains. The results revealed that the tested S. boulardii KT000032 strain showed higher resistance to gastric enzymes (bile salts, pepsin, and pancreatic enzyme) at low pH, with broad antibiotic resistance. In addition, the strain also showed efficient auto-aggregation and co-aggregation abilities and efficient hydrophobicity in the in-vitro and in-vivo C. elegens gut model. Further, the KT000032 strain showed higher antimicrobial efficiency against 13 different enteropathogens and exhibited commensal relationships with five commercial probiotic strains. Besides, the bioactive compounds produced in the cell-free supernatant of probiotic yeast showed thermo-tolerance (95 °C for two hours). Furthermore, the thermo-stable property of the strains will facilitate their incorporation into ready-to-eat food products under extreme food processing conditions.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
| | - Eun-Ji Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
| | - Usha Antony
- Department of Biotechnology and Food Technology, Anna University, Chennai 600 025, India;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (R.C.); (E.-J.K.); (E.B.-M.D.)
- Correspondence: ; Tel.: +82-33-250-6457
| |
Collapse
|
19
|
Study of the Antimicrobial Potential of Bacteria found in Natural Resources. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriocins are of great interest as potential antimicrobial agents against various types of bacteria, fungi, and viruses. Isolates of microorganisms derived from natural sources were used in the current study, including lactic acid bacteria and other antagonistic microorganisms. The species of the microorganisms were determined using 16S rDNA and ITS nrDNA analyses. E. coli, S. enterica, S. aureus, P. aeruginosa, B. mycoides, A. faecalis, P. vulgaris, S. flexneri , L. monocytogenes, C. albicans, A. flavus, and P. citrinum were used as pathogenic and opportunistic strains. It was found that 11 strains of antagonistic microorganisms have significant antimicrobial activity against all pathogenic and opportunistic microorganisms. The antimicrobial properties of these microorganisms are currently under study.
Collapse
|
20
|
Evaluation of Bacterial Nanocellulose Membranes Loaded or Not with Nisin as a Complementary Treatment in Surgical Dehorning Wounds in Bovines. Pharmaceutics 2021; 13:pharmaceutics13050688. [PMID: 34064695 PMCID: PMC8150723 DOI: 10.3390/pharmaceutics13050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Treatments of postsurgical dehorning in cattle usually includes topical application of healing agents in wounds. The Bacterial Nanocellulose (BNC) may come to a complementary treatment for these wounds. Two new complementary treatments with BNC and BNC loaded with nisin were evaluated for wound healing in surgical dehorning in bovine. Hence, two groups of experiments were run, and 12 animals were used in each group. All animals, in right and left horns, received antisepsis treatment. For the first group, the left horn was the control, and on the right one the BNC was applied. For the second group, BNC was applied on the left horn (control) and on the right ones BNC+nisin was applied. In both experiments, wounds were evaluated macroscopically by photographic images and microscopically by histology. For macroscopic evaluations, a significant difference was observed over time, but only in the comparison within the same groups. Microscopic analyzes did not showed significant differences in any type of comparison. In conclusion, there was a clinical improvement in the wound healing response with the application of BNC. However, there was no significant difference between BNC compared to the nisin loaded in BNC. For the first time it was applied a BNC in surgical dehorning wounds in bovines and evaluated the efficacy of treatment in a real animal handling situation.
Collapse
|
21
|
Smanalieva J, Iskakova J, Fischer P. Investigation of the prebiotic potential of rice varieties for Lactobacillus acidophilus bacteria. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Mbarga MJA, Desobgo SCZ, Tatsadjieu LN, Kavhiza N, Kalisa L. Antagonistic effects of raffia sap with probiotics against pathogenic microorganisms. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-24-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction. Probiotics are known for their beneficial properties. Numerous studies have been conducted to find advantages that probiotics can provide. This study aimed to evaluate the functional properties of raffia sap, a Cameroonian drink, fermented with probiotics by investigating its antagonistic activity against pathogenic bacteria.
Study objects and methods. The study objective was raffia sap fermented by Lactobacillus fermentum and Bifidobacterium bifidum. Box-Behnken design with four factors (seeding rates of L. fermentum and B. bifidum, temperature, and incubation time) was used to generate mathematical models. The disc diffusion method was used to evaluate an antagonistic effect of the probiotics against four pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Salmonella sp., and Bacillus cereus). An optimization of mathematical models of the inhibition diameters allowed to determine the optimal conditions of antagonistic effect.
Results and discussion. The experimental data showed that zones of inhibition were 0‒21 mm for Salmonella sp., 0‒23 mm for E. coli, 0‒20 mm for L. monocytogenes, and 0‒22 mm for B. cereus. ANOVA results and the mathematical models obtained showed that L. fermentum was effective against B. cereus and B. bifidum against Salmonella sp., E. coli, and B. cereus. The optimization of the models revealed maximum zones of inhibition at the seeding rates of L. fermentum and B. bifidum of 2 and 10%, respectively, incubation time of 48 h, and temperature of 37°C.
