1
|
Metscher E, Meziyerh S, Arends EJ, Teng YKO, de Vries APJ, Swen JJ, Moes DJAR. Dried blood spot LC-MS/MS quantification of voclosporin in renal transplant recipients using volumetric dried blood spot sampling. J Pharm Biomed Anal 2025; 255:116647. [PMID: 39729691 DOI: 10.1016/j.jpba.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Voclosporin is a potent immunosuppressive agent currently approved for treating active lupus nephritis. Based on its potential antiviral activity, it has also been investigated as immunosuppressive agent in an investigator-initiated study in SARS-CoV2 positive kidney transplant recipients. As with many immunosuppressive agents, optimizing dosing regimens to achieve therapeutic efficacy while minimizing toxicity remains a critical challenge in clinical practice. To prevent organ rejection as well as infections, the prescribed immunosuppression needs to be well balanced. Dried blood spot (DBS) sampling has enabled development of remote voclosporin therapeutic drug monitoring. Here, we report on the development and analytical validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for quantification of voclosporin in dried blood spots. Method development was based on previously developed assays for the quantification of tacrolimus, everolimus, sirolimus, cyclosporin, mycophenolic acid, creatinine and iohexol in DBS and voclosporin in whole blood using LC-MS/MS. HemaXis™ volumetric blood spot devices were used for sample collection. The sample purification was based on the extraction of voclosporin from the DBS samples. Stable isotopically labeled voclosporin-D4 was used as an internal standard prior to sample purification. Bland Altman and Passing bablok analysis were performed for cross validation between whole blood and DBS samples. The method was successfully validated following the current ICH M10 guidelines. The dynamic range for the analyte was 10-600 µg/L with an excellent mean coefficient of correlation of 0.9978. The within run and between run precision and accuracy were both within the acceptance criteria. The cross-validation against the whole blood method shows that the quantified voclosporin results are promising. This developed dried blood spot LC-MS/MS method was successfully validated and provides an easy, efficient workflow for therapeutic drug monitoring in kidney transplant patients or remote pharmacokinetic studies in lupus nephritis patients treated with voclosporin.
Collapse
Affiliation(s)
- E Metscher
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalized Medicine, Leiden, the Netherlands
| | - S Meziyerh
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - E J Arends
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Y K O Teng
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - A P J de Vries
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Transplant Center, Leiden, the Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalized Medicine, Leiden, the Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalized Medicine, Leiden, the Netherlands.
| |
Collapse
|
2
|
Du Y, Semghouli A, Wang Q, Mei H, Kiss L, Baecker D, Soloshonok VA, Han J. FDA-approved drugs featuring macrocycles or medium-sized rings. Arch Pharm (Weinheim) 2025; 358:e2400890. [PMID: 39865335 PMCID: PMC11771699 DOI: 10.1002/ardp.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025]
Abstract
Macrocycles or medium-sized rings offer diverse functionality and stereochemical complexity in a well-organized ring structure, allowing them to fulfill various biochemical functions, resulting in high affinity and selectivity for protein targets, while preserving sufficient bioavailability to reach intracellular compartments. These features have made macrocycles attractive candidates in organic synthesis and drug discovery. Since the 20th century, more than three-score macrocyclic drugs, including radiopharmaceuticals, have been approved by the US Food and Drug Administration (FDA) for treating bacterial and viral infections, cancer, obesity, immunosuppression, inflammatory, and neurological disorders, managing cardiovascular diseases, diabetes, and more. This review presents 17 FDA-approved macrocyclic drugs during the past 5 years, highlighting their importance and critical role in modern therapeutics, and the innovative synthetic approaches for the construction of these macrocycles.
Collapse
Affiliation(s)
- Youlong Du
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Anas Semghouli
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Qian Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Haibo Mei
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of ChemistryUniversity of the Basque Country UPV/EHUSan SebastiánSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Jianlin Han
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| |
Collapse
|
3
|
Alqadi R, Alqumia A, Alhomoud IS, Alhowail A, Aldubayan M, Mohammed HA, Alhmoud H, Khan RA. Cyclosporine: Immunosuppressive effects, entwined toxicity, and clinical modulations of an organ transplant drug. Transpl Immunol 2024; 88:102147. [PMID: 39549927 DOI: 10.1016/j.trim.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
The discovery and use of cyclosporine since its inception into the clinics in the '70s and up have played a crucial role in advancing transplant therapy, and containment of the immune-based rejections. The drug has improved the high rates of acute rejections and has supported early graft survival. However, the long-term survival of renal allografts is still less prevalent, and an in-depth analysis, as well as reported findings led us to believe that there is a chronic irreversible component to the drug, that is tackled through its metabolites, and that causes toxicity, which has led to new therapies, including monoclonal antibody-based medications. A recap of the immunosuppressive effects, and entwined toxicity of the drug, now relegated primarily to bone marrow early transplants, is being overviewed for the past protocols that were used to minimize, and avoid, or use this calcineurin inhibitor class of drug, cyclosporine, in combination with other drugs. The current review circumvents the cyclosporine's mechanism of action, pathophysiology, cytochrome roles, and other factors associated with acute and chronic toxicity developments. The review also attempts to find conclusive strategies reported in the recent studies to avoid its toxic side effects, and develop a safe-use strategy for the drug. Gastrointestinal decontamination, supporting the airway, monitoring for signs of respiratory insufficiency, monitoring for severe reactions, such as seizures, need for administration of oxygen, and avoiding the administration of drugs, that increase the blood levels of the cyclosporine, are beneficial interventions, when encountering cyclosporine toxicity cases. The constrained therapeutic outcomes have also led to redesign, and making use of combined formulations to reassess the pharmacokinetics of the drug.
