1
|
Pei X, Bhatt N, Wang H, Ando N, Meisburger SP. Introduction to diffuse scattering and data collection. Methods Enzymol 2023; 688:1-42. [PMID: 37748823 DOI: 10.1016/bs.mie.2023.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A long-standing goal in X-ray crystallography has been to extract information about the collective motions of proteins from diffuse scattering: the weak, textured signal that is found in the background of diffraction images. In the past few years, the field of macromolecular diffuse scattering has seen dramatic progress, and many of the past challenges in measurement and interpretation are now considered tractable. However, the concept of diffuse scattering is still new to many researchers, and a general set of procedures needed to collect a high-quality dataset has never been described in detail. Here, we provide the first guidelines for performing diffuse scattering experiments, which can be performed at any macromolecular crystallography beamline that supports room-temperature studies with a direct detector. We begin with a brief introduction to the theory of diffuse scattering and then walk the reader through the decision-making processes involved in preparing for and conducting a successful diffuse scattering experiment. Finally, we define quality metrics and describe ways to assess data quality both at the beamline and at home. Data obtained in this way can be processed independently by crystallographic software and diffuse scattering software to produce both a crystal structure, which represents the average atomic coordinates, and a three-dimensional diffuse scattering map that can then be interpreted in terms of models for protein motions.
Collapse
Affiliation(s)
- Xiaokun Pei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Neti Bhatt
- Department of Physics, Cornell University, Ithaca, NY, United States
| | - Haoyue Wang
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, United States
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States; Department of Physics, Cornell University, Ithaca, NY, United States; Graduate Field of Biophysics, Cornell University, Ithaca, NY, United States.
| | - Steve P Meisburger
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
2
|
Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Acta Crystallogr D Struct Biol 2022; 78:945-963. [PMID: 35916220 PMCID: PMC9344472 DOI: 10.1107/s2059798322005939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02-1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9-1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel A. Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
4
|
Doukov T, Herschlag D, Yabukarski F. Instrumentation and experimental procedures for robust collection of X-ray diffraction data from protein crystals across physiological temperatures. J Appl Crystallogr 2020; 53:1493-1501. [PMID: 33312102 PMCID: PMC7710493 DOI: 10.1107/s1600576720013503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
Traditional X-ray diffraction data collected at cryo-temperatures have delivered invaluable insights into the three-dimensional structures of proteins, providing the backbone of structure-function studies. While cryo-cooling mitigates radiation damage, cryo-temperatures can alter protein conformational ensembles and solvent structure. Furthermore, conformational ensembles underlie protein function and energetics, and recent advances in room-temperature X-ray crystallography have delivered conformational heterogeneity information that can be directly related to biological function. Given this capability, the next challenge is to develop a robust and broadly applicable method to collect single-crystal X-ray diffraction data at and above room temperature. This challenge is addressed herein. The approach described provides complete diffraction data sets with total collection times as short as ∼5 s from single protein crystals, dramatically increasing the quantity of data that can be collected within allocated synchrotron beam time. Its applicability was demonstrated by collecting 1.09-1.54 Å resolution data over a temperature range of 293-363 K for proteinase K, thaumatin and lysozyme crystals at BL14-1 at the Stanford Synchrotron Radiation Lightsource. The analyses presented here indicate that the diffraction data are of high quality and do not suffer from excessive dehydration or radiation damage.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Förster A, Schulze-Briese C. A shared vision for macromolecular crystallography over the next five years. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064302. [PMID: 31832486 PMCID: PMC6892709 DOI: 10.1063/1.5131017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography (MX) is the dominant means of determining the three-dimensional structures of biological macromolecules, but the method has reached a critical juncture. New diffraction-limited storage rings and upgrades to the existing sources will provide beamlines with higher flux and brilliance, and even the largest detectors can collect at rates of several hundred hertz. Electron cryomicroscopy is successfully competing for structural biologists' most exciting projects. As a result, formerly scarce beam time is becoming increasingly abundant, and beamlines must innovate to attract users and ensure continued funding. Here, we will show how data collection has changed over the preceding five years and how alternative methods have emerged. We then explore how MX at synchrotrons might develop over the next five years. We predict that, despite the continued dominance of rotation crystallography, applications previously considered niche or experimental, such as serial crystallography, pink-beam crystallography, and crystallography at energies above 25 keV and below 5 keV, will rise in prominence as beamlines specialize to offer users the best value. Most of these emerging methods will require new hardware and software. With these advances, MX will more efficiently provide the high-resolution structures needed for drug development. MX will also be able to address a broader range of questions than before and contribute to a deeper understanding of biological processes in the context of integrative structural biology.