Conclusion. Raffia sap fermented by L. fermentum and B. bifidum demonstrated antagonistic effect against pathogenic bacteria such as E. coli, L. monocytogenes, Salmonella sp., and B. cereus.
Collapse
|
23
|
Cizeikiene D, Jagelaviciute J. Investigation of Antibacterial Activity and Probiotic Properties of Strains Belonging to Lactobacillus and Bifidobacterium Genera for Their Potential Application in Functional Food and Feed Products. Probiotics Antimicrob Proteins 2021; 13:1387-1403. [PMID: 33754306 DOI: 10.1007/s12602-021-09777-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
Abstract
For novel food/feed product formulation, the selection of the right culture with probiotic properties is essential. The purpose of this research was to evaluate antibacterial activity and probiotic features of Lactobacillus and Bifidobacterium spp. for its potential application in functional food/feed products as supplement. The evaluation of antibacterial activities was carried out by agar diffusion assay and broth inhibition assay methods against twelve pathogenic strains belonging to Staphylococcus aureus, Escherichia coli, Staphylococcus chromogenes, and Staphylococcus hyicus species. Metabolites produced by Lactobacillus paracasei subsp. paracasei DSM 20020, L. paracasei subsp. paracasei DSM 4905, and L. gasseri DSM 20077 inhibited the growth of all tested pathogens. The strains were characterized in vitro for their probiotic characteristics such as resistance to low pH and bile salts, antibiotic sensitivity by gradient diffusion using MIC Test Strips, autoaggregation and coaggregation assay with E. coli DSM 27503, and antioxidant activity by 1-diphenyl-2-picrylhydrazyl (DPPH) and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. The results demonstrated that tested probiotic properties varied among the strains. Lactobacillus spp. tolerated pH 3 for 4 h, while 8 of 14 strains survived 4 h in pH 2. Most of tested strains were able to tolerate 0.3% bile salts for 4 h. All tested strains were sensitive to ampicillin. No gelatinase and hemolytic activities were detected. These results suggest Lactobacillus acidophilus DSM 20079, Bifidobacterium pseudolongum DSM 20099, and Bifidobacterium animalis DSM 20105 as probiotic candidates for the development of functional food/feed.
Collapse
Affiliation(s)
- Dalia Cizeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania.
| | - Jolita Jagelaviciute
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
24
|
Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB. Influence of Culture Conditions and Medium Compositions on the Production of Bacteriocin-Like Inhibitory Substances by Lactococcus lactis Gh1. Microorganisms 2020; 8:E1454. [PMID: 32977375 PMCID: PMC7597962 DOI: 10.3390/microorganisms8101454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
Collapse
Affiliation(s)
- Roslina Jawan
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.J.); (M.H.)
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Sahar Abbasiliasi
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (S.M.)
| | - Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (S.M.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Murni Halim
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.J.); (M.H.)
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Arbakariya B. Ariff
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.J.); (M.H.)
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
25
|
CHOEISOONGNERN T, SIVAMARUTHI BS, SIRILUN S, PEERAJAN S, CHOISET Y, RABESONA H, HAERTLÉ T, CHAIYASUT C. Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.13219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Yvan CHOISET
- Institut National de la Recherche Agronomique, France
| | | | - Thomas HAERTLÉ
- Institut National de la Recherche Agronomique, France; Poznan University of Life Sciences, Poland; Teheran University, Iran
| | | |
Collapse
|
26
|
Iseppi R, Camellini S, Sabia C, Messi P. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res Microbiol 2020; 171:351-356. [PMID: 32721519 DOI: 10.1016/j.resmic.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023]
Abstract
The antilisterial activity of Thymus vulgaris, Salvia officinalis essential oils (EOs) and bacteriocin bacLP17 (previously isolated from seafood) was determined, using the compounds alone and in combination. The Disk Diffusion, Minimal Inhibitory Concentration (MIC) and Agar Well Diffusion assays were used to evaluate the effectiveness of the compounds against 12 Listeria monocytogenes in planktonic form, whereas the anti-Listeria biofilm activity was determined against the same strains in optical density (O.D.) at 570 nm, with crystal violet staining method. The lowest MIC values resulted for T. vulgaris EO and bacLp17 (0.5 μl/ml and 2 μl/ml, respectively). The combinations with the best results, expressed as FIC-Index, were T. vulgaris/S. officinalis EOs and EOs/bacLp17. The anti-biofilm activity of single EOs and bacLP17 was similar, whereas the combined use of the two kinds of EOs led to a synergistic activity. Lastly, the best anti-biofilm effect was observed with the combination bacLP17/S. officinalis and bacLP17/T. vulgaris, compared to both control and the single use of the EOs. The present study suggests that the combination of natural compounds such as T. vulgaris, S. officinalis EOs and bacLp17 may be a useful approach to the control of planktonic and sessile cells of L. monocytogenes in seafood products.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Stefania Camellini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
