1
|
Couturier C, Ronzon Q, Lattanzi G, Lingard I, Coyne S, Cazals V, Dubarry N, Yvon S, Leroi-Geissler C, Gracia OR, Teague J, Sordello S, Corbett D, Bauch C, Monlong C, Payne L, Taillier T, Fuchs H, Broenstrup M, Harrison PH, Moynié L, Lakshminarayanan A, Gianga TM, Hussain R, Naismith JH, Mourez M, Bacqué E, Björkling F, Sabuco JF, Franzyk H. Studies of antibacterial activity (in vitro and in vivo) and mode of action for des-acyl tridecaptins (DATs). Eur J Med Chem 2024; 265:116097. [PMID: 38157595 DOI: 10.1016/j.ejmech.2023.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.
Collapse
Affiliation(s)
- Cédric Couturier
- Evotec, 1541, Avenue Marcel Mérieux, 69280, Marcy L'Etoile, France.
| | - Quentin Ronzon
- Evotec, 1541, Avenue Marcel Mérieux, 69280, Marcy L'Etoile, France
| | - Giulia Lattanzi
- Evotec-Aptuit (Verona) Srl, Via Alessandro Fleming 4, 37135, Verona, Italy
| | - Iain Lingard
- Evotec-Aptuit (Verona) Srl, Via Alessandro Fleming 4, 37135, Verona, Italy
| | | | | | | | | | | | | | - Joanne Teague
- Evotec, No. 23F, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | - David Corbett
- Evotec, No. 23F, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | - Caroline Bauch
- Evotec-Cyprotex, No. 24, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | - Lloyd Payne
- Evotec, No. 23F, Mereside, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | | | - Hazel Fuchs
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Mark Broenstrup
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Peter H Harrison
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Lucile Moynié
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Abirami Lakshminarayanan
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Tiberiu-Marius Gianga
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, United Kingdom; Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | | | - Eric Bacqué
- Evotec, 1541, Avenue Marcel Mérieux, 69280, Marcy L'Etoile, France
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | | | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| |
Collapse
|
2
|
Albano G, Taddeucci A, Pescitelli G, Di Bari L. Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes. Chemistry 2023; 29:e202301982. [PMID: 37515814 DOI: 10.1002/chem.202301982] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and mesoscopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Diamond Light Source, Ltd., Chilton, Didcot, OX11 0DE, UK
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
3
|
Lithgo RM, Hanževački M, Harris G, Kamps JJAG, Holden E, Gianga TM, Benesch JLP, Jäger CM, Croft AK, Hussain R, Hobman JL, Orville AM, Quigley A, Carr SB, Scott DJ. The adaptability of the ion-binding site by the Ag(I)/Cu(I) periplasmic chaperone SilF. J Biol Chem 2023; 299:105331. [PMID: 37820867 PMCID: PMC10656224 DOI: 10.1016/j.jbc.2023.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.