Collapse
Affiliation(s)
- Razan Alqadi
- Department of Pharmacy, King Saud Hospital, Unaizah, Qassim 56249, Saudi Arabia
| | - Amal Alqumia
- Department of Pharmacy, King Fahd Specialist Hospital, Buraydah, Qassim 52719, Saudi Arabia
| | - Ibrahim S Alhomoud
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Hussam Alhmoud
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
4
|
Favretto F, Jiménez‐Faraco E, Catucci G, Di Matteo A, Travaglini‐Allocatelli C, Sadeghi SJ, Dominici P, Hermoso JA, Astegno A. Evaluating the potential of non-immunosuppressive cyclosporin analogs for targeting Toxoplasma gondii cyclophilin: Insights from structural studies. Protein Sci 2024; 33:e5157. [PMID: 39312281 PMCID: PMC11418636 DOI: 10.1002/pro.5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/25/2024]
Abstract
Toxoplasmosis persists as a prevalent disease, facing challenges from parasite resistance and treatment side effects. Consequently, identifying new drugs by exploring novel protein targets is essential for effective intervention. Cyclosporin A (CsA) possesses antiparasitic activity against Toxoplasma gondii, with cyclophilins identified as possible targets. However, CsA immunosuppressive nature hinders its use as an antitoxoplasmosis agent. Here, we evaluate the potential of three CsA derivatives devoid of immunosuppressive activity, namely, NIM811, Alisporivir, and dihydrocyclosporin A to target a previously characterized cyclophilin from Toxoplasma gondii (TgCyp23). We determined the X-ray crystal structures of TgCyp23 in complex with the three analogs and elucidated their binding and inhibitory properties. The high resolution of the structures revealed the precise positioning of ligands within the TgCyp23 binding site and the details of protein-ligand interactions. A comparison with the established ternary structure involving calcineurin indicates that substitutions at position 4 in CsA derivatives prevent calcineurin binding. This finding provides a molecular explanation for why CsA analogs can target Toxoplasma cyclophilins without compromising the human immune response.
Collapse
Affiliation(s)
| | - Eva Jiménez‐Faraco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera (IQF), CSICMadridSpain
| | - Gianluca Catucci
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | | | | | - Sheila J. Sadeghi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Paola Dominici
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Juan A. Hermoso
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera (IQF), CSICMadridSpain
| | | |
Collapse
|
5
|
Babalola KT, Arora M, Ganugula R, Agarwal SK, Mohan C, Kumar MNVR. Leveraging Lymphatic System Targeting in Systemic Lupus Erythematosus for Improved Clinical Outcomes. Pharmacol Rev 2024; 76:228-250. [PMID: 38351070 PMCID: PMC10877736 DOI: 10.1124/pharmrev.123.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
The role of advanced drug delivery strategies in drug repositioning and minimizing drug attrition rates, when applied early in drug discovery, is poised to increase the translational impact of various therapeutic strategies in disease prevention and treatment. In this context, drug delivery to the lymphatic system is gaining prominence not only to improve the systemic bioavailability of various pharmaceutical drugs but also to target certain specific diseases associated with the lymphatic system. Although the role of the lymphatic system in lupus is known, very little is done to target drugs to yield improved clinical benefits. In this review, we discuss recent advances in drug delivery strategies to treat lupus, the various routes of drug administration leading to improved lymph node bioavailability, and the available technologies applied in other areas that can be adapted to lupus treatment. Moreover, this review also presents some recent findings that demonstrate the promise of lymphatic targeting in a preclinical setting, offering renewed hope for certain pharmaceutical drugs that are limited by efficacy in their conventional dosage forms. These findings underscore the potential and feasibility of such lymphatic drug-targeting approaches to enhance therapeutic efficacy in lupus and minimize off-target effects of the pharmaceutical drugs. SIGNIFICANCE STATEMENT: The World Health Organization estimates that there are currently 5 million humans living with some form of lupus. With limited success in lupus drug discovery, turning to effective delivery strategies with existing drug molecules, as well as those in the early stage of discovery, could lead to better clinical outcomes. After all, effective delivery strategies have been proven to improve treatment outcomes.
Collapse
Affiliation(s)
- K T Babalola
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - S K Agarwal
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - C Mohan
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Claes Z, Bollen M. A split-luciferase lysate-based approach to identify small-molecule modulators of phosphatase subunit interactions. Cell Chem Biol 2023; 30:1666-1679.e6. [PMID: 37625414 DOI: 10.1016/j.chembiol.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1β and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Kale A, Shelke V, Lei Y, Gaikwad AB, Anders HJ. Voclosporin: Unique Chemistry, Pharmacology and Toxicity Profile, and Possible Options for Implementation into the Management of Lupus Nephritis. Cells 2023; 12:2440. [PMID: 37887284 PMCID: PMC10605893 DOI: 10.3390/cells12202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Calcineurin inhibitors (CNI) can suppress allo- and autoimmunity by suppressing T cell function but also have anti-proteinuric effects by stabilizing the cellular components of the kidney's filtration barrier. Therefore, CNI are used in autoimmune kidney diseases with proteinuria. However, the traditional CNI, cyclosporine A and tacrolimus, have a narrow therapeutic range, need monitoring of drug levels, and their use is associated with nephrotoxicity and metabolic alterations. Voclosporin (VOC), a novel CNI, no longer requires drug level monitoring and seems to lack these adverse effects, although hypertension and drug-drug interactions still occur. VOC demonstrated efficacy superior to standard-of-care in controlling active lupus nephritis in the phase 2 AURA-LV and the phase 3 AURORA-1 trials and was approved for the treatment of active lupus nephritis. However, how to implement VOC into the current and changing treatment landscape of lupus nephritis is still debated. Here, we review the unique chemistry, pharmacology, and toxicity profile of VOC, summarize the efficacy and safety data from the AURA-LV and AURORA-1 trials, and discuss the following four possible options to implement VOC into the management of lupus nephritis, namely regarding B cell-targeting therapy with belimumab (BEL). These include: 1. patient stratification to either VOC or BEL, 2. VOC/BEL combination therapy, 3. VOC-BEL sequential therapy, or 4. alternative options for the rapid antiproteinuric effect of VOC.
Collapse
Affiliation(s)
- Ajinath Kale
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India; (A.K.); (V.S.); (A.B.G.)
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India; (A.K.); (V.S.); (A.B.G.)
| | - Yutian Lei
- Division of Diabetology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, 333031 Munich, Germany;
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India; (A.K.); (V.S.); (A.B.G.)
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| |
Collapse
|
8
|
Limbach MN, Antevska A, Oluwatoba DS, Gray ALH, Carroll XB, Hoffmann CM, Wang X, Voehler MW, Steren CA, Do TD. Atomic View of Aqueous Cyclosporine A: Unpacking a Decades-Old Mystery. J Am Chem Soc 2022; 144:12602-12607. [PMID: 35786958 DOI: 10.1021/jacs.2c01743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An atomic view of a main aqueous conformation of cyclosporine A (CycA), an important 11-amino-acid macrocyclic immunosuppressant, is reported. For decades, it has been a grand challenge to determine the conformation of free CycA in an aqueous-like solution given its poor water solubility. Using a combination of X-ray and single-crystal neutron diffraction, we unambiguously resolve a unique conformer (A1) with a novel cis-amide between residues 11 and 1 and two water ligands that stabilize hydrogen bond networks. NMR spectroscopy and titration experiments indicate that the novel conformer is as abundant as the closed conformer in 90/10 (v/v) methanol/water and is the main conformer at 10/90 methanol/water. Five other conformers were also detected in 90/10 methanol/water, one in slow exchange with A1, another one in slow exchange with the closed form and three minor ones, one of which contains two cis amides Abu2-Sar3 and MeBmt1-MeVal11. These conformers help better understand the wide spectrum of membrane permeability observed for CycA analogues and, to some extent, the binding of CycA to protein targets.