27
|
Beck CN, McDaniel CD, Wamsley KGS, Kiess AS. The potential for inoculating Lactobacillus animalis and Enterococcus faecium alone or in combination using commercial in ovo technology without negatively impacting hatch and post-hatch performance. Poult Sci 2020; 98:7050-7062. [PMID: 31420659 PMCID: PMC8913989 DOI: 10.3382/ps/pez441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
The poultry industry has recently undergone transitions into antibiotic free production, and viable antibiotic alternatives, such as probiotics, are necessary. Through in ovo probiotic inoculation, beneficial microflora development in the gastrointestinal tract may occur prior to hatch without negatively impacting chick performance. Therefore, the objective of the present study was to observe the impacts of the injection of probiotic bacteria individually or combined into fertile broiler hatching eggs on hatch and live performance characteristics. A total of 2,080 fertile broiler hatching eggs were obtained from a commercial source. On day 18 of incubation, 4 in ovo injected treatments were applied: 1.) Marek's Disease (HVT) vaccination, 2.) L. animalis (∼106 cfu/50μl), 3.) E. faecium (∼106 cfu/50μl), and 4.) L. animalis + E. faecium (∼106 cfu & ∼106 cfu/50μl each). On day of hatch, hatchability and hatch residue data were recorded. A portion of male chicks from each treatment were placed in a grow-out facility for a 21 d grow-out (18 chicks/pen × 10 pens/treatment = 720 male chicks) with a corn and soy bean meal-based diet without antibiotics or antibiotic alternatives. Performance data and gastrointestinal samples were collected on days 0, 7, 14, and 21. Results indicated no differences in all hatch parameters between treatments (P > 0.05) except for % pipped, where the L. animalis treatment had lower % pipped eggs compared to the HVT control and E. faecium treatments (P = 0.04). No differences were observed in body weight gain or mortality (P > 0.05). Probiotic treatments altered gastrointestinal tissue length, weight, and pH. This resulted in all in ovo injected probiotic treatments increasing feed conversion ratio (FCR) from days 7 to 14 as compared to the control (P = 0.01). Differences in FCR were not observed in any other week of data collection (days 0 to 7, 14 to 21, or 0 to 21; P > 0.05). Although probiotics altered live performance from days 7 to 14, these data suggest that in ovo inoculations of L. animalis and E. faecium in combination are viable probiotic administration practices that potentially improve hatch characteristics and gastrointestinal tract development.
Collapse
Affiliation(s)
- Chrysta N Beck
- Department of Poultry Science, Mississippi State University, Mississippi State MS 39762
| | | | - Kelley G S Wamsley
- Department of Poultry Science, Mississippi State University, Mississippi State MS 39762
| | - Aaron S Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State MS 39762
| |
Collapse
|
28
|
Sabo SDS, Mendes MA, Araújo EDS, Muradian LBDA, Makiyama EN, LeBlanc JG, Borelli P, Fock RA, Knöbl T, Oliveira RPDS. Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci Rep 2020; 10:7235. [PMID: 32350311 PMCID: PMC7190695 DOI: 10.1038/s41598-020-64038-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023] Open
Abstract
The demand for animal protein for human consumption has been risen exponentially. Modern animal production practices are associated with the regular use of antibiotics, potentially increasing the emerging multi-resistant bacteria, which may have a negative impact on public health. In poultry production, substances capable of maximizing the animals’ performance and displaying an antimicrobial activity against pathogens are very well desirable features. Probiotic can be an efficient solution for such a task. In the present work, lactic acid bacteria (LAB) were isolated from chicken cecum and screened for their antagonistic effect towards many pathogens. Their capacity of producing the B-complex vitamins folate and riboflavin were also evaluated. From 314 isolates, three (C43, C175 and C195) produced Bacteriocin-Like Inhibitory Substances (BLIS) against Staphylococcus aureus (inhibition zones of 18.9, 21.5, 19.5 mm, respectively) and also inhibited the growth of Salmonella Heidelberg. The isolate C43 was identified as Enterococcus faecium, while C173 and C195 were both identified as Lactococcus lactis subsp. lactis. Moreover, the isolates L. lactis subsp. lactis strains C173 and C195 demonstrated high potential to be used as probiotic in poultry feed, in addition to their advantage of producing folate (58.0 and 595.5 ng/mL, respectively) and riboflavin (223.3 and 175.0 ng/mL, respectively).
