1
|
Abstract
The marvel of X-ray crystallography is the beauty and precision of the atomic structures deduced from diffraction patterns. Since these patterns record only amplitudes, phases for the diffracted waves must also be evaluated for systematic structure determination. Thus, we have the phase problem as a central complication, both intellectually for the field and practically so for many analyses. Here, I discuss how we - myself, my laboratory and the diffraction community - have faced the phase problem, considering the evolution of methods for phase evaluation as structural biology developed to the present day. During the explosive growth of macromolecular crystallography, practice in diffraction analysis evolved from a universal reliance on isomorphous replacement to the eventual domination of anomalous diffraction for de novo structure determination. As the Protein Data Bank (PDB) grew and familial relationships among proteins became clear, molecular replacement overtook all other phasing methods; however, experimental phasing remained essential for molecules without obvious precedents, with multi- and single-wavelength anomalous diffraction (MAD and SAD) predominating. While the mathematics-based direct methods had proved to be inadequate for typical macromolecules, they returned to crack substantial selenium substructures in SAD analyses of selenomethionyl proteins. Native SAD, exploiting the intrinsic S and P atoms of biomolecules, has become routine. Selenomethionyl SAD and MAD were the mainstays of structural genomics efforts to populate the PDB with novel proteins. A recent dividend has been paid in the success of PDB-trained artificial intelligence approaches for protein structure prediction. Currently, molecular replacement with AlphaFold models often obviates the need for experimental phase evaluation. For multiple reasons, we are now unfazed by the phase problem. Cryo-EM analysis is an attractive alternative to crystallography for many applications faced by today's structural biologists. It simply finesses the phase problem; however, the principles and procedures of diffraction analysis remain pertinent and are adopted in single-particle cryo-EM studies of biomolecules.
Collapse
Affiliation(s)
- Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
2
|
Naretto A, Fanuel M, Ropartz D, Rogniaux H, Larocque R, Czjzek M, Tellier C, Michel G. The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily. J Biol Chem 2019; 294:6923-6939. [PMID: 30846563 DOI: 10.1074/jbc.ra118.006609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and β-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (β-agarases and β-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family β-agarases and β-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical β-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from β-porphyranases and classical β-agarases.
Collapse
Affiliation(s)
- Anaïs Naretto
- From Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Mathieu Fanuel
- the Institut National de la Recherche Agronomique (INRA), Unité de Recherche Biopolymères Interactions Assemblages (BIA), 44000 Nantes, France, and
| | - David Ropartz
- the Institut National de la Recherche Agronomique (INRA), Unité de Recherche Biopolymères Interactions Assemblages (BIA), 44000 Nantes, France, and
| | - Hélène Rogniaux
- the Institut National de la Recherche Agronomique (INRA), Unité de Recherche Biopolymères Interactions Assemblages (BIA), 44000 Nantes, France, and
| | - Robert Larocque
- From Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Mirjam Czjzek
- From Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Charles Tellier
- the Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286 CNRS, Université de Nantes, 2 Rue de la Houssinière, 44322 Nantes, France
| | - Gurvan Michel
- From Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France,
| |
Collapse
|
3
|