Collapse
Affiliation(s)
- Ryan M Lithgo
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom; Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Jos J A G Kamps
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Ellie Holden
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Tiberiu-Marius Gianga
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, United Kingdom; Department of Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Anna K Croft
- Department of Chemical Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Rohannah Hussain
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom
| | - Jon L Hobman
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom
| | - Allen M Orville
- Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Diamond Light Source, Diamond House, Rutherford Appleton Laboratories, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom; Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - David J Scott
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Leicestershire, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
4
|
Buckley A, Warren J, Hussain R, Smith R. Synchrotron radiation circular dichroism spectroscopy reveals that gold and silver nanoparticles modify the secondary structure of a lung surfactant protein B analogue. NANOSCALE 2023; 15:4591-4603. [PMID: 36763129 DOI: 10.1039/d2nr06107d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inhaled nanoparticles (NPs) depositing in the alveolar region of the lung interact initially with a surfactant layer and in vitro studies have demonstrated that NPs can adversely affect the biophysical function of model pulmonary surfactants (PS), of which surfactant protein B (SP-B) is a key component. Other studies have demonstrated the potential for NPs to modify the structure and function of proteins. It was therefore hypothesised that NPs may affect the biophysical function of PS by modifying the structure of SP-B. Synchrotron radiation circular dichroism (SRCD) spectroscopy was used to explore the effect of various concentrations of gold nanoparticles (AuNPs) (5, 10, 20 nm), silver nanoparticles (AgNPs) (10 nm) and silver citrate on the secondary structure of surfactant protein B analogue, SP-B1-25, in a TFE/PB dispersion. For Au and Ag NPs the SRCD spectra indicated a concentration dependent reduction in the α-helical structure of SP-B1-25 (5 nm AuNP ≈ 10 nm AgNP ≫ 10 nm AuNP > 20 nm AuNP). For AuNPs the effect was greater for the 5 nm size, which was not fully explained by consideration of surface area. The impact of the 10 nm AgNPs was greater than that of the 10 nm AuNPs and the effect of AgNPs was greater than that of silver citrate at equivalent Ag mass concentrations. For 10 nm AuNPs, SRCD spectra for dispersions in, the more physiologically relevant, DPPC showed a similar concentration dependent pattern. The results demonstrate the potential for inhaled NPs to modify SP-B1-25 structure and thus potentially adversely impact the physiological function of the lung, however, further studies are necessary to confirm this.
Collapse
Affiliation(s)
- Alison Buckley
- Toxicology Department, UK Health Security Agency, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0RQ, UK.
| | - James Warren
- Toxicology Department, UK Health Security Agency, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0RQ, UK.
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Rachel Smith
- Toxicology Department, UK Health Security Agency, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0RQ, UK.
| |
Collapse
|
5
|
Rotondo M, Honisch C, Tartaggia S, Ruzza P. Circular Dichroism Study of Orexin B under Oxidative Stress Conditions. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020484. [PMID: 36677542 PMCID: PMC9863598 DOI: 10.3390/molecules28020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The neuropeptides orexin A and B regulate various vital functions of the body, such as sleep/wake states, metabolism, and energy homeostasis. A loss of their physiological activity, with reduced ability to recognize their receptors, is suspected to be associated with oxidative stress conditions. These are related to excessive presence of reactive oxygen and nitrogen species, as well as of reactive lipoxidation byproducts. With the aim of evaluating the effects of oxidative stress on the secondary structure of orexin peptides, orexin B was synthesized and characterized by circular dichroism spectroscopy under different conditions. In aqueous solution it presents an unordered conformation, while in a membrane mimetic environment it assumes a helical structure. The effects of oxidative stress were evaluated exposing it to both oxygen and nitrogen radicals as well as to lipoxidation byproducts. The results showed that ROS, but not NRS, induced appreciable conformational changes, and only in the membrane mimetic environment. Lipoxidation byproducts, instead, led to secondary structure modifications much more evident than those induced by the direct action of ROS and RNS, and in both analyzed media. Additionally, MALDI-TOF analyses detected mass variations in the peptide attributable to oxidation of the C-terminal Met residue and deamination of asparagine in the Asn-His sequence. Taken together, all these data seem to confirm the involvement of oxidative processes in dysfunctions of the orexinergic system.