Collapse
Affiliation(s)
- Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xian B Carroll
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christina M Hoffmann
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Carlos A Steren
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Gelder T, Lerma E, Engelke K, Huizinga RB. Voclosporin: a novel calcineurin inhibitor for the treatment of lupus nephritis. Expert Rev Clin Pharmacol 2022; 15:515-529. [PMID: 35763288 DOI: 10.1080/17512433.2022.2092470] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus. Standard-of-care immunosuppressive therapies achieve poor complete renal response (CRR) rates, with considerable toxicity. This article reviews voclosporin, a novel oral calcineurin inhibitor (CNI) approved for treatment of adults with active LN by the US Food and Drug Administration (the FDA) in January 2021. AREAS COVERED : This review summarizes the chemical properties, pharmacokinetics, and pharmacodynamics of voclosporin, and its efficacy and safety in LN, based on literature review covering PubMed searches, manufacturers' websites and documents produced by the FDA. EXPERT OPINION : Voclosporin is a CNI with a consistent pharmacokinetic-pharmacodynamic relationship resulting from enhanced calcineurin binding and reduced drug and metabolite load. This profile permits therapeutic efficacy in LN at a dose associated with relatively low calcineurin inhibition, and therefore a potentially improved safety profile. Pivotal trials demonstrated a significant benefit of adding voclosporin to standard therapy, with rapid reduction in proteinuria, and a clinically meaningful and significantly higher CRR rate at 1 year. At approved doses for LN, potential advantages of voclosporin versus historical experience with CNIs include lack of need for therapeutic drug monitoring, benign metabolic, lipid and electrolyte profile, and no impact on mycophenolate mofetil levels.
Collapse
Affiliation(s)
- Teun Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Edgar Lerma
- Section of Nephrology, University of Illinois at Chicago College of Medicine/Advocate Christ Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
10
|
Ogando NS, Metscher E, Moes DJAR, Arends EJ, Tas A, Cross J, Snijder EJ, Teng YKO, de Vries APJ, van Hemert MJ. The Cyclophilin-Dependent Calcineurin Inhibitor Voclosporin Inhibits SARS-CoV-2 Replication in Cell Culture. Transpl Int 2022; 35:10369. [PMID: 35812159 PMCID: PMC9263094 DOI: 10.3389/ti.2022.10369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
Kidney transplant recipients (KTRs) are at increased risk for a more severe course of COVID-19, due to their pre-existing comorbidity and immunosuppression. Consensus protocols recommend lowering immunosuppression in KTRs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the optimal combination remains unclear. Calcineurin inhibitors (CNIs) are cornerstone immunosuppressants used in KTRs and some have been reported to possess antiviral activity against RNA viruses, including coronaviruses. Here, we evaluated the effect of the CNIs tacrolimus, cyclosporin A, and voclosporin (VCS), as well as other immunosuppressants, on SARS-CoV-2 replication in cell-based assays. Unexpected, loss of compound due to plastic binding and interference of excipients in pharmaceutical formulations (false-positive results) complicated the determination of EC50 values of cyclophilin-dependent CNI’s in our antiviral assays. Some issues could be circumvented by using exclusively glass lab ware with pure compounds. In these experiments, VCS reduced viral progeny yields in human Calu-3 cells at low micromolar concentrations and did so more effectively than cyclosporin A, tacrolimus or other immunosuppressants. Although, we cannot recommend a particular immunosuppressive regimen in KTRs with COVID-19, our data suggest a potential benefit of cyclophilin-dependent CNIs, in particular VCS in reducing viral progeny, which warrants further clinical evaluation in SARS-CoV-2-infected KTRs.
Collapse
Affiliation(s)
- Natacha S. Ogando
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Metscher
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Eline J. Arends
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Eric J. Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Y. K. Onno Teng
- Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Aiko P. J. de Vries
- Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Martijn J. van Hemert,
| |
Collapse
|
11
|
Asif S, Bargman J, Auguste B. A review of the AURORA and BLISS trials: will it revolutionize the treatment of lupus nephritis? Curr Opin Nephrol Hypertens 2022; 31:278-282. [PMID: 35249969 DOI: 10.1097/mnh.0000000000000792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Renal involvement in patients with systemic lupus erythematosus can lead to significant complications including end-stage renal disease. Treatment of lupus nephritis has evolved over the last several decades, but despite this evolution, many patients fail to achieve remission and often progress to end-stage kidney disease or carry a burden of adverse side effects related to treatment. RECENT FINDINGS The recent findings from AURORA 1 and BLISS LN trials led the FDA to approve voclosporin and belimumab for the treatment of lupus nephritis. The AURORA 1 trial demonstrated that voclosporin, a second-generation calcineurin inhibitor, effectively lowers proteinuria in patients with lupus nephritis, when added to mycophenolate mofetil with a better safety profile, compared with other calcineurin inhibitors. The BLISS LN trial revealed better control of disease and lower risk of progression to end stage kidney disease (ESKD) and relapses in patients treated with belimumab in addition to standard therapy. SUMMARY Both voclosporin and belimumab are costly and have not shown any early evidence to revolutionize practice in the management of lupus nephritis. Until more data are made available with future studies or other cost-effective treatment options become available, the widespread adoption and utility of these novel agents remains limited.