Basu S, Finke A, Vera L, Wang M, Olieric V. Making routine native SAD a reality: lessons from beamline X06DA at the Swiss Light Source. Acta Crystallogr D Struct Biol 2019; 75:262-271. [PMID: 30950397 PMCID: PMC6450063 DOI: 10.1107/s2059798319003103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Native single-wavelength anomalous dispersion (SAD) is the most attractive de novo phasing method in macromolecular crystallography, as it directly utilizes intrinsic anomalous scattering from native crystals. However, the success of such an experiment depends on accurate measurements of the reflection intensities and therefore on careful data-collection protocols. Here, the low-dose, multiple-orientation data-collection protocol for native SAD phasing developed at beamline X06DA (PXIII) at the Swiss Light Source is reviewed, and its usage over the last four years on conventional crystals (>50 µm) is reported. Being experimentally very simple and fast, this method has gained popularity and has delivered 45 de novo structures to date (13 of which have been published). Native SAD is currently the primary choice for experimental phasing among X06DA users. The method can address challenging cases: here, native SAD phasing performed on a streptavidin-biotin crystal with P21 symmetry and a low Bijvoet ratio of 0.6% is highlighted. The use of intrinsic anomalous signals as sequence markers for model building and the assignment of ions is also briefly described.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Aaron Finke
- MacCHESS, Cornell University, Ithaca, New York, USA
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
4
|
Liebschner D, Yamada Y, Matsugaki N, Senda M, Senda T. On the influence of crystal size and wavelength on native SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:728-41. [PMID: 27303793 DOI: 10.1107/s2059798316005349] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/29/2016] [Indexed: 11/11/2022]
Abstract
Native SAD is an emerging phasing technique that uses the anomalous signal of native heavy atoms to obtain crystallographic phases. The method does not require specific sample preparation to add anomalous scatterers, as the light atoms contained in the native sample are used as marker atoms. The most abundant anomalous scatterer used for native SAD, which is present in almost all proteins, is sulfur. However, the absorption edge of sulfur is at low energy (2.472 keV = 5.016 Å), which makes it challenging to carry out native SAD phasing experiments as most synchrotron beamlines are optimized for shorter wavelength ranges where the anomalous signal of sulfur is weak; for longer wavelengths, which produce larger anomalous differences, the absorption of X-rays by the sample, solvent, loop and surrounding medium (e.g. air) increases tremendously. Therefore, a compromise has to be found between measuring strong anomalous signal and minimizing absorption. It was thus hypothesized that shorter wavelengths should be used for large crystals and longer wavelengths for small crystals, but no thorough experimental analyses have been reported to date. To study the influence of crystal size and wavelength, native SAD experiments were carried out at different wavelengths (1.9 and 2.7 Å with a helium cone; 3.0 and 3.3 Å with a helium chamber) using lysozyme and ferredoxin reductase crystals of various sizes. For the tested crystals, the results suggest that larger sample sizes do not have a detrimental effect on native SAD data and that long wavelengths give a clear advantage with small samples compared with short wavelengths. The resolution dependency of substructure determination was analyzed and showed that high-symmetry crystals with small unit cells require higher resolution for the successful placement of heavy atoms.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| |
Collapse
|
5
|
Jam M, Ficko-Blean E, Labourel A, Larocque R, Czjzek M, Michel G. Unraveling the multivalent binding of a marine family 6 carbohydrate-binding module with its native laminarin ligand. FEBS J 2016; 283:1863-79. [DOI: 10.1111/febs.13707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Murielle Jam
- Sorbonne Université; UPMC Univ Paris 06, CNRS, UMR 8227; Integrative Biology of Marine Models; Station Biologique de Roscoff; Roscoff Cedex Bretagne France
| | - Elizabeth Ficko-Blean
- Sorbonne Université; UPMC Univ Paris 06, CNRS, UMR 8227; Integrative Biology of Marine Models; Station Biologique de Roscoff; Roscoff Cedex Bretagne France
| | - Aurore Labourel
- Sorbonne Université; UPMC Univ Paris 06, CNRS, UMR 8227; Integrative Biology of Marine Models; Station Biologique de Roscoff; Roscoff Cedex Bretagne France
| | - Robert Larocque
- Sorbonne Université; UPMC Univ Paris 06, CNRS, UMR 8227; Integrative Biology of Marine Models; Station Biologique de Roscoff; Roscoff Cedex Bretagne France
| | - Mirjam Czjzek
- Sorbonne Université; UPMC Univ Paris 06, CNRS, UMR 8227; Integrative Biology of Marine Models; Station Biologique de Roscoff; Roscoff Cedex Bretagne France
| | - Gurvan Michel
- Sorbonne Université; UPMC Univ Paris 06, CNRS, UMR 8227; Integrative Biology of Marine Models; Station Biologique de Roscoff; Roscoff Cedex Bretagne France
| |
Collapse
|
6
|