Collapse
|
6
|
Gotthard G, Aumonier S, De Sanctis D, Leonard G, von Stetten D, Royant A. Specific radiation damage is a lesser concern at room temperature. IUCRJ 2019; 6:665-680. [PMID: 31316810 PMCID: PMC6608634 DOI: 10.1107/s205225251900616x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 05/22/2023]
Abstract
Carrying out macromolecular crystallography (MX) experiments at cryogenic temperatures significantly slows the rate of global radiation damage, thus facilitating the solution of high-resolution crystal structures of macromolecules. However, cryo-MX experiments suffer from the early onset of so-called specific radiation damage that affects certain amino-acid residues and, in particular, the active sites of many proteins. Here, a series of MX experiments are described which suggest that specific and global radiation damage are much less decoupled at room temperature than they are at cryogenic temperatures. The results reported here demonstrate the interest in reviving the practice of collecting MX diffraction data at room temperature and allow structural biologists to favourably envisage the development of time-resolved MX experiments at synchrotron sources.
Collapse
Affiliation(s)
| | - Sylvain Aumonier
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | | | - Gordon Leonard
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | | | - Antoine Royant
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale), F-38000 Grenoble, France
| |
Collapse
|
7
|
Purushottam Raj Purohit RRP, Arya A, Bojjawar G, Pelerin M, Van Petegem S, Proudhon H, Mukherjee S, Gerard C, Signor L, Mocuta C, Casati N, Suwas S, Chokshi AH, Thilly L. Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction. Sci Rep 2019; 9:79. [PMID: 30635618 PMCID: PMC6329826 DOI: 10.1038/s41598-018-36472-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/12/2018] [Indexed: 11/09/2022] Open
Abstract
Deformation mechanisms of cold drawn and electropolished nickel microwires are studied by performing in-situ monotonous and cyclic tensile tests under synchrotron radiation. X-ray diffraction tests allow probing elastic strains in the different grain families and establishing a link with the deformation mechanisms taking place within the microwires. The measurements were carried out on several microwires with diameters ranging from as-drawn 100 µm down to 40 µm thinned down by electropolishing. The as-drawn wires exhibit a core-shell microstructure with <111> fiber texture dominant in core and heterogeneous dual fiber texture <111> and <100> in the shell. Reduction of specimen size by electropolishing results in a higher yield stress and tensile strength along with reduced ductility. In-situ XRD analysis revealed that these differences are linked to the global variation in microstructure induced by shell removal with electropolishing, which in turn affects the load sharing abilities of grain families. This study thus proposes a new way to increase ductility and retain strength in nickel microwires across different diameters by tuning the microstructure architecture.