Collapse
Affiliation(s)
- Sabrina da Silva Sabo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Anita Mendes
- Chemical Engineering Department, University of São Paulo, São Paulo, Brazil
| | - Elias da Silva Araújo
- Department of Food and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Terezinha Knöbl
- Department of Pathology, School of Veterinary Medicine and Animal Science, São Paulo, Brazil, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
29
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
30
|
Zheng Y, Hu X, Jia Z, Bodelier PLE, Guo Z, Zhang Y, Li F, He P. Co-occurrence patterns among prokaryotes across an age gradient in pit mud of Chinese strong-flavor liquor. Can J Microbiol 2020; 66:495-504. [PMID: 32233983 DOI: 10.1139/cjm-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is widely believed that the quality and characteristics of Chinese strong-flavor liquor (CSFL) are closely related to the age of the pit mud; CSFL produced from older pit mud tastes better. This study aimed to investigate the alteration and interaction of prokaryotic communities across an age gradient in pit mud. Prokaryotic microbes in different-aged pit mud (1, 6, and 10 years old) were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. Analysis of the 16S rRNA gene indicated that the prokaryotic community was significantly altered with pit mud age. There was a significant increase in the genera Methanosarcina, Methanobacterium, and Aminobacterium with increased age of pit mud, while the genus Lactobacillus showed a significant decreasing trend. Network analysis demonstrated that both synergetic co-occurrence and niche competition were dominated by 68 prokaryotic genera. These genera formed 10 hubs of co-occurrence patterns, mainly under the phyla Firmicutes, Euryarchaeota, and Bacteroidetes, playing important roles on ecosystem stability of the pit mud. Environmental variables (pH, NH4+, available P, available K, and Ca2+) correlated significantly with prokaryotic community assembly. The interaction of prokaryotic communities in the pit mud ecosystem and the relationship among prokaryotic communities and environmental factors contribute to the higher quality of the pit mud in older fermentation pits.
Collapse
Affiliation(s)
- Yan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Xiaolong Hu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Paul L E Bodelier
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yong Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Fangli Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| |
Collapse
|
31
|
Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol 2020; 86:103335. [DOI: 10.1016/j.fm.2019.103335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
32
|
Becerril R, Nerín C, Silva F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020; 25:E1134. [PMID: 32138320 PMCID: PMC7179124 DOI: 10.3390/molecules25051134] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobially active packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintaining their quality and sensorial properties. In the last years, a great effort has been made to develop more efficient, long-lasting and eco-friendly antimicrobial materials by improving the performance of the incorporated antimicrobial substances. With this purpose, more effective antimicrobial compounds of natural origin such as bacteriocins, bacteriophages and essential oils have been preferred over synthetic ones and new encapsulation strategies such as emulsions, core-shell nanofibres, cyclodextrins and liposomes among others, have been applied in order to protect these antimicrobials from degradation or volatilization while trying to enable a more controlled release and sustained antimicrobial action. On that account, this article provides an overview of the types of antimicrobials agents used and the most recent trends on the strategies used to encapsulate the antimicrobial agents for their stable inclusion in the packaging materials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their application in food products is presented.
Collapse
Affiliation(s)
- Raquel Becerril
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Cristina Nerín
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Filomena Silva
- ARAID–Agencia Aragonesa para la Investigación y el Desarollo, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018 Zaragoza, Spain
- Faculty of Veterinary Medicine, University of Zaragoza, Calle de Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
33
|
In vitro inhibitory effect of two commercial probiotics on chromogenic actinomycetes. Eur Arch Paediatr Dent 2020; 21:673-677. [PMID: 32034698 DOI: 10.1007/s40368-020-00512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Black extrinsic discoloration is a common clinical and aesthetic problem. This study aims to evaluate the potential in vitro antagonistic activity of two commercial probiotics, Streptococcus salivarius M18 and Lactobacillus reuteri ProDentis, against microorganisms associated with black stains. METHODS Streptococcus salivarius M18 and Lactobacillus reuteri were tested against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundiiusing their cell-free fermentative broth in a planktonic growth inhibition test. RESULTS Both probiotic cell-free supernatants showed the ability to reduce the pathogenic bacteria growth in a dose-dependent way. Streptococcus salivarius M18 showed a stronger antimicrobial activity than Lactobacillus reuteri ProDentis against the two indicator strains used. A. naeslundi was less susceptible to the probiotic activity of both S. salivarius and L. reuteri compared to A. actinomycetemcomitans. CONCLUSIONS The obtained results demonstrate a potent antagonistic ability of probiotics to reduce the growth of microorganisms associated with black tooth stains. Therefore, these strains could be evaluated for a therapeutic use against dental pigmentations.