Cianci M, Groves MR, Barford D, Schneider TR. Data collection with a tailored X-ray beam size at 2.69 Å wavelength (4.6 keV): sulfur SAD phasing of Cdc23(Nterm). Acta Crystallogr D Struct Biol 2016; 72:403-12. [PMID: 26960127 PMCID: PMC4784671 DOI: 10.1107/s2059798315010268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 02/02/2023] Open
Abstract
The capability to reach wavelengths of up to 3.1 Å at the newly established EMBL P13 beamline at PETRA III, the new third-generation synchrotron at DESY in Hamburg, provides the opportunity to explore very long wavelengths to harness the sulfur anomalous signal for phase determination. Data collection at λ = 2.69 Å (4.6 keV) allowed the crystal structure determination by sulfur SAD phasing of Cdc23(Nterm), a subunit of the multimeric anaphase-promoting complex (APC/C). At this energy, Cdc23(Nterm) has an expected Bijvoet ratio〈|Fanom|〉/〈F〉of 2.2%, with 282 residues, including six cysteines and five methionine residues, and two molecules in the asymmetric unit (65.4 kDa; 12 Cys and ten Met residues). Selectively illuminating two separate portions of the same crystal with an X-ray beam of 50 µm in diameter allowed crystal twinning to be overcome. The crystals diffracted to 3.1 Å resolution, with unit-cell parameters a = b = 61.2, c = 151.5 Å, and belonged to space group P43. The refined structure to 3.1 Å resolution has an R factor of 18.7% and an Rfree of 25.9%. This paper reports the structure solution, related methods and a discussion of the instrumentation.
Collapse
Affiliation(s)
| | - Matthew R. Groves
- Structural Biology Unit, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - David Barford
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, England
| | | |
Collapse
|
7
|
Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 2014; 12:131-3. [PMID: 25506719 DOI: 10.1038/nmeth.3211] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/29/2014] [Indexed: 11/08/2022]
Abstract
We describe a data collection method that uses a single crystal to solve X-ray structures by native SAD (single-wavelength anomalous diffraction). We solved the structures of 11 real-life examples, including a human membrane protein, a protein-DNA complex and a 266-kDa multiprotein-ligand complex, using this method. The data collection strategy is suitable for routine structure determination and can be implemented at most macromolecular crystallography synchrotron beamlines.
Collapse
|
8
|
Abstract
X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of MAD (multiwavelength anomalous diffraction) and SAD (single-wavelength anomalous diffraction) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications.
Collapse
Affiliation(s)
- Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, and Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032 USA. New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027 USA
| |
Collapse
|
9
|
Labourel A, Jam M, Jeudy A, Hehemann JH, Czjzek M, Michel G. The β-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. J Biol Chem 2013; 289:2027-42. [PMID: 24337571 DOI: 10.1074/jbc.m113.538843] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminarinase is commonly used to describe β-1,3-glucanases widespread throughout Archaea, bacteria, and several eukaryotic lineages. Some β-1,3-glucanases have already been structurally and biochemically characterized, but very few from organisms that are in contact with genuine laminarin, the storage polysaccharide of brown algae. Here we report the heterologous expression and subsequent biochemical and structural characterization of ZgLamAGH16 from Zobellia galactanivorans, the first GH16 laminarinase from a marine bacterium associated with seaweeds. ZgLamAGH16 contains a unique additional loop, compared with other GH16 laminarinases, which is composed of 17 amino acids and gives a bent shape to the active site cleft of the enzyme. This particular topology is perfectly adapted to the U-shaped conformation of laminarin chains in solution and thus explains the predominant specificity of ZgLamAGH16 for this substrate. The three-dimensional structure of the enzyme and two enzyme-substrate complexes, one with laminaritetraose and the other with a trisaccharide of 1,3-1,4-β-d-glucan, have been determined at 1.5, 1.35, and 1.13 Å resolution, respectively. The structural comparison of substrate recognition pattern between these complexes allows the proposition that ZgLamAGH16 likely diverged from an ancestral broad specificity GH16 β-glucanase and evolved toward a bent active site topology adapted to efficient degradation of algal laminarin.