Collapse
|
6
|
Del Giudice R, Lindvall M, Nilsson O, Monti DM, Lagerstedt JO. The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components. Int J Mol Sci 2022; 24:318. [PMID: 36613763 PMCID: PMC9820410 DOI: 10.3390/ijms24010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 20506 Malmö, Sweden
| |
Collapse
|
7
|
Modulating the poly-L-lysine structure through the control of the protonation-deprotonation state of L-lysine. Sci Rep 2022; 12:19719. [PMID: 36385123 PMCID: PMC9668811 DOI: 10.1038/s41598-022-24109-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Designing the architecture of L-lysine-based polymeric structures is a highly challenging task that requires careful control of the amino acid reactive groups. Conventional processes to obtain branched polylysine need several steps and the addition of specific catalysts. In the present work, to gain a better understanding and control of the formation of L-lysine-based polymers, we have investigated the correlation between the protonation state of L-lysine and the corresponding hydrothermally grown structures. The samples have been characterized by combining optical spectroscopies, such as UV-Vis, fluorescence, and synchrotron radiation circular dichroism with structural analysis by Nuclear Magnetic Resonance, Fourier Transform Infrared spectroscopy, and dynamic light scattering. We have observed that aqueous precursor solutions with alkaline pHs promote the formation of branched structures. In contrast, high pHs favour the reactivity of the ε-amino groups leading to linear structures, as shown by circular dichroism analyses. On the other hand, acidic conditions trigger the branching of the amino acid. Interestingly, the polymeric forms of L-lysine emit in the blue because the increasing number of intermolecular hydrogen bonds promote the intermolecular charge transfer responsible for the emission. Understanding the correlation between the L-lysine charged states and the polymeric structures that could form controlling the protonation-deprotonation states of the amino acid opens the route to a refined design of polypeptide systems based on L-lysine.
Collapse
|
8
|
Rajasekaran MB, Hussain R, Siligardi G, Andrews SC, Watson KA. Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system. Biometals 2022; 35:573-589. [PMID: 35348940 PMCID: PMC9174327 DOI: 10.1007/s10534-022-00389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
EfeUOB/M has been characterised in Pseudomonas syringae pathovar. syringae as a novel type of ferrous-iron transporter, consisting of an inner-membrane protein (EfeUPsy) and three periplasmic proteins (EfeOPsy, EfeMPsy and EfeBPsy). The role of an iron permease and peroxidase function has been identified for the EfeU and EfeB proteins, respectively, but the role of EfeO/M remains unclear. EfeMPsy is an 'M75-only' EfeO-like protein with a C-terminal peptidase-M75 domain (EfeOII/EfeM family). Herein, we report the 1.6 Å resolution crystal structure of EfeMPsy, the first structural report for an EfeM component of P. syringae pv. syringae. The structure possesses the bi-lobate architecture found in other bacterial periplasmic substrate/solute binding proteins. Metal binding studies, using SRCD and ICP-OES, reveal a preference of EfeMPsy for copper, iron and zinc. This work provides detailed knowledge of the structural scaffold, the metal site geometry, and the divalent metal binding potential of EfeM. This work provides crucial underpinning for a more detailed understanding of the role of EfeM/EfeO proteins and the peptidase-M75 domains in EfeUOB/M iron uptake systems in bacteria.
Collapse
Affiliation(s)
- Mohan B Rajasekaran
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN19QJ, UK
| | - Rohanah Hussain
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Simon C Andrews
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
| | - Kimberly A Watson
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK.
| |
Collapse
|
9
|
Kwan TOC, Kolek SA, Danson AE, Reis RI, Camacho IS, Shaw Stewart PD, Moraes I. Measuring Protein Aggregation and Stability Using High-Throughput Biophysical Approaches. Front Mol Biosci 2022; 9:890862. [PMID: 35651816 PMCID: PMC9149252 DOI: 10.3389/fmolb.2022.890862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Structure-function relationships of biological macromolecules, in particular proteins, provide crucial insights for fundamental biochemistry, medical research and early drug discovery. However, production of recombinant proteins, either for structure determination, functional studies, or to be used as biopharmaceutical products, is often hampered by their instability and propensity to aggregate in solution in vitro. Protein samples of poor quality are often associated with reduced reproducibility as well as high research and production expenses. Several biophysical methods are available for measuring protein aggregation and stability. Yet, discovering and developing means to improve protein behaviour and structure-function integrity remains a demanding task. Here, we discuss workflows that are made possible by adapting established biophysical methods to high-throughput screening approaches. Rapid identification and optimisation of conditions that promote protein stability and reduce aggregation will support researchers and industry to maximise sample quality, stability and reproducibility, thereby reducing research and development time and costs.