Collapse
Affiliation(s)
- Sabaa Asif
- Department of Medicine, University of Toronto
| | - Joanne Bargman
- Department of Medicine, University of Toronto
- Toronto General Hospital, University Health Network
| | - Bourne Auguste
- Department of Medicine, University of Toronto
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Despite improvements in patient and renal death rates following the introduction of potent immunosuppressive drugs in earlier decades, a sizeable fraction of patients with lupus nephritis is burdened with suboptimal or delayed responses, relapses, chronic use of glucocorticoids and accrual of renal (chronic renal insufficiency) and extra-renal organ damage. The recently approved combinatory treatments comprising belimumab or voclosporin added to conventional agents, especially mycophenolate, hold promise for further improving disease outcomes and enabling a faster steroid tapering, thus being relevant to the treat-to-target context. However, it remains uncertain whether these dual regimens should become the first-line choice for all patients or instead be prioritized to certain subgroups. In the present article, we summarize the existing lupus nephritis management recommendations, followed by a critical appraisal of the randomized trials of belimumab and voclosporin, as well as the available data on obinutuzumab and other novel compounds under development. We conclude that pending the identification of accurate clinical, histological, or translational predictors for guiding personalized decisions, it is of utmost importance that lupus nephritis patients are monitored closely with appropriate treatment adjustments aiming at a prompt, deep response to ensure long-term preservation of kidney function.
Collapse
|
13
|
Izumi S, Nozaki Y, Lee W, Sugiyama Y. Experimental and modeling evidence supporting the trans-inhibition mechanism for preincubation time-dependent, long-lasting inhibition of organic anion transporting polypeptide (OATP) 1B1 by cyclosporine A. Drug Metab Dispos 2022; 50:541-551. [PMID: 35241487 DOI: 10.1124/dmd.121.000783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cyclosporine A (CsA) and rifampin are potent inhibitors of organic anion transporting polypeptide (OATP) 1B1 and are widely used to assess the risk for drug-drug interactions. CsA displays preincubation time-dependent, long-lasting inhibition of OATP1B1 in vitro and in rats in vivo, and a proposed mechanism is the trans-inhibition by which CsA inhibits OATP1B1 from the inside of cells. The current study aimed to experimentally validate the proposed mechanism using HEK293 cells stably expressing OATP1B1. The uptake of CsA reached a plateau following around 60-min incubation, with the cell-to-buffer concentration ratio of 3930, reflective of the high-affinity, high-capacity intracellular binding of CsA. The time course of CsA uptake was analyzed to estimate the kinetic parameters for permeability clearance and intracellular binding. When the OATP1B1-mediated uptake of [3H]estradiol-17β-glucuronide was measured following preincubation with CsA for 5 to 120 min, apparent Ki values became lower with longer preincubation. Our kinetic modeling incorporated the two reversible inhibition constants [Ki,trans and Ki,cis for the inhibition from inside (trans-inhibition) and outside (cis-inhibition) of cells, respectively] and estimated Ki,trans value of CsA was smaller by 48-fold than the estimated Ki,cis value. Rifampin also displayed preincubation time-dependent inhibition of OATP1B1, albeit the extent of enhancement was only 2-fold. The current study provides experimental evidence for the preincubation time-dependent shift of apparent Ki values and a mechanistic basis for physiologically based pharmacokinetic modeling that incorporates permeability clearance, extensive intracellular binding, and asymmetry of Ki values between the inside and outside of cells. Significance Statement In vitro data and kinetic modeling support that preincubation time-dependent, long-lasting inhibition of OATP1B1 by CsA can be explained by the extensive intracellular binding and reversible OATP1B1 inhibition intracellularly (trans-inhibition) as well as extracellularly (cis-inhibition). For inhibitors to display time-dependency, the following factors were found important: time to reach a steady-state cellular concentration, trans-inhibition potency relative to cis-inhibition, and the degree of cellular inhibitor accumulation. This study would aid in the accurate prediction of drug-drug interactions mediated by OATP1B1 inhibition.
Collapse
Affiliation(s)
| | | | - Wooin Lee
- Seoul National University, Korea, Republic of
| | - Yuichi Sugiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| |
Collapse
|
14
|
Al Shaer D, Al Musaimi O, Albericio F, de la Torre BG. 2021 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2022; 15:ph15020222. [PMID: 35215334 PMCID: PMC8876803 DOI: 10.3390/ph15020222] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
From the medical, pharmaceutical, and social perspectives, 2021 has been a year dominated by the COVID-19 pandemic. However, despite this global health crisis, the pharmaceutical industry has continued its endeavors, and 2021 could be considered an excellent year in terms of the drugs accepted by the US Food and Drug Administration (FDA). Thus, during this year, the FDA has approved 50 novel drugs, of which 36 are new chemical entities and 14 biologics. It has also authorized 10 TIDES (8 peptides, 2 oligonucleotides), in addition to 2 antibody-drug conjugates (ADCs) whose structures contain peptides. Thus, TIDES have accounted for about 24% of the approvals in the various drug categories. Importantly, this percentage has surpassed the figure in 2020 (10%), thus reflecting the remarkable success of TIDES. In this review, the approved TIDE-based drugs are analyzed on the basis of their chemical structure, medical target, mode of action, administration route, and adverse effects.
Collapse
Affiliation(s)
- Danah Al Shaer
- KRISP, School of Laboratory of Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (D.A.S.); (B.G.d.l.T.)
| | - Othman Al Musaimi
- Surfaces and Particle Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Correspondence: ; Tel.: +27-614-009-144
| | - Beatriz G. de la Torre
- KRISP, School of Laboratory of Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (D.A.S.); (B.G.d.l.T.)
| |
Collapse
|
15
|
Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol 2022; 3:18-31. [PMID: 35128405 PMCID: PMC8729179 DOI: 10.1039/d1cb00154j] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
In contrast to the major families of small molecules and antibodies, cyclic peptides, as a family of synthesizable macromolecules, have distinct biochemical and therapeutic properties for pharmaceutical applications. Cyclic peptide-based drugs have increasingly been developed in the past two decades, confirming the common perception that cyclic peptides have high binding affinities and low metabolic toxicity as antibodies, good stability and ease of manufacture as small molecules. Natural peptides were the major source of cyclic peptide drugs in the last century, and cyclic peptides derived from novel screening and cyclization strategies are the new source. In this review, we will discuss and summarize 18 cyclic peptides approved for clinical use in the past two decades to provide a better understanding of cyclic peptide development and to inspire new perspectives. The purpose of the present review is to promote efforts to resolve the challenges in the development of cyclic peptide drugs that are more effective.