Collapse
Affiliation(s)
| | - Abhinav Arya
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560 012, India
| | - Girish Bojjawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560 012, India
| | - Maxime Pelerin
- MINES Paris Tech, Centre des Matériaux, CNRS UMR 7633, BP 87 91003, Evry Cedex, France
| | - Steven Van Petegem
- Photons for Engineering and Manufacturing, Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Henry Proudhon
- MINES Paris Tech, Centre des Matériaux, CNRS UMR 7633, BP 87 91003, Evry Cedex, France
| | - Soham Mukherjee
- Institut Pprime, CNRS - ENSMA - Université de Poitiers, Département Physique et Mécanique des Matériaux, 86961, Futuroscope, France
| | - Céline Gerard
- Institut Pprime, CNRS - ENSMA - Université de Poitiers, Département Physique et Mécanique des Matériaux, 86961, Futuroscope, France
| | - Loïc Signor
- Institut Pprime, CNRS - ENSMA - Université de Poitiers, Département Physique et Mécanique des Matériaux, 86961, Futuroscope, France
| | - Cristian Mocuta
- Synchrotron SOLEIL, L'orme des Merisiers, Saint Aubin - BP 48, Gif-sur-Yvette, 91192, France
| | - Nicola Casati
- Laboratory for Synchrotron Radiation - Condensed Matter (LSC), Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Satyam Suwas
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560 012, India
| | - Atul H Chokshi
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560 012, India
| | - Ludovic Thilly
- Institut Pprime, CNRS - ENSMA - Université de Poitiers, Département Physique et Mécanique des Matériaux, 86961, Futuroscope, France.
| |
Collapse
|
8
|
Sanchez-Weatherby J, Sandy J, Mikolajek H, Lobley CMC, Mazzorana M, Kelly J, Preece G, Littlewood R, Sørensen TLM. VMXi: a fully automated, fully remote, high-flux in situ macromolecular crystallography beamline. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:291-301. [PMID: 30655497 PMCID: PMC6337891 DOI: 10.1107/s1600577518015114] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/26/2018] [Indexed: 05/04/2023]
Abstract
VMXi is a new high-flux microfocus macromolecular crystallography beamline at Diamond Light Source. The beamline, dedicated to fully automated and fully remote data collection of macromolecular crystals in situ, allows rapid screening of hundreds of crystallization plates from multiple user groups. Its main purpose is to give fast feedback at the complex stages of crystallization and crystal optimization, but it also enables data collection of small and delicate samples that are particularly difficult to harvest using conventional cryo-methods, crystals grown in the lipidic cubic phase, and allows for multi-crystal data collections in drug discovery programs. The beamline is equipped with two monochromators: one with a narrow band-pass and fine energy resolution (optimal for regular oscillation experiments), and one with a wide band-pass and a high photon flux (optimal for fast screening). The beamline has a state-of-the-art detector and custom goniometry that allows fast data collection. This paper describes the beamline design, current status and future plans.
Collapse
Affiliation(s)
- Juan Sanchez-Weatherby
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - James Sandy
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Halina Mikolajek
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Carina M. C. Lobley
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Jon Kelly
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Geoff Preece
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Rich Littlewood
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Thomas L.-M. Sørensen
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Warkentin MA, Atakisi H, Hopkins JB, Walko D, Thorne RE. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams. IUCRJ 2017; 4:785-794. [PMID: 29123681 PMCID: PMC5668864 DOI: 10.1107/s2052252517013495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/20/2017] [Indexed: 05/22/2023]
Abstract
Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s-1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity-dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5-2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.
Collapse
Affiliation(s)
- Matthew A. Warkentin
- Physics Department, Cornell University, Clark Hall, Ithaca, NY 14853, USA
- Rubota Corporation, 1260 NW Naito Parkway #609, Portland, OR 97209, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - Donald Walko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | | |
Collapse
|
10
|
Crosas E, Castellvi A, Crespo I, Fulla D, Gil-Ortiz F, Fuertes G, Kamma-Lorger CS, Malfois M, Aranda MAG, Juanhuix J. Uridine as a new scavenger for synchrotron-based structural biology techniques. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:53-62. [PMID: 28009546 DOI: 10.1107/s1600577516018452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Macromolecular crystallography (MX) and small-angle X-ray scattering (SAXS) studies on proteins at synchrotron light sources are commonly limited by the structural damage produced by the intense X-ray beam. Several effects, such as aggregation in protein solutions and global and site-specific damage in crystals, reduce the data quality or even introduce artefacts that can result in a biologically misguiding structure. One strategy to reduce these negative effects is the inclusion of an additive in the buffer solution to act as a free radical scavenger. Here the properties of uridine as a scavenger for both SAXS and MX experiments on lysozyme at room temperature are examined. In MX experiments, upon addition of uridine at 1 M, the critical dose D1/2 is increased by a factor of ∼1.7, a value similar to that obtained in the presence of the most commonly used scavengers such as ascorbate and sodium nitrate. Other figures of merit to assess radiation damage show a similar trend. In SAXS experiments, the scavenging effect of 40 mM uridine is similar to that of 5% v/v glycerol, and greater than 2 mM DTT and 1 mM ascorbic acid. In all cases, the protective effect of uridine is proportional to its concentration.