Collapse
Affiliation(s)
| | | | - Amy E. Danson
- National Physical Laboratory, Teddington, United Kingdom
| | - Rosana I. Reis
- National Physical Laboratory, Teddington, United Kingdom
| | | | - Patrick D. Shaw Stewart
- Douglas Instruments Ltd., Hungerford, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| | - Isabel Moraes
- National Physical Laboratory, Teddington, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| |
Collapse
|
10
|
Górecki M, Lipparini F, Albano G, Jávorfi T, Hussain R, Siligardi G, Pescitelli G, Di Bari L. Electronic Circular Dichroism Imaging (ECDi) Casts a New Light on the Origin of Solid-State Chiroptical Properties. Chemistry 2021; 28:e202103632. [PMID: 34935206 DOI: 10.1002/chem.202103632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Solid-state ECD (ss-ECD) spectra of a model microcrystalline solid, finasteride, dispersed into a KCl pellet were recorded by using the synchrotron radiation source at the Diamond B23 beamline. Scanning a surface of 36 mm2 with a step of 0.5 mm, we measured a set of ECD imaging (ECDi) spectra very different from each other and from the ss-ECD recorded with a bench-top instrument (1 cm2 area). This is due to the anisotropic part of the ECD (ACD), which averages to zero in solution or on a large number of randomly oriented crystallites, but can otherwise be extremely large. Two-way singular value decomposition (SVD) analysis, through experimental and simulated TDDFT spectra, disclosed that the measured and theoretical principal components are in line with each other. This finding demonstrates that the observed isotropic ss-ECD spectrum is governed by the anisotropy of locally oriented crystals. It also introduces a new quality for ss-ECD measurements and opens a new future for probing and mapping chiral materials in the solid state such as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy.,Present address: Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via Edoardo Orabona 4, 70126, Bari, Italy
| | - Tamás Jávorfi
- Diamond Light Source, Ltd., Chilton, Didcot, Oxfordshire, OX11 0DE, UK
| | - Rohanah Hussain
- Diamond Light Source, Ltd., Chilton, Didcot, Oxfordshire, OX11 0DE, UK
| | | | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
11
|
Ruzza P, Honisch C, Hussain R, Siligardi G. Free Radical Generation in Far-UV Synchrotron Radiation Circular Dichroism Assays-Protein and Buffer Composition Contribution. Int J Mol Sci 2021; 22:11325. [PMID: 34768758 PMCID: PMC8583428 DOI: 10.3390/ijms222111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
A useful tool to analyze the ligands and/or environmental contribution to protein stability is represented by the Synchrotron Radiation Circular Dichroism UV-denaturation assay that consists in the acquisition of several consecutive repeated far-UV SRCD spectra. Recently we demonstrated that the prevailing mechanism of this denaturation involves the generation of free radicals and reactive oxygen species (ROS). In this work, we analyzed the effect of buffering agents commonly used in spectroscopic measurements, including MOPS (3-(N-morpholino) propanesulfonic acid), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), TRIS-HCl (tris-hydroxymethil aminomethane hydrochloride), and phosphate, on the efficiency of protein denaturation caused by exposure to UV radiation. Fluorescence experiments confirmed the presence of ROS and were used to determine the rate of ROS generation. Our results indicate that the efficiency of the denaturation process is strongly influenced by the buffer composition with MOPS and HEPES acting also as scavengers and that the presence of proteins itself influenced the ROS formation rate.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo, 1, 35131 Padova, Italy;
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo, 1, 35131 Padova, Italy;
- Department of Chemical Sciences, University of Padua, via Marzolo, 1, 35131 Padova, Italy
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| |
Collapse
|
12
|
Ruzza P, Honisch C, Hussain R, Siligardi G. Free Radicals and ROS Induce Protein Denaturation by UV Photostability Assay. Int J Mol Sci 2021; 22:ijms22126512. [PMID: 34204483 PMCID: PMC8234878 DOI: 10.3390/ijms22126512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress, photo-oxidation, and photosensitizers are activated by UV irradiation and are affecting the photo-stability of proteins. Understanding the mechanisms that govern protein photo-stability is essential for its control enabling enhancement or reduction. Currently, two major mechanisms for protein denaturation induced by UV irradiation are available: one generated by the local heating of water molecules bound to the proteins and the other by the formation of reactive free radicals. To discriminate which is the likely or dominant mechanism we have studied the effects of thermal and UV denaturation of aqueous protein solutions with and without DHR-123 as fluorogenic probe using circular dichroism (CD), synchrotron radiation circular dichroism (SRCD), and fluorescence spectroscopies. The results indicated that the mechanism of protein denaturation induced by VUV and far-UV irradiation were mediated by the formation of reactive free radicals (FR) and reactive oxygen species (ROS). The development at Diamond B23 beamline for SRCD of a novel protein UV photo-stability assay based on consecutive repeated CD measurements in the far-UV (180-250 nm) region has been successfully used to assess and characterize the photo-stability of protein formulations and ligand binding interactions, in particular for ligand molecules devoid of significant UV absorption.