Collapse
Affiliation(s)
- Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
16
|
|
17
|
Alamilla-Sanchez ME, Alcala-Salgado MA, Alonso-Bello CD, Fonseca-Gonzalez GT. Mechanism of Action and Efficacy of Immunosupressors in Lupus Nephritis. Int J Nephrol Renovasc Dis 2021; 14:441-458. [PMID: 34924767 PMCID: PMC8675090 DOI: 10.2147/ijnrd.s335371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Approximately 70% of the patients with systemic lupus erythematosus will have clinical evidence of kidney damage during their evolution. Patients with impaired renal function at onset and those with recurrent flares have a poor prognosis. Understanding the mechanism of action of immunosuppressants is essential for proper prescription. Steroids inhibit the DNA sequence that promotes the release of inflammatory cytokines. Phosphoramide mustard, metabolite of cyclophosphamide, cross-link with the DNA, causing the aggregation of an alkyl group, causing cell death. Mycophenolate inhibits inosine monophosphate dehydrogenase, prevents de novo synthesis of guanine, inducing cell arrest in S phase. Azathioprine blocks the synthesis of purines and induces apoptosis. Calcineurin inhibitors prevent the dephosphorylation of NFAT and reduce the production of interleukin 2. Antimalarials alter the enzymatic release of lysosomes by increasing intravesicular pH. The mechanism of action of rituximab is related to complement-dependent cytotoxicity and the elimination of anti-CD20-labeled B cells. Progress in the knowledge and management of low doses of steroids may change the current paradigm and reduce the frequency of related adverse events. Mycophenolate seems to be a better choice than cyclophosphamide for induction, it is also preferred over azathioprine as a maintenance immunosuppressive agent, although azathioprine is preferred in women with a desire for conception, those pregnant, or with low resources. For treatment-resistant cases, tacrolimus, rituximab or belimumab may be effective. Ongoing clinical trials with new drugs offer promising results.
Collapse
Affiliation(s)
| | | | - Cesar D Alonso-Bello
- Department of Immunology, Centro Medico Nacional "20 de Noviembre", Mexico City, Mexico
| | | |
Collapse
|
18
|
Mak KK, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery - where do things stand? Expert Opin Drug Discov 2021; 17:79-92. [PMID: 34553659 DOI: 10.1080/17460441.2022.1985108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) in drug discovery and development (DDD) has gained more traction in the past few years. Many scientific reviews have already been made available in this area. Thus, in this review, the authors have focused on the success stories of AI-driven drug candidates and the scientometric analysis of the literature in this field. AREA COVERED The authors explore the literature to compile the success stories of AI-driven drug candidates that are currently being assessed in clinical trials or have investigational new drug (IND) status. The authors also provide the reader with their expert perspectives for future developments and their opinions on the field. EXPERT OPINION Partnerships between AI companies and the pharma industry are booming. The early signs of the impact of AI on DDD are encouraging, and the pharma industry is hoping for breakthroughs. AI can be a promising technology to unveil the greatest successes, but it has yet to be proven as AI is still at the embryonic stage.
Collapse
Affiliation(s)
- Kit-Kay Mak
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, Malaysia.,Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development, and Innovation (Irdi), International Medical University, Bukit Jalil, Malaysia
| | | | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development, and Innovation (Irdi), International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
19
|
van Gelder T. How cyclosporin reduces mycophenolic acid exposure by 40% while other calcineurin inhibitors do not. Kidney Int 2021; 100:1185-1189. [PMID: 34284043 DOI: 10.1016/j.kint.2021.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
The most frequently used immunosuppressive treatment in kidney transplant recipients is the combination therapy of a calcineurin inhibitor and mycophenolate mofetil (MMF), with or without corticosteroids. Cyclosporin and tacrolimus are the two calcineurin inhibitors registered for this indication. Also in the treatment of glomerular diseases calcineurin inhibitors and mycophenolic acid are being used on a worldwide scale, either alone or as combined treatment. In January 2021 the U.S. Food and Drug Administration (FDA) has approved voclosporin, a novel calcineurin inhibitor for the treatment of adult patients with active lupus nephritis. There is a clinically relevant drug-drug interaction between cyclosporin and mycophenolate. As a result of cyclosporin-induced inhibition of the enterohepatic recirculation of mycophenolate, the mycophenolic acid-AUC is significantly lower (40%) in case of cyclosporin co-administration as compared to cotreatment with either tacrolimus or voclosporin (or no CNI co-treatment). The aim of this mini review is to summarize this potential drug-drug interaction and explain how cyclosporin affects the pharmacokinetics of mycophenolate. The optimal dose of MMF is likely to depend on the calcineurin inhibitor with which it is co-administered. Furthermore clinical implications are discussed, including the potential emergence of mycophenolic acid (MPA)-related side effects after discontinuation of cyclosporin co-treatment.
Collapse
Affiliation(s)
- Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands Albinusdreef 2 2333 ZA Leiden The Netherlands
| |
Collapse
|
20
|
Babu M, Favretto F, de Opakua AI, Rankovic M, Becker S, Zweckstetter M. Proline/arginine dipeptide repeat polymers derail protein folding in amyotrophic lateral sclerosis. Nat Commun 2021; 12:3396. [PMID: 34099711 PMCID: PMC8184751 DOI: 10.1038/s41467-021-23691-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases. The most frequent cause of familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are hexanucleotide repeat expansions in the non-coding region of the C9ORF72 gene that are translated into five dipeptide repeat (DPR) proteins. Here, the authors show that proline/arginine (PR) DPRs inhibit the prolyl isomerase PPIA and reveal the molecular mechanism of the impaired protein folding activity of PPIA by performing NMR measurements and determining a PR DPR bound PPIA crystal structure.
Collapse
Affiliation(s)
- Maria Babu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Filippo Favretto
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Marija Rankovic
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. .,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
21
|
Abstract
Dry eye disease (DED) is among the most common reasons for visiting eye care practitioners and represents a substantial health and cost burden. Disease prevalence ranges from 5% to 33% and is increasing in the younger population. The core mechanism of DED involves a vicious cycle where hyperosmolarity leads to an inflammatory cascade resulting in ocular surface damage. No cure is available for DED, and patients require ongoing disease management. Over-the-counter medications can provide temporary symptom relief but do not tackle the inflammatory pathophysiology of DED. A number of medications with anti-inflammatory activity are available, but there is a need for development of pharmacotherapies with novel delivery methods and targets to widen the variety of treatment options. This review discusses current anti-inflammatory pharmacotherapies approved in the United States and Europe for DED and highlights novel drugs that have been recently approved or are in development.
