1
|
Cotrina EY, Oliveira Â, Leite JP, Llop J, Gales L, Quintana J, Cardoso I, Arsequell G. Repurposing Benzbromarone for Familial Amyloid Polyneuropathy: A New Transthyretin Tetramer Stabilizer. Int J Mol Sci 2020; 21:E7166. [PMID: 32998442 PMCID: PMC7583827 DOI: 10.3390/ijms21197166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein involved in human amyloidosis, including familial amyloid polyneuropathy (FAP). Discovering small-molecule stabilizers of the TTR tetramer is a therapeutic strategy for these diseases. Tafamidis, the only approved drug for FAP treatment, is not effective for all patients. Herein, we discovered that benzbromarone (BBM), a uricosuric drug, is an effective TTR stabilizer and inhibitor against TTR amyloid fibril formation. BBM rendered TTR more resistant to urea denaturation, similarly to iododiflunisal (IDIF), a very potent TTR stabilizer. BBM competes with thyroxine for binding in the TTR central channel, with an IC50 similar to IDIF and tafamidis. Results obtained by isothermal titration calorimetry (ITC) demonstrated that BBM binds TTR with an affinity similar to IDIF, tolcapone and tafamidis, confirming BBM as a potent binder of TTR. The crystal structure of the BBM-TTR complex shows two molecules binding deeply in the thyroxine binding channel, forming strong intermonomer hydrogen bonds and increasing the stability of the TTR tetramer. Finally, kinetic analysis of the ability of BBM to inhibit TTR fibrillogenesis at acidic pH and comparison with other stabilizers revealed that benzbromarone is a potent inhibitor of TTR amyloidogenesis, adding a new interesting scaffold for drug design of TTR stabilizers.
Collapse
Affiliation(s)
- Ellen Y. Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain;
| | - Ângela Oliveira
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Pedro Leite
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain;
| | - Luis Gales
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003 Barcelona, Spain;
| | - Isabel Cardoso
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain;
| |
Collapse
|
2
|
Sainath SB, André A, Castro LFC, Santos MM. The evolutionary road to invertebrate thyroid hormone signaling: Perspectives for endocrine disruption processes. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:124-138. [PMID: 31136851 DOI: 10.1016/j.cbpc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (THs) are the only iodine-containing hormones that play fundamental roles in chordates and non-chordates. The chemical nature, mode of action and the synthesis of THs are well established in mammals and other vertebrates. Although thyroid-like hormones have been detected in protostomes and non-chordate deuterostomes, TH signaling is poorly understood as compared to vertebrates, particularly in protostomes. Therefore, the central objective of this article is to review TH system components and TH-induced effects in non-vertebrate chordates, non-chordate deuterostomes and protostomes based on available genomes and functional information. To accomplish this task, we integrate here the available knowledge on the THs signaling across non-vertebrate chordates, non-chordate deuterostomes and protostomes by considering studies encompassing TH system components and physiological actions of THs. We also address the possible interactions of thyroid disrupting chemicals and their effects in protostomes and non-chordate deuterostomes. Finally, the perspectives on current and future challenges are discussed.
Collapse
Affiliation(s)
- S B Sainath
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India.
| | - A André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
3
|
Jarosiewicz M, Krokosz A, Marczak A, Bukowska B. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. CHEMOSPHERE 2019; 227:93-99. [PMID: 30986606 DOI: 10.1016/j.chemosphere.2019.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Currently, more and more concerns are related to oxidative stress appearing in cells as a result of xenobiotics action. It has been found that selected brominated flame retardants (BFRs) can cause reactive oxygen species (ROS) induction at environmental concentrations. Excessive ROS induction can contribute to the redox imbalance in the cell. Therefore, the aim of our work was to evaluate the effect of selected BFRs on the activity of antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and the level of reduced glutathione (GSH) in human erythrocytes. Erythrocytes were incubated with tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) in the concentration ranging from 1 to 100 μg/ml. This study has shown that the BFRs studied disturbed redox balance in human erythrocytes. TBBPA caused more significant decrease in antioxidant enzymes activities than other compounds examined. Among bromophenols studied, 2,4-DBP most strongly affected antioxidant system, which indicated that the number of bromine atoms in the molecule did not significantly affect the pro-oxidative properties of the BFRs examined.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Biophysics of Environmental Pollution, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236, Lodz, Poland.
| | - Anita Krokosz
- Department of Molecular Biophysics, Division of Radiobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236, Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236, Lodz, Poland
| |
Collapse
|
4
|
Zhang J, Grundström C, Brännström K, Iakovleva I, Lindberg M, Olofsson A, Andersson PL, Sauer-Eriksson AE. Interspecies Variation between Fish and Human Transthyretins in Their Binding of Thyroid-Disrupting Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11865-11874. [PMID: 30226982 DOI: 10.1021/acs.est.8b03581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thyroid-disrupting chemicals (TDCs) are xenobiotics that can interfere with the endocrine system and cause adverse effects in organisms and their offspring. TDCs affect both the thyroid gland and regulatory enzymes associated with thyroid hormone homeostasis. Transthyretin (TTR) is found in the serum and cerebrospinal fluid of vertebrates, where it transports thyroid hormones. Here, we explored the interspecies variation in TDC binding to human and fish TTR (exemplified by Gilthead seabream ( Sparus aurata)). The in vitro binding experiments showed that TDCs bind with equal or weaker affinity to seabream TTR than to the human TTR, in particular, the polar TDCs (>500-fold lower affinity). Crystal structures of the seabream TTR-TDC complexes revealed that all TDCs bound at the thyroid binding sites. However, amino acid substitution of Ser117 in human TTR to Thr117 in seabream prevented polar TDCs from binding deep in the hormone binding cavity, which explains their low affinity to seabream TTR. Molecular dynamics and in silico alanine scanning simulation also suggested that the protein backbone of seabream TTR is more rigid than the human one and that Thr117 provides fewer electrostatic contributions than Ser117 to ligand binding. This provides an explanation for the weaker affinities of the ligands that rely on electrostatic interactions with Thr117. The lower affinities of TDCs to fish TTR, in particular the polar ones, could potentially lead to milder thyroid-related effects in fish.
Collapse
|
5
|
Yoon G, Park SM, Yang H, Tsang DCW, Alessi DS, Baek K. Selection criteria for oxidation method in total organic carbon measurement. CHEMOSPHERE 2018; 199:453-458. [PMID: 29453072 DOI: 10.1016/j.chemosphere.2018.02.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds.