Collapse
Affiliation(s)
- Paolo Ruzza
- Padova Unit, Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35030 Padova, Italy;
- Correspondence: (P.R.); (G.S.); Tel.: +44-(0)1235-778425 (G.S.); Fax: +39-049-827-5239 (P.R.)
| | - Claudia Honisch
- Padova Unit, Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35030 Padova, Italy;
- Department of Chemical Sciences, University of Padua, Via F. Marzolo, 1, 35030 Padova, Italy
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- Correspondence: (P.R.); (G.S.); Tel.: +44-(0)1235-778425 (G.S.); Fax: +39-049-827-5239 (P.R.)
| |
Collapse
|
13
|
Yasinska IM, Meyer NH, Schlichtner S, Hussain R, Siligardi G, Casely-Hayford M, Fiedler W, Wellbrock J, Desmet C, Calzolai L, Varani L, Berger SM, Raap U, Gibbs BF, Fasler-Kan E, Sumbayev VV. Ligand-Receptor Interactions of Galectin-9 and VISTA Suppress Human T Lymphocyte Cytotoxic Activity. Front Immunol 2020; 11:580557. [PMID: 33329552 PMCID: PMC7715031 DOI: 10.3389/fimmu.2020.580557] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML), a blood/bone marrow cancer, is a severe and often fatal malignancy. AML cells are capable of impairing the anti-cancer activities of cytotoxic lymphoid cells. This includes the inactivation of natural killer (NK) cells and killing of T lymphocytes. Here we report for the first time that V-domain Ig-containing suppressor of T cell activation (VISTA), a protein expressed by T cells, recognizes galectin-9 secreted by AML cells as a ligand. Importantly, we found that soluble VISTA released by AML cells enhances the effect of galectin-9, most likely by forming multiprotein complexes on the surface of T cells and possibly creating a molecular barrier. These events cause changes in the plasma membrane potential of T cells leading to activation of granzyme B inside cytotoxic T cells, resulting in apoptosis.
Collapse
Affiliation(s)
- Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Stephanie Schlichtner
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | | | | | - Maxwell Casely-Hayford
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cloe Desmet
- European Commission Joint Research Centre, Ispra, Italy
| | | | - Luca Varani
- Institute for Research in Biomedicine, Universita' della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Ulrike Raap
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Bernhard F Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.,Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Department of Biomedical Research, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
14
|
Diamond B23 CD Imaging of Thin Films of Chiral Materials or Achiral Polymers Coated with Chiral Molecules. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The novel vertical sample chamber, developed at the B23 beamline for synchrotron radiation circular dichroism (SRCD), has enabled the Diamond User community to conduct different types of experiments from high throughput CD of protein and DNA folding using 96-well multiplates to CD imaging at high spatial resolution. Here, we present the application of CD imaging to large areas of achiral polymer PVA films doped with D-dopa to assess the chiral homogeneity of the film preparation with potential antimicrobial property. Synopsis: CDi application of Diamond B23 SRCD beamline.