Collapse
|
22
|
Calcineurin and Systemic Lupus Erythematosus: The Rationale for Using Calcineurin Inhibitors in the Treatment of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22031263. [PMID: 33514066 PMCID: PMC7865978 DOI: 10.3390/ijms22031263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a broad spectrum of clinical presentations that can affect almost all organ systems. Lupus nephritis (LN) is a severe complication that affects approximately half of the systemic erythematosus lupus (SLE) patients, which significantly increases the morbidity and the mortality risk. LN is characterized by the accumulation of immune complexes, ultimately leading to renal failure. Aberrant activation of T cells plays a critical role in the pathogenesis of both SLE and LN and is involved in the production of inflammatory cytokines, the recruitment of inflammatory cells to the affected tissues and the co-stimulation of B cells. Calcineurin is a serine-threonine phosphatase that, as a consequence of the T cell hyperactivation, induces the production of inflammatory mediators. Moreover, calcineurin is also involved in the alterations of the podocyte phenotype, which contribute to proteinuria and kidney damage observed in LN patients. Therefore, calcineurin inhibitors have been postulated as a potential treatment strategy in LN, since they reduce T cell activation and promote podocyte cytoskeleton stabilization, both being key aspects in the development of LN. Here, we review the role of calcineurin in SLE and the latest findings about calcineurin inhibitors and their mechanisms of action in the treatment of LN.
Collapse
|
23
|
Ume AC, Pugh JM, Kemp MG, Williams CR. Calcineurin inhibitor (CNI)-associated skin cancers: New insights on exploring mechanisms by which CNIs downregulate DNA repair machinery. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:433-440. [PMID: 32786098 PMCID: PMC11042075 DOI: 10.1111/phpp.12600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022]
Abstract
The use of the calcineurin inhibitors (CNI) cyclosporine (CsA) and tacrolimus remains a cornerstone in post-transplantation immunosuppression. Although these immunosuppressive agents have revolutionized the field of transplantation medicine, its increased skin cancer risk poses a major concern. A key contributor to this phenomenon is a reduced capacity to repair DNA damage caused by exposure to ultraviolet (UV) wavelengths of sunlight. CNIs decrease DNA repair by mechanisms that remain to be fully explored. Though CsA is known to decrease the abundance of key DNA repair enzymes, less is known about how tacrolimus yields this effect. CNIs hold the capacity to inhibit both of the main catalytic calcineurin isoforms (CnAα and CnAβ). However, it is unknown which isoform regulates UV-induced DNA repair, which is the focus of this review. It is with hope that this insight spurs investigative efforts that conclusively addresses these gaps in knowledge. Additionally, this research also raises the possibility that newer CNIs can be developed that effectively blunt the immune response while mitigating the incidence of skin cancers with immunosuppression.
Collapse
Affiliation(s)
- Adaku C. Ume
- Department of Neuroscience, Cell Biology & Physiology, College of Science and Mathematics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jennifer M. Pugh
- Department of Neuroscience, Cell Biology & Physiology, College of Science and Mathematics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Michael G. Kemp
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology & Physiology, College of Science and Mathematics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
24
|
Rovin BH, Solomons N, Pendergraft WF, Dooley MA, Tumlin J, Romero-Diaz J, Lysenko L, Navarra SV, Huizinga RB, Adzerikho I, Mikhailova E, Mitkovskaya N, Pimanov S, Soroka N, Bogov BI, Deliyska B, Ikonomov V, Tilkiyan E, Almeida R, Jimenez F, Teran F, Tchokhonelidze I, Tsiskarishvili N, Herrera Mendez M, Chavez Perez NN, Loaeza AR, Gutierrez Urena SR, Romero Diaz J, Araiza Casillas R, Madero Rovalo M, Niemczyk S, Sokalski A, Wiecek A, Klinger M, Bugrova OV, Chernykh TM, Kameneva TR, Lysenko LV, Raskina TA, ReshEtko OV, Vezikova NN, Kropotina TV, Maksudova AN, Marasaev V, Dobronravov VA, Gordeev I, EssAian AM, Frolov A, Jelacic R, Jovanovic D, Mitic B, Pekovic G, Radovic M, Radunovic G, Carreira P, Diaz Gonzalez F, Fulladosa X, Ucar E, De Silva S, Herath C, Hewageegana A, Nazar ALM, Wazil A, Dudar I, Godlevska O, Korneyeva S, Vasylets V, Sydor N, Kolesnyk M, Parikh SV, Olsen N, Ginzler EM, Tumlin JA, Saxena A, Saxena R, Lafayette RA, Pendergraft WF, Podoll AS, Arrey-Mensah AA, Bubb M, Grossman J, Oporta AI, Nami A, Rahman MM, Haq SA, Chan TMD, Temy MMY, Gomez HMP, Bermas J, Reyes BH, Hao LT, Roberto LC, Amante E, Navarra SV, Lanzon AE, Choe JY, Kang TY, Kim YS, Lee SG, Lee JS, Jun JCC, Vasudevan A, Luo SF, Cheng TT, Satirapoj B, Noppakun K. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 2019; 95:219-231. [DOI: 10.1016/j.kint.2018.08.025] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
|
25
|
Sin FE, Isenberg D. An evaluation of voclosporin for the treatment of lupus nephritis. Expert Opin Pharmacother 2018; 19:1613-1621. [DOI: 10.1080/14656566.2018.1516751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fang En Sin
- Rheumatology Department, University College Hospital London, London, UK
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Lupus nephritis is a frequent complication of systemic lupus erythematosus and is more common and severe in children. This is a disease of the immune system characterized by T cell, B cell, and complement activation, as well as immune complex formation and deposition. The introduction of steroids and later cyclophosphamide transformed lupus nephritis from a fatal to a treatable condition. However, the standard therapies currently used for treatment carry significant toxicity and chronic kidney disease still remains a far too frequent outcome. To address these issues, we will review current and emerging induction therapies in LN. RECENT FINDINGS Several clinical trials have been undertaken to test more effective and safer drugs, often targeting mechanistic disease pathways. At present, it is difficult to identify an induction regimen that is more effective and less toxic than the standard of care; however, we believe continuing efforts in drug development will bring breakthrough agents to clinics.