Collapse
Affiliation(s)
- Eva Crosas
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Albert Castellvi
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Isidro Crespo
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Fulla
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Fernando Gil-Ortiz
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | - Marc Malfois
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Miguel A G Aranda
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Juanhuix
- ALBA Synchrotron, Carrer de la llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
11
|
Orlov I, Myasnikov AG, Andronov L, Natchiar SK, Khatter H, Beinsteiner B, Ménétret JF, Hazemann I, Mohideen K, Tazibt K, Tabaroni R, Kratzat H, Djabeur N, Bruxelles T, Raivoniaina F, Pompeo LD, Torchy M, Billas I, Urzhumtsev A, Klaholz BP. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2016; 109:81-93. [PMID: 27730650 DOI: 10.1111/boc.201600042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
Abstract
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.
Collapse
Affiliation(s)
- Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexander G Myasnikov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Leonid Andronov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - S Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-François Ménétret
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Kareem Mohideen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Karima Tazibt
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Rachel Tabaroni
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Hanna Kratzat
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Nadia Djabeur
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Tatiana Bruxelles
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Finaritra Raivoniaina
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Lorenza di Pompeo
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Morgan Torchy
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Isabelle Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Horrell S, Antonyuk SV, Eady RR, Hasnain SS, Hough MA, Strange RW. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCRJ 2016; 3:271-81. [PMID: 27437114 PMCID: PMC4937782 DOI: 10.1107/s205225251600823x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 05/24/2023]
Abstract
Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Life Sciences Building, Liverpool L69 7ZB, England
| | - Robert R. Eady
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Life Sciences Building, Liverpool L69 7ZB, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Life Sciences Building, Liverpool L69 7ZB, England
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
13
|
Sanchez-Weatherby J, Moraes I. Crystal Dehydration in Membrane Protein Crystallography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:73-89. [PMID: 27553236 PMCID: PMC6126552 DOI: 10.1007/978-3-319-35072-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Crystal dehydration has been successfully implemented to facilitate the structural solution of a number of soluble and membrane protein structures over the years. This chapter will present the currently available tools to undertake controlled crystal dehydration, focusing on some successful membrane protein cases. Also discussed here will be some practical considerations regarding membrane protein crystals and the relationship between different techniques in order to help researchers to select the most suitable technique for their projects.
Collapse
Affiliation(s)
| | - Isabel Moraes
- Membrane Protein Laboratory, Diamond Light Source/Imperial College London, Harwell Campus, Didcot, Oxfordshire UK
| |
Collapse
|
14
|
Dworkowski FSN, Hough MA, Pompidor G, Fuchs MR. Challenges and solutions for the analysis of in situ, in crystallo micro-spectrophotometric data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:27-35. [PMID: 25615857 PMCID: PMC4304683 DOI: 10.1107/s1399004714015107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
Combining macromolecular crystallography with in crystallo micro-spectrophotometry yields valuable complementary information on the sample, including the redox states of metal cofactors, the identification of bound ligands and the onset and strength of undesired photochemistry, also known as radiation damage. However, the analysis and processing of the resulting data differs significantly from the approaches used for solution spectrophotometric data. The varying size and shape of the sample, together with the suboptimal sample environment, the lack of proper reference signals and the general influence of the X-ray beam on the sample have to be considered and carefully corrected for. In the present article, how to characterize and treat these sample-dependent artefacts in a reproducible manner is discussed and the SLS-APE in situ, in crystallo optical spectroscopy data-analysis toolbox is demonstrated.