Collapse
|
34
|
Adebayo-Tayo B, Fashogbon R. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus. Heliyon 2020; 6:e03268. [PMID: 32055727 PMCID: PMC7005431 DOI: 10.1016/j.heliyon.2020.e03268] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
Biological evaluation of exopolysaccharides (EPS) produced by wild type and mutant Lactobacillus delbureckii (EPSWLD and EPSMLD) was investigated. Varying degrees of functional groups associated with polysaccharides were present thus confirming the EPS. The EPSs had strong antioxidant potential in a dose dependent (0.5–10 mg/mL) manner. EPSWLD and EPSMLD exhibited the highest 1,1-diphemy 1-2-picryl-hydrazyl (DPPH) activity (73.4 % and 65.6 %), total antioxidant activity (1.80 % and 1.42 %), H2O2 scavenging activity (88.5 % and 78.6 %) and Ferric Reducing Antioxidant Power (FRAP) (1.89 % and1.81 %) at 10 mg/mL respectively. WLD and MLD were highly susceptible to chloramphenicol, cotrimoxazole, tetracycline, erythromycin and ceftazidine and resistant to cefuroxime, gentamicin and cloxacillin. The EPSs had antibacterial activity against the test pathogens. B. subtilis and S. aureus had the highest susceptibility (26.0 mm and 23.0 mm). EPSMLD modulate the highest IgG, IgA and IgM production (68–126 mg/dL and 67–98 mg/dL and 64–97 mg/dL) in the treated tumor induced mice (TTIM). EPSWLD and EPSMLD exhibited reduction capability on the CEA level (3.99–4.35 ng/L and 4.12–4.23 ng/L) of the TTIM. EPSWLD TTIM had the highest amount of RBC, WBC and PCV (5.6 × 1012%, 68000% and 42%). The EPS increased the lifespan of TTIM. In conclusion EPSWLD and EPSMLD had strong biological potential with pharmacological and neutraceutical activity.
Collapse
Affiliation(s)
- Bukola Adebayo-Tayo
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Racheal Fashogbon
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
35
|
Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP. Food Safety through Natural Antimicrobials. Antibiotics (Basel) 2019; 8:E208. [PMID: 31683578 PMCID: PMC6963522 DOI: 10.3390/antibiotics8040208] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial pathogens are the cause of many foodborne diseases after the ingestion of contaminated food. Several preservation methods have been developed to assure microbial food safety, as well as nutritional values and sensory characteristics of food. However, the demand for natural antimicrobial agents is increasing due to consumers' concern on health issues. Moreover, the use of antibiotics is leading to multidrug resistant microorganisms reinforcing the focus of researchers and the food industry on natural antimicrobials. Natural antimicrobial compounds from plants, animals, bacteria, viruses, algae and mushrooms are covered. Finally, new perspectives from researchers in the field and the interest of the food industry in innovations are reviewed. These new approaches should be useful for controlling foodborne bacterial pathogens; furthermore, the shelf-life of food would be extended.
Collapse
Affiliation(s)
- Emiliano J Quinto
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - Luz H Villalobos-Delgado
- Institute of Agroindustry, Technological University of the Mixteca, Huajuapan de León, Oaxaca 69000, Mexico.
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain.
| | - Beatriz De-Mateo-Silleras
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - María P Redondo-Del-Río
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| |
Collapse
|
36
|
Zhao QS, Yang JG, Zhang KZ, Wang MY, Zhao XX, Su C, Cao XZ. Lactic acid bacteria in the brewing of traditional Daqu liquor. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qing-Song Zhao
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Jian-Gang Yang
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Kai-Zheng Zhang
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Ming-Yao Wang
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Xing-Xiu Zhao
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Chang Su
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| | - Xin-Zhi Cao
- Sichuan University of Science Engineering; College of Bioengineering; No. 180, Xueyuan Street, Huixing road Zigong City, Sichuan Province 643000 China
| |
Collapse
|
37
|
Ávila S, Lazzarotto M, Hornung PS, Teixeira GL, Ito VC, Bellettini MB, Beux MR, Beta T, Ribani RH. Influence of stingless bee genus ( Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology 2019; 56:4742-4748. [PMID: 31686706 DOI: 10.1007/s13197-019-03939-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Stingless bees, important pollinating insects in the tropics, produce honey whose unique quality features differentiate their origin. The feasibility of multivariate data analysis for quality discrimination of stingless bee honey from different genera (Melipona bicolor, quadrifasciata, marginata and Scaptotrigona bipunctata) by mineral content, physicochemical and microbiological properties were investigated. The principal component analysis explained 72.12% of the total variance of the data, and the separation into two main groups in a scatter plot was observed. Group 2 was formed by Scaptotrigona genus, that showed the highest values of pH, ash, and soluble solids. Potassium was the most abundant mineral followed by calcium and sodium for both groups quantified by inductively coupled plasma optical emission spectrometry. This honey has higher acidity and moisture than Apis mellifera honey. Microbiological analyses showed that total aerobic mesophiles ranged between 2.00 and 4.77 log CFU/g. Salmonella spp. was not detected, while the mould and yeast content was above the maximum allowed under the Apis mellifera honey legislation. The evaluated honey samples presented the lactic acid bacteria, which are considered a benefit. The multivariate statistical analysis was efficient in discriminate stingless bee honey, contributing to approaches that can be used for standardization and regulation.