Collapse
|
15
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
16
|
Evans LS, Hussain R, Siligardi G, Williamson PT. Magnetically aligned membrane mimetics enabling comparable chiroptical and magnetic resonance spectroscopy studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183343. [DOI: 10.1016/j.bbamem.2020.183343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
17
|
Di Gaspero M, Ruzza P, Hussain R, Honisch C, Biondi B, Siligardi G, Marangon M, Curioni A, Vincenzi S. The Secondary Structure of a Major Wine Protein is Modified upon Interaction with Polyphenols. Molecules 2020; 25:E1646. [PMID: 32260104 PMCID: PMC7180857 DOI: 10.3390/molecules25071646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
Polyphenols are an important constituent of wines and they are largely studied due to their antioxidant properties and for their effects on wine quality and stability, which is also related to their capacity to bind to proteins. The effects of some selected polyphenols, including procyanidins B1 and B2, tannic acid, quercetin, and rutin, as well as those of a total white wine procyanidin extract on the conformational properties of the major wine protein VVTL1 (Vitis vinifera Thaumatin-Like-1) were investigated by Synchrotron Radiation Circular Dichroism (SRCD). Results showed that VVTL1 interacts with polyphenols as demonstrated by the changes in the secondary (far-UV) and tertiary (near-UV) structures, which were differently affected by different polyphenols. Additionally, polyphenols modified the two melting temperatures (TM) that were found for VVTL1 (32.2 °C and 53.9 °C for the protein alone). The circular dichroism (CD) spectra in the near-UV region revealed an involvement of the aromatic side-chains of the protein in the interaction with phenolics. The data demonstrate the existence of an interaction between polyphenols and VVTL1, which results in modification of its thermal and UV denaturation pattern. This information can be useful in understanding the behavior of wine proteins in presence of polyphenols, thus giving new insights on the phenomena that are involved in wine stability.
Collapse
Affiliation(s)
- Mattia Di Gaspero
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo 1, 35131 Padua, Italy; (P.R.); (C.H.); (B.B.)
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (R.H.); (G.S.)
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo 1, 35131 Padua, Italy; (P.R.); (C.H.); (B.B.)
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padua, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo 1, 35131 Padua, Italy; (P.R.); (C.H.); (B.B.)
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (R.H.); (G.S.)
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy; (A.C.); (S.V.)
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy; (A.C.); (S.V.)
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy; (A.C.); (S.V.)
| |
Collapse
|
18
|
Honisch C, Donadello V, Hussain R, Peterle D, De Filippis V, Arrigoni G, Gatto C, Giurgola L, Siligardi G, Ruzza P. Application of Circular Dichroism and Fluorescence Spectroscopies To Assess Photostability of Water-Soluble Porcine Lens Proteins. ACS OMEGA 2020; 5:4293-4301. [PMID: 32149259 PMCID: PMC7057709 DOI: 10.1021/acsomega.9b04234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The eye lens is mainly composed of the highly ordered water-soluble (WS) proteins named crystallins. The aggregation and insolubilization of these proteins lead to progressive lens opacification until cataract onset. Although this is a well-known disease, the mechanism of eye lens protein aggregation is not well understood; however, one of the recognized causes of proteins modification is related to the exposure to UV light. For this reason, the spectroscopic properties of WS lens proteins and their stability to UV irradiation have been evaluated by different biophysical methods including synchrotron radiation circular dichroism, fluorescence, and circular dichroism spectroscopies. Moreover, dynamic light scattering, gel electrophoresis, transmission electron microscopy, and protein digestion followed by tandem LC-MS/MS analysis were used to study the morphological and structural changes in protein aggregates induced by exposure to UV light. Our results clearly indicated that the exposure to UV radiation modified the protein conformation, inducing a loss of ordered structure and aggregation. Furthermore, we confirmed that these changes were attributable to the generation of reactive oxygen species due to the irradiation of the protein sample. This approach, involving the photodenaturation of proteins, provides a benchmark in high-throughput screening of small molecules suitable to prevent protein denaturation and aggregation.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Viola Donadello