Collapse
Affiliation(s)
- GeunSeok Yoon
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Sang-Min Park
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Heuiwon Yang
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Daniel C W Tsang
- Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Kitae Baek
- Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea.
| |
Collapse
|
6
|
Koch C, Sures B. Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:706-713. [PMID: 29126092 DOI: 10.1016/j.envpol.2017.10.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
2,4,6-Tribromophenol is the most widely produced brominated phenol. In the present review, we summarize studies dealing with this substance from an environmental point of view. We cover concentrations in the abiotic and biotic environment including humans, toxicokinetics as well as toxicodynamics, and show gaps of the current knowledge about this chemical. 2,4,6-Tribomophenol occurs as an intermediate during the synthesis of brominated flame retardants and it similarly represents a degradation product of these substances. Moreover, it is used as a pesticide but also occurs as a natural product of some aquatic organisms. Due to its many sources, 2,4,6-tribromophenol is ubiquitously found in the environment. Nevertheless, not much is known about its toxicokinetics and toxicodynamics. It is also unclear which role the structural isomer 2,4,5-tribromophenol and several degradation products such as 2,4-dibromophenol play in the environment. Due to new flame retardants that enter the market and can degrade to 2,4,6-tribromophenol, this compound will remain relevant in future years - not only in aquatic matrices, but also in house dust and foodstuff, which are an important exposure route for humans.
Collapse
Affiliation(s)
- Christoph Koch
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, 45141 Essen, Germany; Deutsche Rockwool GmbH & Co. KG, 45966 Gladbeck, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
7
|
Schweizer U, Towell H, Vit A, Rodriguez-Ruiz A, Steegborn C. Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Mol Cell Endocrinol 2017; 458:57-67. [PMID: 28131741 DOI: 10.1016/j.mce.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormones and their metabolites constitute a vast class of related iodothyronine compounds that contribute to the regulation of metabolic activity and cell differentiation. They are in turn transported, transformed and recognized as signaling molecules through binding to a variety of proteins from a wide range of evolutionary unrelated protein families, which renders these proteins and their iodothyronine binding sites an example for extensive convergent evolution. In this review, we will briefly summarize what is known about iodothyronine binding sites in proteins, the modes of protein/iodothyronine interaction, and the ligand conformations. We will then discuss physiological and synthetic compounds, including popular drugs and food components, that can interfere with iodothyronine binding and recognition by these proteins. The discussion also includes compounds persisting in the environment and acting as endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Holly Towell
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Allegra Vit
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Alfonso Rodriguez-Ruiz
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | |
Collapse
|
8
|
Pentabromophenol suppresses TGF-β signaling by accelerating degradation of type II TGF-β receptors via caveolae-mediated endocytosis. Sci Rep 2017; 7:43206. [PMID: 28230093 PMCID: PMC5322341 DOI: 10.1038/srep43206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Pentabromophenol (PBP), a brominated flame retardant (BFR), is widely used in various consumer products. BFRs exert adverse health effects such as neurotoxic and endocrine-disrupting effects. In this study, we found that PBP suppressed TGF-β response by accelerating the turnover rate of TGF-β receptors. PBP suppressed TGF-β-mediated cell migration, PAI-1 promoter-driven reporter gene activation, and Smad2/3 phosphorylation in various cell types. Furthermore, PBP abolished TGF-β-mediated repression of E-cadherin expression, in addition to the induction of vimentin expression and N-cadherin and fibronectin upregulation, thus blocking TGF-β-induced epithelial–mesenchymal transition in A549 and NMuMG cells. However, this inhibition was not observed with other congeners such as tribromophenol and triiodophenol. TGF-β superfamily members play key roles in regulating various biological processes including cell proliferation and migration as well as cancer development and progression. The results of this in vitro study provide a basis for studies on the detailed relationship between PBP and modulation of TGF-β signalling. Because PBP is similar to other BFRs such as polybrominated diphenyl ethers (PBDEs), additional laboratory and mechanistic studies should be performed to examine BFRs as potential risk factors for tumorigenesis and other TGF-β-related diseases.
Collapse
|
9
|
Macaulay LJ, Chernick M, Chen A, Hinton DE, Bailey JM, Kullman SW, Levin ED, Stapleton HM. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:36-48. [PMID: 27329031 PMCID: PMC5535307 DOI: 10.1002/etc.3535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/08/2016] [Accepted: 06/18/2016] [Indexed: 05/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC.
Collapse
Affiliation(s)
- Laura J. Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - David E. Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Jordan M. Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Seth W. Kullman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Corresponding author: Heather Stapleton, Nicholas School of the Environment, Duke University, Box 90328 LSRC A220, Durham, NC 27708, Phone: 919-613-8717, Fax: (919) 684-8741.,
| |
Collapse
|
10
|
Zhang J, Begum A, Brännström K, Grundström C, Iakovleva I, Olofsson A, Sauer-Eriksson AE, Andersson PL. Structure-Based Virtual Screening Protocol for in Silico Identification of Potential Thyroid Disrupting Chemicals Targeting Transthyretin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11984-11993. [PMID: 27668830 DOI: 10.1021/acs.est.6b02771] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thyroid disruption by xenobiotics is associated with a broad spectrum of severe adverse outcomes. One possible molecular target of thyroid hormone disrupting chemicals (THDCs) is transthyretin (TTR), a thyroid hormone transporter in vertebrates. To better understand the interactions between TTR and THDCs, we determined the crystallographic structures of human TTR in complex with perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 2,2',4,4'-tetrahydroxybenzophenone (BP2). The molecular interactions between the ligands and TTR were further characterized using molecular dynamics simulations. A structure-based virtual screening (VS) protocol was developed with the intention of providing an efficient tool for the discovery of novel TTR-binders from the Tox21 inventory. Among the 192 predicted binders, 12 representatives were selected, and their TTR binding affinities were studied with isothermal titration calorimetry, of which seven compounds had binding affinities between 0.26 and 100 μM. To elucidate structural details in their binding to TTR, crystal structures were determined of TTR in complex with four of the identified compounds including 2,6-dinitro-p-cresol, bisphenol S, clonixin, and triclopyr. The compounds were found to bind in the TTR hormone binding sites as predicted. Our results show that the developed VS protocol is able to successfully identify potential THDCs, and we suggest that it can be used to propose THDCs for future toxicological evaluations.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - Afshan Begum
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - Kristoffer Brännström
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - Christin Grundström
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - Irina Iakovleva
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - Anders Olofsson
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| | - Patrik L Andersson
- Department of Chemistry and ‡Department of Medical Biochemistry and Biophysics, Umeå University , SE-901 87 Umeå, Sweden
| |
Collapse
|
11
|
Riley KE, Hobza P. Investigations into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. J Chem Theory Comput 2015; 4:232-42. [PMID: 26620655 DOI: 10.1021/ct700216w] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years it has been recognized that, because of their unique properties, halogen bonds have tremendous potential in the development of new pharmaceutical compounds and materials. In this study we investigate the phenomenon of halogen bonding by carrying out ab initio calculations on the halomethane-formaldehyde complexes as well as the fluorine substituted FnH3-nCX···OCH2 dimers, where the halogen bonding halogens (X) are chlorine, bromine, and iodine. Coupled cluster (CCSD(T)/aug-cc-pVTZ) calculations indicate that the binding energies for these type of interactions lie in the range between -1.05 kcal/mol (H3CCl···OCH2) and -3.72 kcal/mol (F3CI···OCH2). One of the most important findings in this study is that, according to symmetry adapted perturbation theory (SAPT) analyses, halogen bonds are largely dependent on both electrostatic and dispersion type interactions. As the halogen atom involved in halogen bonding becomes larger the interaction strength for this type of interaction also gets larger and, interestingly, more electrostatic (and less dispersive) in character. Halogen bonding interactions also become stronger and more electrostatic upon substitution of (the very electronegative) fluorines onto the halomethane molecule.