Collapse
Affiliation(s)
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Guillaume Pompidor
- European Molecular Biology Laboratory Hamburg, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Martin R. Fuchs
- Photon Sciences, Brookhaven National Laboratory, Mail Stop 745, Upton, NY 11973, USA
| |
Collapse
|
15
|
Warkentin M, Hopkins JB, Haber JB, Blaha G, Thorne RE. Temperature-dependent radiation sensitivity and order of 70S ribosome crystals. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2890-6. [PMID: 25372680 PMCID: PMC4220972 DOI: 10.1107/s1399004714017672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/01/2014] [Indexed: 11/10/2022]
Abstract
All evidence to date indicates that at T = 100 K all protein crystals exhibit comparable sensitivity to X-ray damage when quantified using global metrics such as change in scaling B factor or integrated intensity versus dose. This is consistent with observations in cryo-electron microscopy, and results because nearly all diffusive motions of protein and solvent, including motions induced by radiation damage, are frozen out. But how do the sensitivities of different proteins compare at room temperature, where radiation-induced radicals are free to diffuse and protein and lattice structures are free to relax in response to local damage? It might be expected that a large complex with extensive conformational degrees of freedom would be more radiation sensitive than a small, compact globular protein. As a test case, the radiation sensitivity of 70S ribosome crystals has been examined. At T = 100 and 300 K, the half doses are 64 MGy (at 3 Å resolution) and 150 kGy (at 5 Å resolution), respectively. The maximum tolerable dose in a crystallography experiment depends upon the initial or desired resolution. When differences in initial data-set resolution are accounted for, the former half dose is roughly consistent with that for model proteins, and the 100/300 K half-dose ratio is roughly a factor of ten larger. 70S ribosome crystals exhibit substantially increased resolution at 100 K relative to 300 K owing to cooling-induced ordering and not to reduced radiation sensitivity and slower radiation damage.
Collapse
Affiliation(s)
| | | | - Jonah B. Haber
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
16
|
Deller MC, Rupp B. Approaches to automated protein crystal harvesting. Acta Crystallogr F Struct Biol Commun 2014; 70:133-55. [PMID: 24637746 PMCID: PMC3936438 DOI: 10.1107/s2053230x14000387] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022] Open
Abstract
The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput.
Collapse
Affiliation(s)
- Marc C. Deller
- The Joint Center for Structural Genomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Innsbruck Medical University, Schöpfstrasse 41, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Abstract
Crystallography is a major tool for structure-driven drug design, as it allows knowledge of the 3D structure of protein targets and protein-ligand complexes. However, the route for crystal structure determination involves many steps, some of which may hamper its high-throughput use. Recent efforts have produced significant advances in experimental and computational tools and protocols. They include automatic crystallization tools, faster data collection devices, more efficient phasing methods and improved ligand-fitting procedures. The timescales of drug-discovery processes have been also reduced by using a fragment-based screening approach. Herein, the achievements in protein crystallography over the last 5 years are reviewed, and advantages and disadvantages of the fragment-based approaches to drug discovery that make use of x-ray crystallography as a primary screening method are examined. In particular, in some detail, five recent case studies pertaining to the development of new hits or leads in relevant therapeutic areas, such as cancer, immune response, inflammation, metabolic syndrome and neurology are described.
Collapse
|
18
|
Pompidor G, Dworkowski FSN, Thominet V, Schulze-Briese C, Fuchs MR. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:765-76. [PMID: 23955041 PMCID: PMC3747950 DOI: 10.1107/s0909049513016063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/10/2013] [Indexed: 05/08/2023]
Abstract
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.