Collapse
Affiliation(s)
- Suelen Ávila
- 1Graduate Program in Food Engineering, Federal University of Paraná, Polytechnic Center, P.O. Box 19011, Curitiba, PR 81531-980 Brazil
| | - Marcelo Lazzarotto
- 2Brazilian Agricultural Research Corporation - Embrapa Forestry, Colombo, PR 83411-000 Brazil
| | - Polyanna Silveira Hornung
- 1Graduate Program in Food Engineering, Federal University of Paraná, Polytechnic Center, P.O. Box 19011, Curitiba, PR 81531-980 Brazil.,5Department of Food Science, University of Manitoba, Winnipeg, MB 3T 2N2 Canada
| | - Gerson Lopes Teixeira
- 3Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC 88034-001 Brazil
| | - Vivian Cristina Ito
- 4Graduate Program in Food Science and Technology, State University of Ponta Grossa, Ponta Grossa, PR 84030-900 Brazil
| | - Marcelo Barba Bellettini
- 1Graduate Program in Food Engineering, Federal University of Paraná, Polytechnic Center, P.O. Box 19011, Curitiba, PR 81531-980 Brazil
| | - Márcia Regina Beux
- 1Graduate Program in Food Engineering, Federal University of Paraná, Polytechnic Center, P.O. Box 19011, Curitiba, PR 81531-980 Brazil
| | - Trust Beta
- 5Department of Food Science, University of Manitoba, Winnipeg, MB 3T 2N2 Canada
| | - Rosemary Hoffmann Ribani
- 1Graduate Program in Food Engineering, Federal University of Paraná, Polytechnic Center, P.O. Box 19011, Curitiba, PR 81531-980 Brazil
| |
Collapse
|
38
|
Kaktcham PM, Foko Kouam EM, Tchabou Tientcheu ML, Temgoua JB, Wacher C, Zambou Ngoufack F, Pérez-Chabela MDL. Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: Bacteriocin screening, characterization, and optimization in a low-cost medium. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Review: Potensi mikrobial selulase, xilanase, dan protease dalam fermentasi kopi luwak (Paradoxurus hermaphroditus) secara in vitro. JURNAL KIMIA SAINS DAN APLIKASI 2019. [DOI: 10.14710/jksa.22.2.58-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kopi luwak adalah kopi bernilai tinggi dengan aroma dan rasa khas, yang dihasilkan dari biji kopi yang telah difermentasi sebagian dalam sistem pencernaan luwak (Paradoxurus hermaprodithus). Tingginya permintaan kopi ini dan produksi alami yang unik berimplikasi pada praktek pemaksaan dan penyiksaan hewan luwak, serta adanya kontroversi status kehalalan produk. Fermentasi in vitro menggunakan selulase, xilanase, dan protease yang diisolasi dari kotoran luwak tampaknya dapat menjadi alternatif proses untuk menghindari masalah pelecehan hewan, menjamin kehalalan produk serta memastikan keberlanjutan produksi kopi luwak. Kajian ini bertujuan untuk meringkas dan mensintesis peran tiga enzim ini (selulase, xilanase, dan protease) dalam fermentasi in vitro kopi luwak dan pengaruhnya pada karakteristik kimia dan sensori berdasarkan hasil-hasil penelitian terbaru. Hasil kajian menunjukkan bahwa fermentasi in vitro menggunakan selulase, xilanase, dan protease. biji kopi menghasilkan karakteristik kimia dan sensorik yang sama dengan yang dihasilkan melalui proses alami yang melibatkan hewan luwak.
Collapse
|
40
|
Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J FOOD QUALITY 2019. [DOI: 10.1155/2019/4726510] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized antimicrobial peptides that inhibit the growing of pathogenic and/or deteriorating bacteria. The most studied bacteriocin-producing microorganisms are lactic acid bacteria (LAB), as they have great potential application in food biopreservation, since the majority have GRAS (Generally Recognized as Safe) status. The LAB-producing bacteriocins and/or bacteriocins produced by these bacteria have been widely studied, with the emphasis on those derived from milk and dairy products. On the other hand, isolates from meat and meat products are less studied. The objective of this review is to address the main characteristics, classification, and mechanism of action of bacteriocins and their use in food, to highlight studies on the isolation of LAB with bacteriocinogenic potential from meat and meat products and also to characterize, purify, and apply these bacteriocins in meat products. In summary, most of the microorganisms studied areLactococcus,Enterococcus,Pediococcus, andLactobacillus, which produce bacteriocins such as nisin, enterocin, pediocin, pentocin, and sakacin, many with the potential for use in food biopreservation.