Collapse
Affiliation(s)
- Kevin E Riley
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Yilmazer ND, Heitel P, Schwabe T, Korth M. Benchmark of electronic structure methods for protein–ligand interactions based on high-level reference data. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s0219633615400015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The accurate prediction of the strength of protein–ligand interactions is a very difficult problem despite impressive advances in the field of biomolecular modeling. There are good reasons to believe that quantum mechanical methods can help with this task, but the application of such methods in the context of scoring is still in its infancy. Here we benchmark several wave function theory (WFT), density functional theory (DFT) and semiempirical quantum mechanical (SQM) approaches against high-level theoretical references for realistic test cases. Based on our findings for systematically generated model systems of real protein/ligand complexes from the PDB-bind database, we can recommend SCS-MP2 and B2-PLYP-D3 as reference methods, TPSS-D3+Dabc/def-TZVPP as the best DFT approach and PM6-DH+ as a fast and accurate alternative to full ab initio treatments.
Collapse
Affiliation(s)
- Nusret Duygu Yilmazer
- Institute for Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Pascal Heitel
- Institute for Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Tobias Schwabe
- Center for Bioinformatics and Institute of Physical Chemistry, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | - Martin Korth
- Institute for Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| |
Collapse
|
13
|
Yang J, Chan KM. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:138-147. [PMID: 25544063 DOI: 10.1016/j.aquatox.2014.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The toxic effects of three polybrominated diphenyl ether (PBDE) congeners (BDE-47, -99, and -209), tetrabromobisphenol A (TBBPA) and bisphenol A (BPA), were evaluated by determining their 24h and 96 h median lethal concentrations using a zebrafish liver cell line, ZFL. It was found that BDE-47, BDE-99 and TBBPA showed comparative cytotoxicity within the range of 1.2-4.2 μM, and were more toxic than BPA (367.1 μM at 24 h and 357.6 μM at 96 h). However, BDE-209 induced only 15% lethality with exposures up to 25 μM. The molecular stresses of BDE-47, -99, TBBPA and BPA involved in thyroid hormone (TH) homeostasis and hepatic metabolism were also investigated. Using a reporter gene system to detect zebrafish thyroid hormone receptor β (zfTRβ) transcriptional activity, the median effective concentration of triiodothyronine (T3) was determined to be 9.2×10(-11) M. BDE-47, BDE-99, TBBPA and BPA alone, however, did not exhibit zfTRβ agonistic activity. BPA displayed T3 (0.1 nM) induced zfTRβ antagonistic activity with a median inhibitory concentration of 19.3 μM. BDE-47, BDE-99 and TBBPA displayed no antagonistic effects of T3-induced zfTRβ activity. Target gene expressions were also examined under acute exposures. The significant inhibition of different types of deiodinases by all of the test chemicals indicated TH circulation disruption. All four chemicals, especially BPA, were able to affect transcripts of phase II hepatic metabolizing enzymes (UGT2A1, SULT1) in vitro. In conclusion, the zfTRβ reporter gene system developed here helps delineate an in vitro model to enable the analysis of the TH disruption effects of environmental pollutants in fish. BPA and the brominated compounds tested were able to disrupt the TH system at the gene expression level, probably through the deiodination pathways.
Collapse
Affiliation(s)
- Jie Yang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
|
15
|
Sandhiya L, Senthilkumar K. A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Shimizu R, Yamaguchi M, Uramaru N, Kuroki H, Ohta S, Kitamura S, Sugihara K. Structure–activity relationships of 44 halogenated compounds for iodotyrosine deiodinase-inhibitory activity. Toxicology 2013; 314:22-9. [DOI: 10.1016/j.tox.2013.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
|
17
|
Lieffrig J, Jeannin O, Frąckowiak A, Olejniczak I, Świetlik R, Dahaoui S, Aubert E, Espinosa E, Auban-Senzier P, Fourmigué M. Charge-Assisted Halogen Bonding: Donor-Acceptor Complexes with Variable Ionicity. Chemistry 2013; 19:14804-13. [DOI: 10.1002/chem.201302507] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 02/04/2023]
|
18
|
Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MML, Furlow JD, Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 2013; 27:1320-46. [PMID: 23453986 DOI: 10.1016/j.tiv.2013.02.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 11/16/2022]
Abstract
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endocrine systems, sexual behaviour and fertility and cardiovascular function. Therefore, concern about TH disruption (THD) has resulted in strategies being developed to identify THD chemicals (THDCs). Information on potential of chemicals causing THD is typically derived from animal studies. For the majority of chemicals, however, this information is either limited or unavailable. It is also unlikely that animal experiments will be performed for all THD relevant chemicals in the near future for ethical, financial and practical reasons. In addition, typical animal experiments often do not provide information on the mechanism of action of THDC, making it harder to extrapolate results across species. Relevant effects may not be identified in animal studies when the effects are delayed, life stage specific, not assessed by the experimental paradigm (e.g., behaviour) or only occur when an organism has to adapt to environmental factors by modulating TH levels. Therefore, in vitro and in silico alternatives to identify THDC and quantify their potency are needed. THDC have many potential mechanisms of action, including altered hormone production, transport, metabolism, receptor activation and disruption of several feed-back mechanisms. In vitro assays are available for many of these endpoints, and the application of modern '-omics' technologies, applicable for in vivo studies can help to reveal relevant and possibly new endpoints for inclusion in a targeted THDC in vitro test battery. Within the framework of the ASAT initiative (Assuring Safety without Animal Testing), an international group consisting of experts in the areas of thyroid endocrinology, toxicology of endocrine disruption, neurotoxicology, high-throughput screening, computational biology, and regulatory affairs has reviewed the state of science for (1) known mechanisms for THD plus examples of THDC; (2) in vitro THD tests currently available or under development related to these mechanisms; and (3) in silico methods for estimating the blood levels of THDC. Based on this scientific review, the panel has recommended a battery of test methods to be able to classify chemicals as of less or high concern for further hazard and risk assessment for THD. In addition, research gaps and needs are identified to be able to optimize and validate the targeted THD in vitro test battery for a mechanism-based strategy for a decision to opt out or to proceed with further testing for THD.