Collapse
Affiliation(s)
- Aurore Labourel
- From Sorbonne Universités, UPMC Université Paris 06, UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff, F-29682 Roscoff, Bretagne, France and
| | | | | | | | | | | |
Collapse
|
10
|
Huet J, Teinkela Mbosso EJ, Soror S, Meyer F, Looze Y, Wintjens R, Wohlkönig A. High-resolution structure of a papaya plant-defense barwin-like protein solved by in-house sulfur-SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2017-26. [PMID: 24100320 DOI: 10.1107/s0907444913018015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/29/2013] [Indexed: 11/11/2022]
Abstract
The first crystal structure of a barwin-like protein, named carwin, has been determined at high resolution by single-wavelength anomalous diffraction (SAD) phasing using the six intrinsic S atoms present in the protein. The barwin-like protein was purified from Carica papaya latex and crystallized in the orthorhombic space group P212121. Using in-house Cu Kα X-ray radiation, 16 cumulative diffraction data sets were acquired to increase the signal-to-noise level and thereby the anomalous scattering signal. A sequence-database search on the papaya genome identified two carwin isoforms of 122 residues in length, both containing six S atoms that yield an estimated Bijvoet ratio of 0.93% at 1.54 Å wavelength. A systematic analysis of data quality and redundancy was performed to assess the capacity to locate the S atoms and to phase the data. It was observed that the crystal decay was low during data collection and that successful S-SAD phasing could be obtained with a relatively low data multiplicity of about 7. Using a synchrotron source, high-resolution data (1 Å) were collected from two different crystal forms of the papaya latex carwin. The refined structures showed a central β-barrel of six strands surrounded by several α-helices and loops. The β-barrel of carwin appears to be a common structural module that is shared within several other unrelated proteins. Finally, the possible biological function of the protein is discussed.
Collapse
Affiliation(s)
- Joëlle Huet
- Laboratoire des Biopolymères et des Nanomatériaux Supramoléculaires (CP206/04), Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim MK, Lee S, An YJ, Jeong CS, Ji CJ, Lee JW, Cha SS. In-house zinc SAD phasing at Cu Kα edge. Mol Cells 2013; 36:74-81. [PMID: 23686432 PMCID: PMC3887929 DOI: 10.1007/s10059-013-0074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022] Open
Abstract
De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
| | - Sangmin Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
- Ocean Science and Technology School, Pusan 606-791,
Korea
| | - Young Jun An
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
| | - Chang-Sook Jeong
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
| | - Chang-Jun Ji
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Jin-Won Lee
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Sun-Shin Cha
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744,
Korea
- Ocean Science and Technology School, Pusan 606-791,
Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon 305-333
Korea
| |
Collapse
|
12
|
Vijayakumar B, Velmurugan D. Use of europium ions for SAD phasing of lysozyme at the Cu Kα wavelength. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:20-4. [PMID: 23295480 PMCID: PMC3539697 DOI: 10.1107/s1744309112047562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/19/2012] [Indexed: 11/10/2022]
Abstract
Europium is shown to be a good anomalous scatterer in SAD phasing for solving the structure of biological macromolecules. The large value of the anomalous contribution of europium, f'' = 11.17 e(-), at the Cu Kα wavelength is an advantage in de novo phasing and automated model building. Tetragonal crystals of hen egg-white lysozyme (HEWL) incorporating europium(III) chloride (50 mM) were obtained which diffracted to a resolution of 2.3 Å at a wavelength of 1.54 Å (Cu Kα). The master data set (360° frames) was split and analyzed for anomalous signal-to-noise ratio, multiplicity, completeness, SAD phasing and automated building. The structure solution and model building of the split data sets were carried out using phenix.autosol and phenix.autobuild. The contributions of the Eu ions to SAD phasing using in-house data collection are discussed. This study revealed successful lysozyme phasing by SAD using laboratory-source data involving Eu ions, which are mainly coordinated by the side chains of Asn46, Asp52 and Asp101 together with some water molecules.
Collapse
Affiliation(s)
- Balakrishnan Vijayakumar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai 600 025, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai 600 025, India
| |
Collapse
|
13
|
Zhu JY, Fu ZQ, Chen L, Xu H, Chrzas J, Rose J, Wang BC. Structure of the Archaeoglobus fulgidus orphan ORF AF1382 determined by sulfur SAD from a moderately diffracting crystal. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1242-52. [PMID: 22948926 PMCID: PMC3489105 DOI: 10.1107/s0907444912026212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/09/2012] [Indexed: 12/22/2022]
Abstract
The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent a novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (ΔF(anom)/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R(free) = 26.8%) to 2.3 Å resolution (PDB entry 3o3k). High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R(free) = 21.4%) to 1.85 Å resolution (PDB entry 3ov8). AF1382 has a winged-helix-turn-helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1-82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.