Collapse
Affiliation(s)
| | | | | | | | - Martin R. Fuchs
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Correspondence e-mail:
| |
Collapse
|
19
|
Xia L, Rajendran C, Ruppert M, Panjikar S, Wang M, Stoeckigt J. High speed X-ray analysis of plant enzymes at room temperature. PHYTOCHEMISTRY 2013; 91:88-92. [PMID: 22704651 DOI: 10.1016/j.phytochem.2012.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/24/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
X-ray measurements at room temperature (295 K) deliver high quality data sets with unprecedented speed (<2 min), as shown for crystallized raucaffricine-O-β-D-glucosidase (RG), its mutant RG-Glu186Gln and several ligand complexes of the enzyme which participates in alkaloid biosynthesis in the plant Rauvolfia. The data obtained are compared with data sets measured under typical cryo conditions (100K). Under both conditions, density maps are highly comparable and favor the described protocol for room temperature measurements, potentially paving the way for future crystallographic studies capturing biosynthetic pathway intermediates.
Collapse
Affiliation(s)
- Liqun Xia
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Leal RMF, Bourenkov G, Russi S, Popov AN. A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:14-22. [PMID: 23254652 PMCID: PMC3943537 DOI: 10.1107/s0909049512049114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/29/2012] [Indexed: 05/11/2023]
Abstract
The radiation damage rates to crystals of 15 model macromolecular structures were studied using an automated radiation sensitivity characterization procedure. The diffracted intensity variation with dose is described by a two-parameter model. This model includes a strong resolution-independent decay specific to room-temperature measurements along with a linear increase in overall Debye-Waller factors. An equivalent representation of sensitivity via a single parameter, normalized half-dose, is introduced. This parameter varies by an order of magnitude between the different structures studied. The data show a correlation of crystal radiation sensitivity with crystal solvent content but no dose-rate dependency was detected in the range 0.05-300 kGy s(-1). The results of the crystal characterization are suitable for either optimal planning of room-temperature data collection or in situ crystallization plate screening experiments.
Collapse
Affiliation(s)
| | - Gleb Bourenkov
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85b, Hamburg 22607, Germany
| | | | | |
Collapse
|
21
|
Garman EF, Weik M. Radiation damage to biological macromolecules: some answers and more questions. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:1-6. [PMID: 23254650 DOI: 10.1107/s0909049512050418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Research into radiation damage in macromolecular crystallography has matured over the last few years, resulting in a better understanding of both the processes and timescales involved. In turn this is now allowing practical recommendations for the optimization of crystal dose lifetime to be suggested. Some long-standing questions have been answered by recent investigations, and from these answers new challenges arise and areas of investigation can be proposed. Six papers published in this volume give an indication of some of the current directions of this field and also that of single-particle cryo-microscopy, and the brief summary below places them into the overall framework of ongoing research into macromolecular crystallography radiation damage.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
22
|
Sea urchin tooth mineralization: calcite present early in the aboral plumula. J Struct Biol 2012; 180:280-9. [PMID: 22940703 DOI: 10.1016/j.jsb.2012.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/02/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
Abstract
In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth.
Collapse
|
23
|
Owen RL, Axford D, Nettleship JE, Owens RJ, Robinson JI, Morgan AW, Doré AS, Lebon G, Tate CG, Fry EE, Ren J, Stuart DI, Evans G. Outrunning free radicals in room-temperature macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:810-8. [PMID: 22751666 PMCID: PMC4791751 DOI: 10.1107/s0907444912012553] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/22/2012] [Indexed: 11/13/2022]
Abstract
A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A(2A) adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.
Collapse
Affiliation(s)
- Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Youngblut M, Judd ET, Srajer V, Sayyed B, Goelzer T, Elliott SJ, Schmidt M, Pacheco AA. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. J Biol Inorg Chem 2012; 17:647-62. [PMID: 22382353 PMCID: PMC3412176 DOI: 10.1007/s00775-012-0885-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein "small tetraheme c" replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 °C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-Å-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).