Collapse
Affiliation(s)
- AlberTinka J Murk
- Wageningen University, Sub-department of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Esrafili MD. A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J Mol Model 2012; 19:1417-27. [DOI: 10.1007/s00894-012-1691-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
20
|
Jahromi HJ, Eskandari K. Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct Chem 2012. [DOI: 10.1007/s11224-012-0156-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Norrgran J, Jones B, Lindquist NG, Bergman A. Decabromobiphenyl, polybrominated diphenyl ethers, and brominated phenolic compounds in serum of cats diagnosed with the endocrine disease feline hyperthyroidism. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:161-168. [PMID: 22311549 DOI: 10.1007/s00244-012-9750-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
The incidence of cats being diagnosed with feline hyperthyroidism (FH) has increased greatly since it was first described in 1979. The cause of FH has not been established. Hypothetically, there is a link between increasing FH and exposure to brominated flame retardants. Much greater polybrominated diphenyl ethers (PBDE) concentrations have been reported in cat serum compared with human serum, likely due to cat licking behaviour. This study aimed to extend the present identification of brominated compounds in cat serum, with a focus on hydroxylated metabolites of PBDE, to improve the understanding of feline metabolism of PBDEs. A pooled serum sample from 30 Swedish pet cats with FH was analysed, and brominated species were identified. The results showed exposure to the discontinued flame retardant decabromobiphenyl (BB-209) and technical penta- and octa-BDEs. Altogether 12 PBDE congeners were identified along with 2'-MeO-BDE68. Furthermore, 2,4-dibromophenol, 2,4,6-, 2,4,5- and 2,3,4-tribromophenol plus 2'-OH-BDE68, 6-OH-BDE47, 5-OH-BDE47, 4'-OH-BDE49 were identified. 2,4,6-tribromophenol and 6-OH-BDE47 were the most prominent species in cat serum. Considering that these are natural products, it can be concluded that metabolism of PBDEs to OH-PBDEs is not a major route of PBDE elimination in cats. It is notable that BB-209, 6-OH-BDE47, and 2,4,6-tribromophenol all suggested that endocrine-disrupting chemicals were present in high concentrations in cat serum.
Collapse
Affiliation(s)
- Jessica Norrgran
- Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, Sweden.
| | | | | | | |
Collapse
|
22
|
Chan WK, Chan KM. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:106-111. [PMID: 22100034 DOI: 10.1016/j.aquatox.2011.10.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/01/2011] [Accepted: 10/21/2011] [Indexed: 05/27/2023]
Abstract
We performed waterborne exposures of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), tetrabromobisphenol A (TBBPA) or bisphenol A (BPA) on zebrafish (Danio rerio) embryo-larvae and quantitatively measured the expression of genes belonging to the hypothalamic-pituitary-thyroid (HPT) axis to assess for adverse thyroid function. For analysis on the effects of BDE-47, TBBPA and BPA on the hypothalamic-pituitary-thyroid genes, zebrafish embryo-larvae were acutely exposed to lethal concentrations of the chemical agents in order to determine the 96 h-LC50 (96 h lethal median concentration) and 96 h-EC50 (96 h effective median concentration) values. Further exposures at sub-lethal concentrations were then carried out and total RNA samples were extracted to quantify the mRNA expression levels of the genes of interest. In larvae, BDE-47 was found to have significantly induced many genes of interest, namely thyroglobulin, thyroid peroxidase, thyroid receptors α and β, thyroid stimulating hormone, and transthyretin. TBBPA only significantly induced three genes of interest (thyroid receptor α, thyroid stimulating hormone, and transthyretin) while BPA only induced thyroid stimulating hormone. In embryos, BDE-47 significantly induced the sodium iodide symporter and thyroid stimulating hormone. TBBPA significantly induced thyroid receptor α and thyroid stimulating hormone, while BPA did not significantly induce any of the genes. Most genes were only induced at the 75% 96 h-LC50 or 96 h-EC50 value; however, thyroid peroxidase and thyroid stimulating hormone demonstrated upregulation in a level as little as the 10% 96 h-LC50 value. The present study provides a new set of data on zebrafish mRNA induction of hypothalamic-pituitary-thyroid genes from exposure to BDE-47, TBBPA, or BPA. This information would serve useful for elucidating the toxicological mechanism of brominated flame retardants, assessing appropriate safety levels in the environment for these compounds, as well as serve as a reference for other man-made contaminants.
Collapse
Affiliation(s)
- Winson K Chan
- Biochemistry Program, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | | |
Collapse
|
23
|
Yang W, Shen S, Mu L, Yu H. Structure-activity relationship study on the binding of PBDEs with thyroxine transport proteins. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2431-2439. [PMID: 21842493 DOI: 10.1002/etc.645] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/01/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
Molecular docking and three-dimensional quantitative structure-activity relationships (3D-QSAR) were used to develop models to predict binding affinity of polybrominated diphenyl ether (PBDE) compounds to the human transthyretin (TTR). Based on the molecular conformations derived from the molecular docking, predictive comparative molecular similarity indices analysis (CoMSIA) models were developed. The results of CoMSIA models were as follows: leave-one-out (LOO) cross-validated squared coefficient q² (LOO) = 0.827 (full model, for all 28 compounds); q² (LOO) = 0.752 (split model, for 22 compounds in the training set); leave-many-out (LMO) cross-validated squared coefficient q² (LMO, two groups) = 0.723 ± 0.100 (full model, for all 28 compounds); q² (LMO, five groups) = 0.795 ± 0.030 (full model, for all 28 compounds); and the predictive squared correlation coefficient r²(pred) = 0.928 (for six compounds in the test set). The developed CoMSIA models can be used to infer the activities of compounds with similar structural characteristics. In addition, the interaction mechanism between hydroxylated polybrominated diphenyl ethers (HO-PBDEs) and the TTR was explored. Hydrogen bonding with amino acid residues Asp74, Ala29, and Asn27 may be an important determinant for HO-PBDEs binding to TTR. Among them, forming hydrogen bonds with amino acid residues Asp74 might exert a more important function.