Collapse
Affiliation(s)
- Isabelle Ayoub
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Jessica Nelson
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Division of Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
27
|
Ling SY, Huizinga RB, Mayo PR, Larouche R, Freitag DG, Aspeslet LJ, Foster RT. Cytochrome P450 3A and P-glycoprotein drug-drug interactions with voclosporin. Br J Clin Pharmacol 2015; 77:1039-50. [PMID: 24330024 DOI: 10.1111/bcp.12309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022] Open
Abstract
AIMS Voclosporin is a novel calcineurin inhibitor intended for prevention of organ graft rejection and treatment of lupus nephritis. Pharmacokinetic drug interactions between voclosporin and a CYP3A inhibitor, inducer and substrate and a P-glycoprotein inhibitor and substrate were evaluated. METHODS Voclosporin 0.4 mg kg(-1) was administered to 24 subjects in each of five studies, as follows: every 12 h (Q12H) alone and concomitantly with ketoconazole 400 mg once daily (QD); single dose before and single dose after rifampin 600 mg QD; Q12H where midazolam 7.5 mg was administered as a single dose alone before voclosporin and with last the dose of voclosporin; Q12H alone and concomitantly with verapamil 80 mg every 8 h; and Q12H with digoxin 0.25 mg QD. The noncompartmental pharmacokinetic parameters maximal concentration (Cmax ) and area under the concentration-time curve (AUC) were obtained, and geometric least squares mean ratios and 90% confidence intervals were evaluated. RESULTS Ketoconazole increased voclosporin Cmax (6.4-fold) and AUC (18-fold); rifampin reduced voclosporin AUC (0.9-fold); voclosporin did not change exposure of midazolam or α-hydroxy-midazolam; verapamil increased voclosporin Cmax (2.1-fold) and AUC (2.7-fold); and voclosporin increased digoxin Cmax (0.5-fold), AUC (0.25-fold) and urinary excretion (0.2-fold). CONCLUSIONS Administration of voclosporin concomitantly with strong inhibitors and inducers of CYP3A resulted in increased and decreased exposures, respectively, and should be considered contraindicated. Drug-drug interactions involving voclosporin and CYP3A substrates are not expected. Administration of voclosporin concomitantly with inhibitors and substrates of P-glycoprotein resulted in increased voclosporin and substrate exposures, respectively. Appropriate concentration and safety monitoring is recommended with co-administration of voclosporin and P-glycoprotein substrates and inhibitors.
Collapse
|
28
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
29
|
Hardinger KL, Brennan DC. Novel immunosuppressive agents in kidney transplantation. World J Transplant 2013; 3:68-77. [PMID: 24392311 PMCID: PMC3879526 DOI: 10.5500/wjt.v3.i4.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/26/2013] [Accepted: 10/16/2013] [Indexed: 02/05/2023] Open
Abstract
Excellent outcomes have been achieved in the field of renal transplantation. A significant reduction in acute rejection has been attained at many renal transplant centers using contemporary immunosuppressive, consisting of an induction agent, a calcineurin inhibitor, an antiproliferative agent plus or minus a corticosteroid. Despite improvements with these regimens, chronic allograft injury and adverse events still persist. The perfect immunosuppressive regimen would limit or eliminate calcineurin inhibitors and/or corticosteroid toxicity while providing enhanced allograft outcomes. Potential improvements to the calcineurin inhibitor class include a prolonged release tacrolimus formulation and voclosporin, a cyclosporine analog. Belatacept has shown promise as an agent to replace calcineurin inhibitors. A novel, fully-human anti-CD40 monoclonal antibody, ASKP1240, is currently enrolling patients in phase 2 trials with calcineurin minimization and avoidance regimens. Another future goal of transplant immunosuppression is effective and safe treatment of allograft rejection. Novel treatments for antibody mediated rejection include bortezomib and eculizumab. Several investigational agents are no longer being pursed in transplantation including the induction agents, efalizumab and alefacept, and maintenance agents, sotrastaurin and tofacitinib. The purpose of this review is to consolidate the published evidence of the effectiveness and safety of investigational immunosuppressive agents in renal transplant recipients.
Collapse
|
30
|
Mayo PR, Ling SY, Huizinga RB, Freitag DG, Aspeslet LJ, Foster RT. Population PKPD of voclosporin in renal allograft patients. J Clin Pharmacol 2013; 54:537-45. [PMID: 24243422 DOI: 10.1002/jcph.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/14/2013] [Indexed: 11/12/2022]
Abstract
The aims of this population-pharmacokinetic/pharmacodynamic (POP-PKPD) analysis of voclosporin in renal allograft patients were to build a POP-PKPD model for voclosporin and calcineurin activity (CNa) and identify clinically relevant covariates that could assist dosing of the drug. POP-PKPD modeling was performed using a stochastic approximation of the standard expectation maximization (SAEM) algorithm for nonlinear mixed-effects as implemented in Monolix™ 3.2. Voclosporin whole blood concentrations were obtained from de novo renal allograft patients and assayed using a validated LC/MS/MS assay. CNa was measured using a (32)P-radiolabeled assay. A two-compartment model with simultaneous sigmoid inhibitory Emax model was used to describe the PKPD relationship between voclosporin concentration and CNa. The POP-PKPD model was then utilized to simulate an optimal initial dosing strategy. Eighty-seven patients were included in the POP-PKPD study. Population mean estimates (relative standard error, rse) for oral clearance (CL/F) and first compartment volume of distribution (V1), were 717 mL min(-1) (35%) and 2010 mL (17%), respectively. Maximum CNa Inhibition (Imax), effective concentration (C50), and baseline immunosuppression (S0) were 0.87 pmol/min/mg (8.0%), 123 ng/mL (10%), and 1.15 pmol/min/mg (4.0%), respectively. Covariate analyses demonstrated that age and body surface area significantly influenced CL/F: CLi=717(Agei/48.8)-0.57(BSAi/1.99)1.1, while serum triglycerides significantly altered S0: S0i=1.15(TRIGi/1.97)0.15.
Collapse
Affiliation(s)
- P R Mayo
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| | - S Y Ling
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| | | | - D G Freitag
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| | | | - R T Foster
- Isotechnika Pharma Inc., Edmonton, AB, Canada
| |
Collapse
|
31
|
Ling S, Huizinga R, Mayo P, Freitag D, Aspeslet L, Foster R. Pharmacokinetics of voclosporin in renal impairment and hepatic impairment. J Clin Pharmacol 2013; 53:1303-12. [DOI: 10.1002/jcph.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
- S.Y. Ling
- Isotechnika Pharma, Inc.; Edmonton AB USA
| | | | - P.R. Mayo
- Isotechnika Pharma, Inc.; Edmonton AB USA
| | | | | | | |
Collapse
|
32
|
Zhang AH, Wang XQ, Han WB, Sun Y, Guo Y, Wu Q, Ge HM, Song YC, Ng SW, Xu Q, Tan RX. Discovery of a new class of immunosuppressants from Trichothecium roseum co-inspired by cross-kingdom similarity in innate immunity and pharmacophore motif. Chem Asian J 2013; 8:3101-7. [PMID: 24108442 DOI: 10.1002/asia.201300734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/19/2013] [Indexed: 11/09/2022]
Abstract
The limited selection of immunosuppressants in the clinic hampers the efficient management of immune disorders such as rejections after organ transplantations. However, the search for new immunosuppressive compounds remains random and creates inevitably financial and laborious wastes. Herein, we present an immunity-inspired discovery strategy that rationally allows an efficient identification of immunosuppressive compounds from the endophyte culture, as exemplified by the new peptide trichomide A. This compound exerts its immunosuppressive action more selectively than cyclosporin A. It was found that trichomide A decreases the expression of Bcl-2, increases the expression of Bax, and has a small or negligible effect on the expressions of p-Akt, CD25, and CD69. Our study strengthens the idea that the cross-kingdom similarity in immunity among living things could provide a shorter route towards the identification of natural products valuable for the development of new immunosuppressants.