Collapse
|
41
|
Sabo SS, Converti A, Ichiwaki S, Oliveira RP. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J Dairy Sci 2019; 102:87-99. [DOI: 10.3168/jds.2018-14881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
|
42
|
de Souza de Azevedo PO, Converti A, Domínguez JM, de Souza Oliveira RP. Stimulating Effects of Sucrose and Inulin on Growth, Lactate, and Bacteriocin Productions by Pediococcus pentosaceus. Probiotics Antimicrob Proteins 2018; 9:466-472. [PMID: 28560515 DOI: 10.1007/s12602-017-9292-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sucrose and inulin, when combined with glucose, behaved as stimulating agents of bacteriocin production by Pediococcus pentosaceus ATCC 43200. When such microbial strain was grown in glucose-based Man, Rogosa, and Sharpe (MRS) medium, without any additional supplement, it showed higher maximum cell concentration (2.68 ± 1.10 g/L) and longer generation time (2.17 ± 0.02 h), but lower specific growth rate (0.32 ± 0.01 h-1) than in the same medium supplemented with 1.0% of both ingredients (2.53 ± 1.10 g/L, 1.60 ± 0.05 h and 0.43 ± 0.02 h-1, respectively). Glucose replacement by sucrose or inulin almost completely suppressed growth, hence confirming that it is the preferred carbon source for this strain. Qualitatively, similar results were observed for lactate production, which was 59.8% higher in glucose-based medium. Enterococcus and Listeria strains were sensitive to bacteriocin, whose antimicrobial effect after 8 h increased from 120.25 ± 0.35 to 144.00 ± 1.41 or 171.00 ± 1.41 AU/mL when sucrose or inulin was added to the glucose-based MRS medium. Sucrose and inulin were also able to speed up P. pentosaceus growth in the exponential phase.
Collapse
Affiliation(s)
- Pamela Oliveira de Souza de Azevedo
- Biochemical and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes 580, São Paulo, 05508-900, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Genoa University, 16145, Genoa, Italy
| | - José Manuel Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - Ricardo Pinheiro de Souza Oliveira
- Biochemical and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes 580, São Paulo, 05508-900, Brazil.
| |
Collapse
|
43
|
Junnarkar MV, Thakare PM, Yewale PP, Rahman A, Jass J, Mandal A, Nawani NN. Evaluation of Probiotic Potential of Lactic Acid Bacteria Isolated from Different Sources in Western India. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1443825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Manisha V. Junnarkar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Prasad M. Thakare
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Priti P. Yewale
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Aminur Rahman
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Jana Jass
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Abul Mandal
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Neelu N. Nawani
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
44
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 2018; 102:515-538. [PMID: 29167919 PMCID: PMC5756557 DOI: 10.1007/s00253-017-8616-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology, Division of Fruit and Vegetable Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
45
|
Aarti C, Khusro A, Varghese R, Arasu MV, Agastian P, Al-Dhabi NA, Ilavenil S, Choi KC. In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from Hentak, a fermented fish product of North-East India. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
The biodiversity of Lactobacillus spp. from Iranian raw milk Motal cheese and antibacterial evaluation based on bacteriocin-encoding genes. AMB Express 2017; 7:176. [PMID: 28921480 PMCID: PMC5603468 DOI: 10.1186/s13568-017-0474-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
Lactobacilli, as the largest group of lactic acid bacteria, produce large amounts of antimicrobial metabolites such as organic acids, fatty acids, ammonia, hydrogen peroxide, diacetyl and bacteriocin, which inhibit the growth of pathogenic bacteria and increase shelf life of food. The aim of this study was to identify the Lactobacillus spp. isolated from Iranian raw milk Motal cheese and to detect the presence of bacteriocin genes in the isolated Lactobacillus strains exhibiting antimicrobial activity. For this purpose, 6 Motal cheese samples from Dasht-e-Moghan region, Iran, were subjected to microbial characterization. Nineteen Lactobacillus spp. were isolated and subsequently identified based on biochemical and molecular methods. According to the sequencing of isolates, Lactobacillus spp. consisted primarily of Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus casei and Lactobacillus buchneri. The identified isolates were then evaluated for antimicrobial activity against Escherichia coli ATCC 25922, Listeria innocua ATCC 33090 and Staphylococcus aureus ATCC 25923. The results of PCR analysis using specific primers of genes encoding Bacteriocin, revealed the presence of Plantaricin A and Plantaricin EF in all Lactobacillus plantarum isolates and Brevicin 174A in 5 of Lactobacillus brevis isolates, whereas the gene encoding Pediocin PA-1 was not observed in any of examined isolates. It is therefore concluded that bacteriocinogenic isolates could be recommended as suitable candidates to be used as starter, adjunct-starter or antimicrobial agents for production of fermented and non-fermented products.