Collapse
Affiliation(s)
- Weihua Yang
- Xuzhou Normal University, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou, Peoples Republic of China.
| | | | | | | |
Collapse
|
24
|
The structure, properties, and nature of unconventional π halogen bond in the complexes of Al 4 2- and halohydrocarbons. J Mol Model 2011; 18:2311-9. [DOI: 10.1007/s00894-011-1252-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|
25
|
Lübcke-von Varel U, Machala M, Ciganek M, Neca J, Pencikova K, Palkova L, Vondracek J, Löffler I, Streck G, Reifferscheid G, Flückiger-Isler S, Weiss JM, Lamoree M, Brack W. Polar compounds dominate in vitro effects of sediment extracts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2384-2390. [PMID: 21348526 DOI: 10.1021/es103381y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sediment extracts from three polluted sites of the river Elbe basin were fractionated using a novel online fractionation procedure. Resulting fractions were screened for mutagenic, aryl hydrocarbon receptor (AhR)-mediated, transthyretin (TTR)-binding, and estrogenic activities and their potency to inhibit gap junctional intercellular communication (GJIC) to compare toxicity patterns and identify priority fractions. Additionally, more than 200 compounds and compound classes were identified using GC-MS/MS, LC-MS/MS, and HPLC-DAD methods. For all investigated end points, major activities were found in polar fractions, which are defined here as fractions containing dominantly compounds with at least one polar functional group. Nonpolar PAH fractions contributed to mutagenic and AhR-mediated activities while inhibition of GJIC and estrogenic and TTR-binding activities were exclusively observed in the polar fractions. Known mutagens in polar fractions included nitro- and dinitro-PAHs, azaarenes, and keto-PAHs, while parent and monomethylated PAHs such as benzo[a]pyrene and benzofluoranthenes were identified in nonpolar fractions. Additionally, for one sample, high AhR-mediated activities were determined in one fraction characterized by PCDD/Fs, PCBs, and PCNs. Estrone, 17β-estradiol, 9H-benz[de]anthracen-7-one, and 4-nonylphenol were identified as possible estrogenic and TTR-binding compounds. Thus, not only nonpolar compounds such as PAHs, PCBs, and PCDD/Fs but also the less characterized and investigated more polar substances should be considered as potent mutagenic, estrogenic, AhR-inducing, TTR-binding, and GJIC-inhibiting components for future studies.
Collapse
|
26
|
Caserta D, Mantovani A, Marci R, Fazi A, Ciardo F, La Rocca C, Maranghi F, Moscarini M. Environment and women's reproductive health. Hum Reprod Update 2011; 17:418-33. [DOI: 10.1093/humupd/dmq061] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Zierkiewicz W, Wieczorek R, Hobza P, Michalska D. Halogen bonded complexes between volatile anaesthetics (chloroform, halothane, enflurane, isoflurane) and formaldehyde: a theoretical study. Phys Chem Chem Phys 2011; 13:5105-13. [PMID: 21290074 DOI: 10.1039/c0cp02085k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | |
Collapse
|
28
|
Lu Y, Wang Y, Zhu W. Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 2010; 12:4543-51. [DOI: 10.1039/b926326h] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Hauchecorne D, Szostak R, Herrebout WA, van der Veken BJ. CX⋅⋅⋅O Halogen Bonding: Interactions of Trifluoromethyl Halides with Dimethyl Ether. Chemphyschem 2009; 10:2105-15. [DOI: 10.1002/cphc.200900125] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Lu YX, Zou JW, Fan JC, Zhao WN, Jiang YJ, Yu QS. Ab initiocalculations on halogen-bonded complexes and comparison with density functional methods. J Comput Chem 2009; 30:725-32. [DOI: 10.1002/jcc.21094] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W. Halogen Bonding—A Novel Interaction for Rational Drug Design? J Med Chem 2009; 52:2854-62. [PMID: 19358610 DOI: 10.1021/jm9000133] [Citation(s) in RCA: 449] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yunxiang Lu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Ting Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Yong Wang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Huaiyu Yang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuhua Yan
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoming Luo
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, and School of Science, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
|
33
|
Alkorta I, Blanco F, Solimannejad M, Elguero J. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 2008; 112:10856-63. [PMID: 18837495 DOI: 10.1021/jp806101t] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Quimica Medica (CSIC), Juan de la Cierva, 3; 28006-Madrid, Spain.
| | | | | | | |
Collapse
|
34
|
Gales L, Almeida MR, Arsequell G, Valencia G, Saraiva MJ, Damas AM. Iodination of salicylic acid improves its binding to transthyretin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:512-7. [PMID: 18155178 DOI: 10.1016/j.bbapap.2007.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022]
Abstract
Transthyretin (TTR) is a plasma homotetrameric protein associated with senile systemic amyloidosis and familial amyloidotic polyneuropathy. In theses cases, TTR dissociation and misfolding induces the formation of amyloidogenic intermediates that assemble into toxic oligomeric species and lead to the formation of fibrils present in amyloid deposits. The four TTR monomers associate around a central hydrophobic channel where two thyroxine molecules can bind simultaneously. In each thyroxine binding site there are three pairs of symmetry related halogen binding pockets which can accommodate the four iodine substituents of thyroxine. A number of structurally diverse small molecules that bind to the TTR channel increasing the protein stability and thereafter inhibiting amyloid fibrillogenesis have been tested. In order to take advantage of the high propensity to interactions between iodine substituents and the TTR channel we have identified two iodinated derivatives of salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid, available commercially. We report in this paper the relative binding affinities of salicylic acid and the two iodinated derivatives and the crystal structure of TTR complexed with 3,5-diiodosalicylic acid, to elucidate the higher binding affinity of this compound towards TTR.
Collapse
Affiliation(s)
- Luís Gales
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
35
|
Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS. Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A 2007; 111:10781-8. [PMID: 17918810 DOI: 10.1021/jp0740954] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogen bonding, a specific intermolecular noncovalent interaction, plays crucial roles in fields as diverse as molecular recognition, crystal engineering, and biological systems. This paper presents an ab initio investigation of a series of dimeric complexes formed between bromobenzene and several electron donors. Such small model systems are selected to mimic halogen bonding interactions found within crystal structures as well as within biological molecules. In all cases, the intermolecular distances are shown to be equal to or below sums of van der Waals radii of the atoms involved. Halogen bonding energies, calculated at the MP2/aug-cc-pVDZ level, span over a wide range, from -1.52 to -15.53 kcal/mol. The interactions become comparable to, or even prevail over, classical hydrogen bonding. For charge-assisted halogen bonds, calculations have shown that the strength decreases in the order OH- > F- > HCO2- > Cl- > Br-, while for neutral systems, their relative strengths attenuate in the order H2CS > H2CO > NH3 > H2S > H2O. These results agree with those of the quantum theory of atoms in molecules (QTAIM) since bond critical points (BCPs) are identified for these halogen bonds. The QTAIM analysis also suggests that strong halogen bonds are more covalent in nature, while weak ones are mostly electrostatic interactions. The electron densities at the BCPs are recommended as a good measure of the halogen bond strength. Finally, natural bond orbital (NBO) analysis has been applied to gain more insights into the origin of halogen bonding interactions.