Collapse
Affiliation(s)
- Matthew Youngblut
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Evan T. Judd
- Department of Chemistry, 590 Commonwealth Ave., Boston, MA 02215
| | - Vukica Srajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Bilal Sayyed
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Tyler Goelzer
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Sean J. Elliott
- Department of Chemistry, 590 Commonwealth Ave., Boston, MA 02215
| | - Marius Schmidt
- Department of Physics, 1900 E. Kenwood Blvd, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - A. Andrew Pacheco
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
25
|
Schmidt M, Šrajer V, Purwar N, Tripathi S. The kinetic dose limit in room-temperature time-resolved macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:264-73. [PMID: 22338689 PMCID: PMC3284346 DOI: 10.1107/s090904951105549x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 05/16/2023]
Abstract
Protein X-ray structures are determined with ionizing radiation that damages the protein at high X-ray doses. As a result, diffraction patterns deteriorate with the increased absorbed dose. Several strategies such as sample freezing or scavenging of X-ray-generated free radicals are currently employed to minimize this damage. However, little is known about how the absorbed X-ray dose affects time-resolved Laue data collected at physiological temperatures where the protein is fully functional in the crystal, and how the kinetic analysis of such data depends on the absorbed dose. Here, direct evidence for the impact of radiation damage on the function of a protein is presented using time-resolved macromolecular crystallography. The effect of radiation damage on the kinetic analysis of time-resolved X-ray data is also explored.
Collapse
Affiliation(s)
- M Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | | | |
Collapse
|
26
|
Warkentin M, Badeau R, Hopkins JB, Mulichak AM, Keefe LJ, Thorne RE. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s⁻¹. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:124-33. [PMID: 22281741 DOI: 10.1107/s0907444911052085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022]
Abstract
Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s⁻¹. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s⁻¹ can be outrun by collecting data at 680 kGy s⁻¹. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.
Collapse
|
27
|
Warkentin M, Badeau R, Hopkins J, Thorne RE. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:792-803. [PMID: 21904032 PMCID: PMC3169314 DOI: 10.1107/s0907444911027600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/09/2011] [Indexed: 11/11/2022]
Abstract
Can radiation damage to protein crystals be `outrun' by collecting a structural data set before damage is manifested? Recent experiments using ultra-intense pulses from a free-electron laser show that the answer is yes. Here, evidence is presented that significant reductions in global damage at temperatures above 200 K may be possible using conventional X-ray sources and current or soon-to-be available detectors. Specifically, `dark progression' (an increase in damage with time after the X-rays have been turned off) was observed at temperatures between 180 and 240 K and on timescales from 200 to 1200 s. This allowed estimation of the temperature-dependent timescale for damage. The rate of dark progression is consistent with an Arrhenius law with an activation energy of 14 kJ mol(-1). This is comparable to the activation energy for the solvent-coupled diffusive damage processes responsible for the rapid increase in radiation sensitivity as crystals are warmed above the glass transition near 200 K. Analysis suggests that at T = 300 K data-collection times of the order of 1 s (and longer at lower temperatures) may allow significant reductions in global radiation damage, facilitating structure solution on crystals with liquid solvent. No dark progression was observed below T = 180 K, indicating that no important damage process is slowed through this timescale window in this temperature range.
Collapse
Affiliation(s)
| | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Hopkins
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
28
|
Garman EF, Weik M. Macromolecular crystallography radiation damage research: what's new? JOURNAL OF SYNCHROTRON RADIATION 2011; 18:313-7. [PMID: 21525638 PMCID: PMC3083910 DOI: 10.1107/s0909049511013859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/05/2023]
Abstract
Radiation damage in macromolecular crystallography has become a mainstream concern over the last ten years. The current status of research into this area is briefly assessed, and the ten new papers published in this issue are set into the context of previous work in the field. Some novel and exciting developments emerging over the last two years are also summarized.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Comissariat à l’Energie Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- CNRS, UMR5075, F-38027 Grenoble, France
- Université Joseph Fourier, F-38000 Grenoble, France
- ESRF, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| |
Collapse
|