Collapse
|
47
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
48
|
Biochemical and Microbiological Changes during the Ivorian Sorghum Beer Deterioration at Different Storage Temperatures. BEVERAGES 2017. [DOI: 10.3390/beverages3030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to extend shelf life of traditional sorghum beers, it is of importance to evaluate their spoilage characteristics. Therefore, the microbiological, biochemical, and sensory changes of the Ivorian sorghum beer tchapalo during storage at ambient temperature (28 to 30 °C) for four days and at 4 °C for six days were assessed. The aerobic mesophilic bacteria and the yeast counts remained stable during the storage time. However, variations were observed in the lactic acid bacteria and acetic acid bacteria counts. The deteriorating tchapalo acidity did not show significant variations. In contrast, the total soluble solids decreased at ambient temperature and remained stable at 4 °C. Lactic acid was a major compound during storage, and acetic acid was found at a detectable level of 1.26 mg/mL after the third day at ambient temperature. The ethanol contents increased significantly at ambient temperature after two days and then decreased but showed a fair decrease at 4 °C. Evaluating the beer’s appearance, odor, and taste, a panel considered the beers to be spoiled after two days when stored at 28 to 30 °C and after three days when stored at 4 °C.
Collapse
|
49
|
Ribeiro SC, Ross RP, Stanton C, Silva CCG. Characterization and Application of Antilisterial Enterocins on Model Fresh Cheese. J Food Prot 2017; 80:1303-1316. [PMID: 28703625 DOI: 10.4315/0362-028x.jfp-17-031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enterococcus faecalis strains isolated from an artisanal cheese were selected based on enterocin production against Listeria monocytogenes. The strains formed biofilms and presented high hydrophobic character and good autoaggregation and coaggregation capacity with L. monocytogenes. Strains L3A21M3 and L3B1K3 presented high survival under gastrointestinal conditions, were able to adhere to human intestinal cells (Caco-2 and HT-29), and blocked the adhesion and invasion of L. monocytogenes. The antilisterial activity of enterocins was not affected by pH (2 to 12), heating (100°C), and chemical and surfactant agents. However, strains L3A21M3 and L3A21M8 produced thermolabile enterocins, which were also sensible to extreme pH values. Enterocins exhibited a bacteriostatic mode of action against L. monocytogenes, and maximum production was observed during the stationary phase. Common enterocin structural genes were not detected by PCR amplification with specific primers, although an exhaustive screening was not performed. The enterocin produced by the L3B1K3 strain was purified and applied to model cheeses contaminated with L. monocytogenes. This enterocin reduced survival of L. monocytogenes on fresh cheeses in a dose-dependent manner. The highest dose tested (2,048 arbitrary units per g of cheese) was effective in reducing the pathogen counts to undetectable values throughout storage (6 to 72 h). These results suggest that these strains have great potential to be used as biopreservatives in the food industry and also as probiotics, with the potential to prevent L. monocytogenes gastrointestinal infection.
Collapse
Affiliation(s)
- Susana C Ribeiro
- 1 Instituto de Investigação e Tecnologias Agrárias e do Ambiente (IITAA), Universidade dos Açores, 9700-042 Angra do Heroísmo, Açores, Portugal (ORCID: http://orcid.org/0000-0003-0870-0071 [C.C.G.S.])
| | - R Paul Ross
- 2 College of Science, Engineering and Food Science, University College Cork, Ireland; and
| | - Catherine Stanton
- 3 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Célia C G Silva
- 1 Instituto de Investigação e Tecnologias Agrárias e do Ambiente (IITAA), Universidade dos Açores, 9700-042 Angra do Heroísmo, Açores, Portugal (ORCID: http://orcid.org/0000-0003-0870-0071 [C.C.G.S.])
| |
Collapse
|
50
|
Abeer Mohammed A, Al-Saman MA, Tayel AA. Antibacterial activity of fusion from biosynthesized acidocin/silver nanoparticles and its application for eggshell decontamination. J Basic Microbiol 2017; 57:744-751. [DOI: 10.1002/jobm.201700192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- A.B. Abeer Mohammed
- Genetic Engineering and Biotechnology Research Institute; University of Sadat City; El-Sadat City Egypt
| | - Mahmoud A. Al-Saman
- Genetic Engineering and Biotechnology Research Institute; University of Sadat City; El-Sadat City Egypt
| | - Ahmed A. Tayel
- Faculty of Aquatic and Fisheries Sciences; Kafrelsheikh University; Kafr-Elsheikh Egypt
| |
Collapse
|