Collapse
Affiliation(s)
- Yun-Xiang Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | |
Collapse
|
36
|
Morgado I, Hamers T, Van der Ven L, Power DM. Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. CHEMOSPHERE 2007; 69:155-63. [PMID: 17553549 DOI: 10.1016/j.chemosphere.2007.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/09/2007] [Accepted: 04/04/2007] [Indexed: 05/15/2023]
Abstract
A number of chemicals released into the environment share structural similarity to the thyroid hormones (THs), thyroxine (T(4)) and triiodothyronine (T(3)) and it is thought that they may interfere with the thyroid axis and behave as endocrine disruptors (EDs). One of the ways by which such environmental contaminants may disrupt the TH axis is by binding to TH transporter proteins. Transthyretin (TTR) is one of the thyroid hormone binding proteins responsible for TH transport in the blood. TTR forms a stable tetramer that binds both T(4) and T(3) and in fish it is principally synthesized in the liver but is also produced by the brain and intestine. In the present study, we investigate the ability of some chemicals arising from pharmaceutical, industrial or agricultural production and classified as EDs, to compete with [I(125)]-T(3) for sea bream recombinant TTR (sbrTTR). Ioxinyl, a common herbicide and several polybrominated diphenyl ethers were strong inhibitors of [I(125)]-T(3) binding to TTR and some showed even greater affinity than the natural ligand T(3). The TTR competitive binding assay developed offers a quick and effective tool for preliminary risk assessment of chemicals which may disrupt the thyroid axis in teleost fish inhabiting vulnerable aquatic environments.
Collapse
Affiliation(s)
- Isabel Morgado
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
37
|
Abstract
Familial amyloidotic polyneuropathy (FAP) is an inherited autosomal dominant disease that is commonly caused by accumulation of deposits of transthyretin (TTR) amyloid around peripheral nerves. The only effective treatment for FAP is liver transplantation. However, recent studies on TTR aggregation provide clues to the mechanism of the molecular pathogenesis of FAP and suggest new avenues for therapeutic intervention. It is increasingly recognized that there are common features of a number of protein-misfolding diseases that can lead to neurodegeneration. As for other amyloidogenic proteins, the most toxic forms of aggregated TTR are likely to be the low-molecular-mass diffusible species, and there is increasing evidence that this toxicity is mediated by disturbances in calcium homeostasis. This article reviews what is already known about the mechanism of TTR aggregation in FAP and describes how recent discoveries in other areas of amyloid research, particularly Alzheimer's disease, provide clues to the molecular pathogenesis of FAP.
Collapse
Affiliation(s)
- Xu Hou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
38
|
Riley KE, Merz KM. Insights into the strength and origin of halogen bonding: the halobenzene-formaldehyde dimer. J Phys Chem A 2007; 111:1688-94. [PMID: 17298041 DOI: 10.1021/jp066745u] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The observation of short halogen-carbonyl oxygen interactions in protein-ligand complexes has spurred us to use computational tools to better understand the strength of halogen bonding interactions. In this study we have produced potential energy curves for the halogen bonding interactions of several halobenzene-formaldehyde complexes. It was found that, for most halogen substituents, a halobenzene and formaldehyde form stable halogen bonded complexes with interaction energies that increase as the size of the halogen substituent increases.
Collapse
Affiliation(s)
- Kevin E Riley
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
39
|
Zou JW, Lu YX, Yu QS, Zhang HX, Jiang YJ. Halogen Bonding: An AIM Analysis of the Weak Interactions. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690320] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Ab initio and atoms in molecules analyses of halogen bonding with a continuum of strength. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2006.08.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Jung DK, Lee Y, Park SG, Park BC, Kim GH, Rhee S. Structural and functional analysis of PucM, a hydrolase in the ureide pathway and a member of the transthyretin-related protein family. Proc Natl Acad Sci U S A 2006; 103:9790-5. [PMID: 16782815 PMCID: PMC1502532 DOI: 10.1073/pnas.0600523103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Indexed: 11/18/2022] Open
Abstract
The ureide pathway, which produces ureides from uric acid, is an essential purine catabolic process for storing and transporting the nitrogen fixed in leguminous plants and some bacteria. PucM from Bacillus subtilis was recently characterized and found to catalyze the second reaction of the pathway, hydrolyzing 5-hydroxyisourate (HIU), a product of uricase in the first step. PucM has 121 amino acid residues and shows high sequence similarity to the functionally unrelated protein transthyretin (TTR), a thyroid hormone-binding protein. Therefore, PucM belongs to the TTR-related proteins (TRP) family. The crystal structures of PucM at 2.0 A and its complexes with the substrate analogs 8-azaxanthine and 5,6-diaminouracil reveal that even with their overall structure similarity, homotetrameric PucM and TTR are completely different, both in their electrostatic potential and in the size of the active sites located at the dimeric interface. Nevertheless, the absolutely conserved residues across the TRP family, including His-14, Arg-49, His-105, and the C-terminal Tyr-118-Arg-119-Gly-120-Ser-121, indeed form the active site of PucM. Based on the results of site-directed mutagenesis of these residues, we propose a possible mechanism for HIU hydrolysis. The PucM structure determined for the TRP family leads to the conclusion that diverse members of the TRP family would function similarly to PucM as HIU hydrolase.
Collapse
Affiliation(s)
- Du-Kyo Jung
- *School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | - Youra Lee
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea; and
| | - Sung Goo Park
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea; and
| | - Byoung Chul Park
- Proteome Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea; and
| | | | - Sangkee Rhee
- *School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
42
|
Himmel DM, Das K, Clark AD, Hughes SH, Benjahad A, Oumouch S, Guillemont J, Coupa S, Poncelet A, Csoka I, Meyer C, Andries K, Nguyen CH, Grierson DS, Arnold E. Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. J Med Chem 2006; 48:7582-91. [PMID: 16302798 DOI: 10.1021/jm0500323] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistance to NNRTIs in the clinic. We report X-ray crystal structures for RT complexed with three different pyridinone derivatives, R157208, R165481, and R221239, at 2.95, 2.9, and 2.43 A resolution, respectively. All three ligands exhibit nanomolar or subnanomolar inhibitory activity against wild-type RT, but varying activities against drug-resistant mutants. R165481 and R221239 differ from most NNRTIs in that binding does not involve significant contacts with Tyr181. These compounds strongly inhibit wild-type HIV-1 RT and drug-resistant variants, including Tyr181Cys and Lys103Asn RT. These properties result in part from an iodine atom on the pyridinone ring of both inhibitors that interacts with the main-chain carbonyl oxygen of Tyr188. An acrylonitrile substituent on R165481 substantially improves the activity of the compound against wild-type RT (and several mutants) and provides a way to generate novel inhibitors that could interact with conserved elements of HIV-1 RT at the polymerase catalytic site. In R221239, there is a flexible linker to a furan ring that permits interactions with Val106, Phe227, and Pro236. These contacts appear to enhance the inhibitory activity of R221239 against the HIV-1 strains that carry the Val106Ala, Tyr188Leu, and Phe227Cys mutations.