Collapse
Affiliation(s)
- Jin-Yi Zhu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Qing Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Southeast Regional Collaborative Access Team (SER-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Hao Xu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John Chrzas
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Southeast Regional Collaborative Access Team (SER-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - John Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Southeast Regional Collaborative Access Team (SER-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Southeast Regional Collaborative Access Team (SER-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| |
Collapse
|
14
|
Ru H, Zhao L, Ding W, Jiao L, Shaw N, Liang W, Zhang L, Hung LW, Matsugaki N, Wakatsuki S, Liu ZJ. S-SAD phasing study of death receptor 6 and its solution conformation revealed by SAXS. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:521-30. [PMID: 22525750 PMCID: PMC3335285 DOI: 10.1107/s0907444912004490] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/02/2012] [Indexed: 12/17/2022]
Abstract
A subset of tumour necrosis factor receptor (TNFR) superfamily members contain death domains in their cytoplasmic tails. Death receptor 6 (DR6) is one such member and can trigger apoptosis upon the binding of a ligand by its cysteine-rich domains (CRDs). The crystal structure of the ectodomain (amino acids 1-348) of human death receptor 6 (DR6) encompassing the CRD region was phased using the anomalous signal from S atoms. In order to explore the feasibility of S-SAD phasing at longer wavelengths (beyond 2.5 Å), a comparative study was performed on data collected at wavelengths of 2.0 and 2.7 Å. In spite of sub-optimal experimental conditions, the 2.7 Å wavelength used for data collection showed potential for S-SAD phasing. The results showed that the R(ano)/R(p.i.m.) ratio is a good indicator for monitoring the anomalous data quality when the anomalous signal is relatively strong, while d''/sig(d'') calculated by SHELXC is a more sensitive and stable indicator applicable for grading a wider range of anomalous data qualities. The use of the `parameter-space screening method' for S-SAD phasing resulted in solutions for data sets that failed during manual attempts. SAXS measurements on the ectodomain suggested that a dimer defines the minimal physical unit of an unliganded DR6 molecule in solution.
Collapse
Affiliation(s)
- Heng Ru
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing 100 049, People’s Republic of China
| | - Lixia Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Wei Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Lianying Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Neil Shaw
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, People’s Republic of China
| | - Wenguang Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Naohiro Matsugaki
- Structure Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Soichi Wakatsuki
- Structure Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, People’s Republic of China
| |
Collapse
|
15
|
Doutch J, Hough MA, Hasnain SS, Strange RW. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:19-29. [PMID: 22186640 DOI: 10.1107/s0909049511049004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
The sulfur SAD phasing method allows the determination of protein structures de novo without reference to derivatives such as Se-methionine. The feasibility for routine automated sulfur SAD phasing using a number of current protein crystallography beamlines at several synchrotrons was examined using crystals of trimeric Achromobacter cycloclastes nitrite reductase (AcNiR), which contains a near average proportion of sulfur-containing residues and two Cu atoms per subunit. Experiments using X-ray wavelengths in the range 1.9-2.4 Å show that we are not yet at the level where sulfur SAD is routinely successful for automated structure solution and model building using existing beamlines and current software tools. On the other hand, experiments using the shortest X-ray wavelengths available on existing beamlines could be routinely exploited to solve and produce unbiased structural models using the similarly weak anomalous scattering signals from the intrinsic metal atoms in proteins. The comparison of long-wavelength phasing (the Bijvoet ratio for nine S atoms and two Cu atoms is ~1.25% at ~2 Å) and copper phasing (the Bijvoet ratio for two Cu atoms is 0.81% at ~0.75 Å) for AcNiR suggests that lower data multiplicity than is currently required for success should in general be possible for sulfur phasing if appropriate improvements to beamlines and data collection strategies can be implemented.