Collapse
Affiliation(s)
- Ai Hua Zhang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 22 Hankou Road, Nanjing, 210093 (P. R. China), Fax: (+86) 25-8330 2728
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mayo PR, Huizinga RB, Ling SY, Freitag DG, Aspeslet LJ, Foster RT. Voclosporin Food Effect and Single Oral Ascending Dose Pharmacokinetic and Pharmacodynamic Studies in Healthy Human Subjects. J Clin Pharmacol 2013; 53:819-26. [DOI: 10.1002/jcph.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/08/2013] [Indexed: 11/08/2022]
|
34
|
Abstract
Voclosporin is a relatively new calcineurin inhibitor that has been used successfully in humans for the treatment of plaque psoriasis. Available data indicate a good safety profile for this treatment and a significant increase in quality of life for psoriasis patients. More recently, voclosporin has been used to treat ophthalmic conditions such as uveitis. The limited data available indicate at least comparable results relative to current therapy with a better safety profile. Here, we analyze data from human and animal studies and the mode of action of voclosporin. Available safety profile data are also discussed.
Collapse
Affiliation(s)
- Clyde Schultz
- Department of Biology, University of Calgary, Calgary, Alberta Canada. Biogram, Inc, Ponte Verda Beach, FL, USA
| |
Collapse
|
35
|
Kalluri HV, Hardinger KL. Current state of renal transplant immunosuppression: Present and future. World J Transplant 2012; 2:51-68. [PMID: 24175197 PMCID: PMC3782235 DOI: 10.5500/wjt.v2.i4.51] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/23/2011] [Accepted: 06/30/2012] [Indexed: 02/05/2023] Open
Abstract
For kidney transplant recipients, immunosuppression commonly consists of combination treatment with a calcineurin inhibitor, an antiproliferative agent and a corticosteroid. Many medical centers use a sequential immunosuppression regimen where an induction agent, either an anti-thymocyte globulin or interleukin-2 receptor antibody, is given at the time of transplantation to prevent early acute rejection which is then followed by a triple immunosuppressive maintenance regimen. Very low rejection rates have been achieved at many transplant centers using combinations of these agents in a variety of protocols. Yet, a large number of recipients suffer chronic allograft injury and adverse events associated with drug therapy. Regimens designed to limit or eliminate calcineurin inhibitors and/or corticosteroid use are actively being pursued. An ideal immunosuppressive regimen limits toxicity and prolongs the functional life of the graft. This article contains a critical analysis of clinical data on currently available immunosuppressive strategies and an overview of therapeutic moieties in development.
Collapse
Affiliation(s)
- Hari Varun Kalluri
- Hari Varun Kalluri, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | | |
Collapse
|
36
|
Pan Q, Tilanus HW, Metselaar HJ, Janssen HLA, van der Laan LJW. Virus-drug interactions--molecular insight into immunosuppression and HCV. Nat Rev Gastroenterol Hepatol 2012; 9:355-62. [PMID: 22508161 PMCID: PMC7097508 DOI: 10.1038/nrgastro.2012.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver transplantation is an effective treatment for end-stage liver disease that is attributable to chronic HCV infection. However, long-term outcomes are compromised by universal virological recurrence in the graft. Reinfection that occurs after transplantation has increased resistance to current interferon-based antiviral therapy and often leads to accelerated development of cirrhosis. Important risk factors for severe HCV recurrence are linked to immunosuppression. Owing to the lack of good randomized, controlled trials, the optimal choice of immunosuppressants is still debated. By contrast, much progress has been made in the understanding of HCV biology and the antiviral action of interferons. These new insights have greatly expanded our knowledge of the molecular interplay between HCV and immunosuppressive drugs. In this article, we explore the effect of different immunosuppressants on the complex cellular events involved in HCV infection and interferon signalling. Potential implications for clinical practice and future drug development are discussed.
Collapse
Affiliation(s)
- Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, sGravendijkwal 230, Room L458, Rotterdam, 3015 CE The Netherlands
| | - Hugo W. Tilanus
- Department of Surgery and Laboratory of Experimental Transplantation and Intestinal Surgery, Erasmus MC-University Medical Center, sGravendijkwal 230, Room L458, Rotterdam, 3015 CE The Netherlands
| | - Herold J. Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, sGravendijkwal 230, Room L458, Rotterdam, 3015 CE The Netherlands
| | - Harry L. A. Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, sGravendijkwal 230, Room L458, Rotterdam, 3015 CE The Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery and Laboratory of Experimental Transplantation and Intestinal Surgery, Erasmus MC-University Medical Center, sGravendijkwal 230, Room L458, Rotterdam, 3015 CE The Netherlands
| |
Collapse
|
37
|
Roesel M, Tappeiner C, Heiligenhaus A, Heinz C. Oral voclosporin: novel calcineurin inhibitor for treatment of noninfectious uveitis. Clin Ophthalmol 2011; 5:1309-13. [PMID: 21966207 PMCID: PMC3180504 DOI: 10.2147/opth.s11125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Voclosporin, a novel immunomodulatory drug inhibiting the calcineurin enzyme, was developed to prevent organ graft rejection and to treat autoimmune diseases. The chemical structure of voclosporin is similar to that of cyclosporine A, with a difference in one amino acid, leading to superior calcineurin inhibition and less variability in plasma concentration. Compared with placebo, voclosporin may significantly reduce inflammation and prevent recurrences of inflammation in patients with noninfectious uveitis. Future studies have to show if these advantages are accompanied by greater clinical efficacy and fewer side effects compared with the classic calcineurin inhibitors.
Collapse
Affiliation(s)
- Martin Roesel
- Department of Ophthalmology, St Franziskus-Hospital, Muenster, Germany
| | | | | | | |
Collapse
|