Collapse
Affiliation(s)
- Daniel M Himmel
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gales L, Macedo-Ribeiro S, Arsequell G, Valencia G, Saraiva M, Damas A. Human transthyretin in complex with iododiflunisal: structural features associated with a potent amyloid inhibitor. Biochem J 2005; 388:615-21. [PMID: 15689188 PMCID: PMC1138969 DOI: 10.1042/bj20042035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ex vivo and in vitro studies have revealed the remarkable amyloid inhibitory potency and specificity of iododiflunisal in relation to transthyretin [Almeida, Macedo, Cardoso, Alves, Valencia, Arsequell, Planas and Saraiva (2004) Biochem. J. 381, 351-356], a protein implicated in familial amyloidotic polyneuropathy. In the present paper, the crystal structure of transthyretin complexed with this diflunisal derivative is reported, which enables a detailed analysis of the protein-ligand interactions. Iododiflunisal binds very deep in the hormone-binding channel. The iodine substituent is tightly anchored into a pocket of the binding site and the fluorine atoms provide extra hydrophobic contacts with the protein. The carboxylate substituent is involved in an electrostatic interaction with the N(zeta) of a lysine residue. Moreover, ligand-induced conformational alterations in the side chain of some residues result in the formation of new intersubunit hydrogen bonds. All these new interactions, induced by iododiflunisal, increase the stability of the tetramer impairing the formation of amyloid fibrils. The crystal structure of this complex opens perspectives for the design of more specific and effective drugs for familial amyloidotic polyneuropathy patients.
Collapse
Affiliation(s)
- Luís Gales
- *Instituto de Ciências Biomédicas Abel Salazar and Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150 Porto, Portugal
| | | | - Gemma Arsequell
- ‡CSIC, Instituto de Investigaciones Químicas y Ambientales, Barcelona, Spain
| | - Gregorio Valencia
- ‡CSIC, Instituto de Investigaciones Químicas y Ambientales, Barcelona, Spain
| | - Maria João Saraiva
- *Instituto de Ciências Biomédicas Abel Salazar and Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150 Porto, Portugal
| | - Ana Margarida Damas
- *Instituto de Ciências Biomédicas Abel Salazar and Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150 Porto, Portugal
- To whom correspondence should be addressed, at Instituto de Biologia Molecular e Celular (email )
| |
Collapse
|
44
|
Chen L, Collins XH, Tabatabai LB, White WS. Use of a 13C tracer to investigate lutein as a ligand for plasma transthyretin in humans. Lipids 2005; 40:1013-22. [PMID: 16382573 DOI: 10.1007/s11745-005-1464-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The selective accumulation of lutein in the macula of the human retina is likely to be mediated by specific transport and/or binding proteins. Our objective was to determine whether transthyretin (TTR) is a plasma transport protein for lutein. We used a biosynthetic 13C-lutein tracer and GC-combustion interfaced-isotope ratio MS to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for TTR. Subjects (n = 4) each ingested 1 mg of 13C-lutein daily for 3 d and donated blood 24 h after the final dose. For three subjects, the plasma TTR-retinol-binding protein (RBP) complex was partially purified by anion-exchange (diethylaminoethyl, DEAE) chromatography and then dissociated by hydrophobic-interaction chromatography to yield the TTR component. For subject 4, the initial DEAE purification step was omitted and total plasma TTR (RBP-bound and free) was isolated by hydrophobic-interaction chromatography. In each case, the crude TTR fractions were then purified to homogeneity by RBP-Sepharose affinity chromatography. Pure TTR was extracted with chloroform, and unlabeled lutein was added to the extract as a carrier. The mean 13C/12C ratio (expressed in delta notation, delta13C) of the lutein fraction isolated from the plasma TTR extracts of the four subjects was -30.53 +/- 3.29 per thousand. The delta13C value of the unlabeled lutein carrier was -30.97 +/- 0.27per thousand. Thus, no 13C enrichment was detected in association with TTR. We conclude that lutein is not associated with TTR in human plasma after being ingested in physiological amounts.
Collapse
Affiliation(s)
- Liwei Chen
- Center for Designing Foods to Improve Nutrition, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
45
|
Builee TL, Hatherill JR. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review. Drug Chem Toxicol 2005; 27:405-24. [PMID: 15573475 DOI: 10.1081/dct-200039780] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.
Collapse
Affiliation(s)
- T L Builee
- Environmental Studies Program, University of California at Santa Barbara, Santa Barbara, California 93106-4160, USA
| | | |
Collapse
|
46
|
Zou JW, Jiang YJ, Guo M, Hu GX, Zhang B, Liu HC, Yu QS. Ab Initio Study of the Complexes of Halogen-Containing Molecules RX (X=Cl, Br, and I) and NH3: Towards Understanding the Nature of Halogen Bonding and the Electron-Accepting Propensities of Covalently Bonded Halogen Atoms. Chemistry 2005; 11:740-51. [PMID: 15584077 DOI: 10.1002/chem.200400504] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ab initio calculations have been performed on a series of complexes formed between halogen-containing molecules and ammonia to gain a deeper insight into the nature of halogen bonding. It appears that the dihalogen molecules form the strongest halogen-bonded complexes with ammonia, followed by HOX; the charge-transfer-type contribution has been demonstrated to dominate the halogen bonding in these complexes. For the complexes involving carbon-bound halogen molecules, our calculations clearly indicate that electrostatic interactions are mainly responsible for their binding energies. Whereas the halogen-bond strength is significantly enhanced by progressive fluorine substitution, the substitution of a hydrogen atom by a methyl group in the CH(3)X...NH(3) complex weakened the halogen bonding. Moreover, remote substituent effects have also been noted in the complexes of halobenzenes with different para substituents. The influence of the hybridization state of the carbon atom bonded to the halogen atom has also been examined and the results reveal that halogen-bond strengths decrease in the order HC triple bond CX > H(2)C=CHX approximately O=CHX approximately C(6)H(5)X > CH(3)X. In addition, several excellent linear correlations have been established between the interaction energies and both the amount of charge transfer and the electrostatic potentials corresponding to an electron density of 0.002 au along the R-X axis; these correlations provide good models with which to evaluate the electron-accepting abilities of the covalently bonded halogen atoms. Finally, some positively charged halogen-bonded systems have been investigated and the effect of the charge has been discussed.