Collapse
Affiliation(s)
- James Doutch
- Barkla X-ray Laboratory of Biophysics, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
16
|
Vennila KN, Velmurugan D. In-house SAD phasing with surface-bound cerium ions. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1662-5. [PMID: 22139192 PMCID: PMC3232165 DOI: 10.1107/s1744309111035718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022]
Abstract
The anomalous signal of cerium(III) ions present in a derivative of hen egg-white lysozyme (HEWL) crystals obtained by the addition of 0.025 M cerium chloride to the crystallization medium was used for phasing. X-ray intensity data were collected to 2 Å resolution using an in-house Cu Kα radiation data-collection facility. Phasing of a single-wavelength data set purely based on its f'' led to a clearly interpretable electron-density map. Automated substructure solution by AutoSol in PHENIX resulted in four highest peaks corresponding to cerium(III) ions with data limited to 3 Å resolution, and about 90% of the residues were built automatically by AutoBuild in PHENIX. Cerium(III) ions bound on the surface of the enzyme are found to interact mainly with the main-chain and side-chain carbonyl groups of Asn, Glu, Tyr and Asp and with water molecules. Ce(3+) ions were used as potential anomalous scatterers for the in-house single-wavelength anomalous scattering technique, and this is proposed as a tool for macromolecular phasing and for the study of the interactions of trivalent metal ions with proteins and other macromolecules.
Collapse
Affiliation(s)
- K Natesan Vennila
- CAS in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai, Tamilnadu, India
| | | |
Collapse
|
17
|
Unge J, Mueller-Dieckmann C, Panjikar S, Tucker PA, Lamzin VS, Weiss MS. On the routine use of soft X-rays in macromolecular crystallography. Part V. Molecular replacement and anomalous scattering. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:729-38. [DOI: 10.1107/s0907444911024887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/24/2011] [Indexed: 11/10/2022]
|
18
|
Kitago Y, Watanabe N, Tanaka I. Semi-automated protein crystal mounting device for the sulfur single-wavelength anomalous diffraction method. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889809054272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.
Collapse
|
19
|
Abendroth J, Mitchell DD, Korotkov KV, Johnson TL, Kreger A, Sandkvist M, Hol WGJ. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J Struct Biol 2009; 166:303-15. [PMID: 19324092 DOI: 10.1016/j.jsb.2009.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/04/2009] [Accepted: 03/18/2009] [Indexed: 12/30/2022]
Abstract
The type 2 secretion system (T2SS), a multi-protein machinery that spans both the inner and the outer membranes of Gram-negative bacteria, is used for the secretion of several critically important proteins across the outer membrane. Here we report the crystal structure of the N-terminal cytoplasmic domain of EpsF, an inner membrane spanning T2SS protein from Vibrio cholerae. This domain consists of a bundle of six anti-parallel helices and adopts a fold that has not been described before. The long C-terminal helix alpha6 protrudes from the body of the domain and most likely continues as the first transmembrane helix of EpsF. Two N-terminal EpsF domains form a tight dimer with a conserved interface, suggesting that the observed dimer occurs in the T2SS of many bacteria. Two calcium binding sites are present in the dimer interface with ligands provided for each site by both subunits. Based on this new structure, sequence comparisons of EpsF homologs and localization studies of GFP fused with EpsF, we propose that the second cytoplasmic domain of EpsF adopts a similar fold as the first cytoplasmic domain and that full-length EpsF, and its T2SS homologs, have a three-transmembrane helix topology.
Collapse
Affiliation(s)
- Jan Abendroth
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, 1959 Pacific Ave. NE, Box 357742, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pesce A, Milani M, Nardini M, Bolognesi M. Mapping Heme‐Ligand Tunnels in Group I Truncated(2/2) Hemoglobins. Methods Enzymol 2008; 436:303-15. [DOI: 10.1016/s0076-6879(08)36017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Agarwal R, Bonanno JB, Burley SK, Swaminathan S. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2006; 62:383-91. [PMID: 16552139 PMCID: PMC1431508 DOI: 10.1107/s0907444906001600] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/13/2006] [Indexed: 05/07/2023]
Abstract
The availability of high-intensity synchrotron facilities, technological advances in data-collection techniques and improved data-reduction and crystallographic software have ushered in a new era in high-throughput macromolecular crystallography. Here, the de novo automated crystal structure determination at 1.28 A resolution of an NAD(P)H-dependent FMN reductase flavoprotein from Pseudomonas aeruginosa PA01-derived protein Q9I4D4 using the anomalous signal from an unusually small number of S atoms is reported. Although this protein lacks the flavodoxin key fingerprint motif [(T/S)XTGXT], it has been confirmed to bind flavin mononucleotide and the binding site was identified via X-ray crystallography. This protein contains a novel flavin mononucleotide-binding site GSLRSGSYN, which has not been previously reported. Detailed statistics pertaining to sulfur phasing and other factors contributing to structure determination are discussed. Structural comparisons of the apoenzyme and the protein complexed with flavin mononucleotide show conformational changes on cofactor binding. NADPH-dependent activity has been confirmed with biochemical assays.
Collapse
Affiliation(s)
- Rakhi Agarwal
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | |
Collapse
|
22
|
Quigley PM, Korotkov K, Baneyx F, Hol WGJ. A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Protein Sci 2004; 13:269-77. [PMID: 14691241 PMCID: PMC2286521 DOI: 10.1110/ps.03399604] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heat shock proteins and proteases play a crucial role in cell survival under conditions of environmental stress. The heat shock protein Hsp31, produced by gene hchA at elevated temperatures in Escherichia coli, is a homodimeric protein consisting of a large A domain and a smaller P domain connected by a linker. Two catalytic triads are present per dimer, with the Cys and His contributed by the A domain and an Asp by the P domain. A new crystal Form II confirms the dimer and catalytic triad arrangement seen in the earlier crystal Form I. In addition, several loops exhibit increased flexibility compared to the previous Hsp31 dimer structure. In particular, loops D2 and D3 are intriguing because their mobility leads to the exposure of a sizable hydrophobic patch made up by surface areas of both subunits near the dimer interface. The residues creating this hydrophobic surface are completely conserved in the Hsp31 family. At the same time, access to the catalytic triad is increased. These observations lead to the hypothesis for the functioning of Hsp31 wherein loops D2 and D3 play a key role: first, at elevated temperatures, by becoming mobile and uncovering a large hydrophobic area that helps in binding to client proteins, and second, by removing the client protein from the hydrophobic patch when the temperature decreases and the loops adopt their low-temperature positions at the Hsp31 surface. The proposed mode of action of flexible loops in the functioning of Hsp31 may be a general principle employed by other chaperones.
Collapse
Affiliation(s)
- Paulene M Quigley
- Department of Biochemistry, Department of Chemical Engineering, and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195-7742, USA
| | | | | | | |
Collapse
|
23
|
Chew DKW, Orshal JM, Khalil RA. Elastase Promotes Aortic Dilation by Inhibiting Ca2+ Influx into Vascular Smooth Muscle. J Cardiovasc Pharmacol 2004; 43:504-13. [PMID: 15085061 DOI: 10.1097/00005344-200404000-00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular disease with, as of yet, unclear mechanism. Increased elastase activity and elastin degradation in the aorta are consistent findings in human AAA. Also, elastase perfusion of the aorta promotes aortic dilation in animal models of AAA. Although elastase-induced degradation of extracellular matrix proteins and the ensuing inflammation of the aortic wall have been implicated as possible causes of the aortic dilation in AAA, little is known regarding the effects of elastase on the mechanisms of aortic smooth muscle contraction. The purpose of this study was to test the hypothesis that elastase promotes aortic dilation by inhibiting the Ca2+ mobilization mechanisms of smooth muscle contraction. Isometric contraction and 45Ca2+ influx were measured in aortic strips isolated from male Sprague-Dawley rats non-treated or treated with elastase. Initial experiments suggested that