Collapse
Affiliation(s)
- Jian-Wei Zou
- Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Soechitram SD, Athanasiadou M, Hovander L, Bergman A, Sauer PJJ. Fetal exposure to PCBs and their hydroxylated metabolites in a Dutch cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1208-12. [PMID: 15289169 PMCID: PMC1247484 DOI: 10.1289/ehp.6424] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 04/13/2004] [Indexed: 05/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) are still the most abundant pollutants in wildlife and humans. Hydroxylated PCB metabolites (OH-PCBs) are known to be formed in humans and wildlife. Studies in animals show that these metabolites cause endocrine-related toxicity. The health effects in humans have not yet been evaluated, especially the effect on the fetus and newborn. The aim of this study is to measure the levels of PCBs and OH-PCBs in maternal and cord blood samples in a population with background levels of PCBs. We analyzed 51 maternal and corresponding cord blood samples in the northern part of the Netherlands. The PCB concentrations in maternal plasma ranged from 2 to 293 ng/g lipid, and OH-PCB concentrations from nondetectable (ND) to 0.62 ng/g fresh weight. In cord plasma, PCB concentrations were 1-277 ng/g lipid, and OH-PCB concentrations, ND to 0.47 ng/g fresh weight. The cord versus maternal blood calculated ratio was 1.28 +/- 0.56 for PCBs and 2.11 +/- 1.33 for OH-PCBs, expressed per gram of lipid. When expressed per gram fresh weight, the ratios are 0.32 +/- 0.15 and 0.53 +/- 0.23 for PCBs and OH-PCBs, respectively. A significant correlation between the respective maternal and cord levels for both PCBs and OH-PCBs was found. Our results indicate that OH-PCBs and PCBs are transferred across the placenta to the fetus in concentrations resulting in levels of approximately 50 and 30%, respectively, of those in maternal plasma. More research in humans is needed to evaluate potential negative effects of these endocrine disruptors on the fetus.
Collapse
Affiliation(s)
- Shalini Devi Soechitram
- University Hospital Groningen, Department of Paediatrics/Beatrix Children's Hospital, PO Box 30.001, 9700 RB Groningen, the Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Hörnberg A, Olofsson A, Eneqvist T, Lundgren E, Sauer-Eriksson AE. The β-strand D of transthyretin trapped in two discrete conformations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:93-104. [PMID: 15210129 DOI: 10.1016/j.bbapap.2004.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/30/2004] [Accepted: 04/06/2004] [Indexed: 11/15/2022]
Abstract
Conformational changes in native and variant forms of the human plasma protein transthyretin (TTR) induce several types of amyloid diseases. Biochemical and structural studies have mapped the initiation site of amyloid formation onto residues at the outer C and D beta-strands and their connecting loop. In this study, we characterise an engineered variant of transthyretin, Ala108Tyr/Leu110Glu, which is kinetically and thermodynamically more stable than wild-type transthyretin, and as a consequence less amyloidogenic. Crystal structures of the mutant were determined in two space groups, P2(1)2(1)2 and C2, from crystals grown in the same crystallisation set-up. The structures are identical with the exception for residues Leu55-Leu58, situated at beta-strand D and the following DE loop. In particular, residues Leu55-His56 display large shifts in the C2 structure. There the direct hydrogen bonding between beta-strands D and A has been disrupted and is absent, whereas the beta-strand D is present in the P2(1)2(1)2 structure. This difference shows that from a mixture of metastable TTR molecules, only the molecules with an intact beta-strand D are selected for crystal growth in space group P2(1)2(1)2. The packing of TTR molecules in the C2 crystal form and in the previously determined amyloid TTR (ATTR) Leu55Pro crystal structure is close-to-identical. This packing arrangement is therefore not unique in amyloidogenic mutants of TTR.
Collapse
Affiliation(s)
- Andreas Hörnberg
- Umeå Centre for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
49
|
Eneqvist T, Lundberg E, Karlsson A, Huang S, Santos CRA, Power DM, Sauer-Eriksson AE. High resolution crystal structures of piscine transthyretin reveal different binding modes for triiodothyronine and thyroxine. J Biol Chem 2004; 279:26411-6. [PMID: 15082720 DOI: 10.1074/jbc.m313553200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transthyretin (TTR) is an extracellular transport protein involved in the distribution of thyroid hormones and vitamin A. So far, TTR has only been found in vertebrates, of which piscine TTR displays the lowest sequence identity with human TTR (47%). Human and piscine TTR bind both thyroid hormones 3,5,3'-triiodo-l-thyronine (T(3)) and 3,5,3',5'-tetraiodo-l-thyronine (thyroxine, T(4)). Human TTR has higher affinity for T(4) than T(3), whereas the reverse holds for piscine TTR. X-ray structures of Sparus aurata (sea bream) TTR have been determined as the apo-protein at 1.75 A resolution and bound to ligands T(3) and T(4), both at 1.9 A resolution. The apo structure is similar to human TTR with structural changes only at beta-strand D. This strand forms an extended loop conformation similar to the one in chicken TTR. The piscine TTR.T(4) complex shows the T(4)-binding site to be similar but not identical to human TTR, whereas the TTR.T(3) complex shows the I3' halogen situated at the site normally occupied by the hydroxyl group of T(4). The significantly wider entrance of the hormone-binding channel in sea bream TTR, in combination with its narrower cavity, provides a structural explanation for the different binding affinities of human and piscine TTR to T(3) and T(4).
Collapse
Affiliation(s)
- Therese Eneqvist
- Umea Centre for Molecular Pathogenesis, Umea University, SE-901 87 Umea, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Ishihara A, Nishiyama N, Sugiyama SI, Yamauchi K. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen Comp Endocrinol 2003; 134:36-43. [PMID: 13129501 DOI: 10.1016/s0016-6480(03)00197-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We investigated the effect of endocrine disrupting chemicals (EDCs), including medical, industrial, and agricultural chemicals, on 3,3',5-L-[125I]triiodothyronine ([125I]T3) binding to purified Japanese quail transthyretin (qTTR), a major thyroid hormone-binding protein in plasma, and to the ligand-binding domain of thyroid hormone receptor beta (qTR LBD). Scatchard plots of T3 binding to qTTR and qTR LBD revealed two classes of binding sites, with Kd values of 6.9 and 185 nM, and a single class of binding sites, with Kd value of 0.31 nM, respectively. Among the test chemicals, diethylstilbestrol was the most powerful inhibitor of [125I]T3 binding to qTTR (IC50 < 0.4 nM). Diethylstilbestrol, ioxynil (IC50 =1.1+/-0.5 nM) and pentachlorophenol (IC50 = 6.3+/-3.8 nM) displaced [125I]T3 from qTTR more effectively than unlabeled T3 (IC50 = 9.7+/-0.9 nM) did. Although malathion, 4-nonylphenol, bisphenol A and n-butylbenzyl phthalate were effective inhibitors of [125I]T3 binding to qTTR, their potency was two orders of magnitude less than that of T3. All test chemicals except for diethylstilbestrol had either a weak or no effect on [125I]T3 binding to qTR LBD. These results show that several EDCs tested in this study target qTTR rather than qTR LBD.
Collapse
Affiliation(s)
- Akinori Ishihara
- Department of Biology and Geoscience, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|