elastase alone caused matrix degradation. To avoid potential degradation of the extracellular matrix proteins by elastase, the same experiments were repeated in the presence of saturating concentrations of elastin (10 mg/ml). In normal Krebs (2.5 mM Ca2+), phenylephrine (Phe, 10(-5) M) caused contraction of the aortic strips that was significantly inhibited by elastase. The elastase-induced inhibition of Phe contraction was concentration- and time-dependent. At 5 U/ml elastase, the inhibition of Phe contraction was rapid in onset (2.4 +/- 0.3 minutes) and complete in 32 +/- 4 minutes. The inhibitory effects of elastase on Phe contraction were partially reversible. In Ca2+-free (2 mM EGTA) Krebs, Phe caused a small contraction that was not inhibited by elastase, suggesting that elastase does not inhibit Ca2+ release from the intracellular stores. Membrane depolarization by 96 mM KCl, which stimulates Ca2+ entry from the extracellular space, caused a contraction that was inhibited by elastase in a time-dependent and reversible fashion. The reversible inhibitory effects of elastase, particularly in the presence of saturating concentrations of elastin, suggest that they are not due to dissolution of the extracellular matrix or permanent damage to the smooth muscle contractile proteins. Elastase also caused significant inhibition of Phe- and KCl-induced 45Ca2+ influx. These data suggest that elastase promotes aortic relaxation by inhibiting the Ca2+ entry mechanism of vascular smooth muscle contraction, and thus further explain the role of increased elastase activity during the early development of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium/metabolism
- Dose-Response Relationship, Drug
- In Vitro Techniques
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pancreatic Elastase/pharmacology
- Rats
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- David K W Chew
- Department of Veterans Affairs Medical Center, West Roxbury, Massachusetts, USA
| | | | | |
Collapse
|
24
|
Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, Lowe E, Mahoney DJ, Tammi MI, Kahmann JD, Campbell ID, Day AJ, Jackson DG. Structure of the Regulatory Hyaluronan Binding Domain in the Inflammatory Leukocyte Homing Receptor CD44. Mol Cell 2004; 13:483-96. [PMID: 14992719 DOI: 10.1016/s1097-2765(04)00080-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/24/2003] [Accepted: 12/30/2003] [Indexed: 11/17/2022]
Abstract
Adhesive interactions involving CD44, the cell surface receptor for hyaluronan, underlie fundamental processes such as inflammatory leukocyte homing and tumor metastasis. Regulation of such events is critical and appears to be effected by changes in CD44 N-glycosylation that switch the receptor "on" or "off" under appropriate circumstances. How altered glycosylation influences binding of hyaluronan to the lectin-like Link module in CD44 is unclear, although evidence suggests additional flanking sequences peculiar to CD44 may be involved. Here we show using X-ray crystallography and NMR spectroscopy that these sequences form a lobular extension to the Link module, creating an enlarged HA binding domain and a formerly unidentified protein fold. Moreover, the disposition of key N-glycosylation sites reveals how specific sugar chains could alter both the affinity and avidity of CD44 HA binding. Our results provide the necessary structural framework for understanding the diverse functions of CD44 and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Peter Teriete
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schiltz M, Fourme R, Prangé T. Use of noble gases xenon and krypton as heavy atoms in protein structure determination. Methods Enzymol 2003; 374:83-119. [PMID: 14696369 DOI: 10.1016/s0076-6879(03)74004-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Marc Schiltz
- LURE (CNRS-CEAMEN), Batiment 209d, Universite Paris XI, 91898 Orsay, France
| | | | | |
Collapse
|
26
|
Abstract
The interactions between double helical DNA and cations, specifically mono- and divalent metal ions, have recently received increased attention. Molecular dynamics simulations, solution NMR, and X-ray crystallography have all shed light on the coordination of ions in the major and minor grooves of DNA. Metal ion interactions may play key roles in the control of DNA conformation and topology, but despite progress in locating the ions and determining their precise binding modes, it remains difficult to figure out just how important ions really are. What have we learned and what remains to be done?
Collapse
Affiliation(s)
- Martin Egli
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
27
|
Weiss MS, Sicker T, Hilgenfeld R. Soft X-rays, high redundancy, and proper scaling: a new procedure for automated protein structure determination via SAS. Structure 2001; 9:771-7. [PMID: 11566127 DOI: 10.1016/s0969-2126(01)00647-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- M S Weiss
- Institute of Molecular Biotechnology, Department of Structural Biology and Crystallography, Beutenbergstr. 11, Jena D-07745, Germany.
| | | | | |
Collapse
|