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| | - Rohanah Hussain
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Daniele Peterle
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Vincenzo De Filippis
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Proteomics
Center, University of Padova and Azienda
Ospedaliera di Padova, 35129 Padova, Italy
| | - Claudio Gatto
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Laura Giurgola
- Alchilife
Srl, R&D, Viale Austria
14, 35020 Ponte
San Nicolò (PD), Italy
| | - Giuliano Siligardi
- Diamond
Light Source Ltd., Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Paolo Ruzza
- Institute
of Biomolecular Chemistry of CNR, Padua
Unit, 35131 Padova, Italy
| |
Collapse
|
19
|
Enzyme-Ligand Interaction Monitored by Synchrotron Radiation Circular Dichroism. Methods Mol Biol 2019. [PMID: 31773649 DOI: 10.1007/978-1-0716-0163-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CD spectroscopy is the essential tool to quickly ascertain in the far-UV region the global conformational changes, the secondary structure content, and protein folding and in the near-UV region the local tertiary structure changes probed by the local environment of the aromatic side chains, prosthetic groups (hemes, flavones, carotenoids), the dihedral angle of disulfide bonds, and the ligand chromophore moieties, the latter occurring as a result of protein-ligand binding interaction. Qualitative and quantitative investigations into ligand-binding interactions in both the far- and near-UV regions using CD spectroscopy provide unique and direct information whether induced conformational changes upon ligand binding occur and of what nature that are unattainable with other techniques such as fluorescence, ITC, SPR, and AUC.This chapter provides an overview of how to perform circular dichroism (CD) experiments, detailing methods, hints and tips for successful CD measurements. Descriptions of different experimental designs are discussed using CD to investigate ligand-binding interactions. This includes standard qualitative CD measurements conducted in both single-measurement mode and high-throughput 96-well plate mode, CD titrations, and UV protein denaturation assays with and without ligand.The highly collimated micro-beam available at B23 beamline for synchrotron radiation circular dichroism (SRCD) at Diamond Light Source (DLS) offers many advantages to benchtop instruments. The synchrotron light source is ten times brighter than a standard xenon arc light source of benchtop instruments. The small diameter of the synchrotron beam can be up to 160 times smaller than that of benchtop light beams; this has enabled the use of small aperture cuvette cells and flat capillary tubes reducing substantially the amount of volume sample to be investigated. Methods, hints and tips, and golden rules to measure good quality, artifact-free SRCD and CD data will be described in this chapter in particular for the study of protein-ligand interactions and protein photostability.
Collapse
|
20
|
Littlewood S, Tattersall H, Hughes CS, Hussain R, Ma P, Harding SE, Nakayama J, Phillips-Jones MK. The gelatinase biosynthesis-activating pheromone binds and stabilises the FsrB membrane protein in Enterococcus faecalis quorum sensing. FEBS Lett 2019; 594:553-563. [PMID: 31598959 PMCID: PMC7028047 DOI: 10.1002/1873-3468.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Quorum‐sensing mechanisms regulate gene expression in response to changing cell‐population density detected through pheromones. In Enterococcus faecalis, Fsr quorum sensing produces and responds to the gelatinase biosynthesis‐activating pheromone (GBAP). Here we establish that the enterococcal FsrB membrane protein has a direct role connected with GBAP by showing that GBAP binds to purified FsrB. Far‐UV CD measurements demonstrated a predominantly α‐helical protein exhibiting a small level of conformational flexibility. Fivefold (400 μm) GBAP stabilised FsrB (80 μm) secondary structure. FsrB thermal denaturation in the presence and absence of GBAP revealed melting temperatures of 70.1 and 60.8 °C, respectively, demonstrating GBAP interactions and increased thermal stability conferred by GBAP. Addition of GBAP also resulted in tertiary structural changes, confirming GBAP binding.
Collapse
Affiliation(s)
- Sean Littlewood
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Helena Tattersall
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Charlotte S Hughes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Pikyee Ma
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
21
|
Kwan TOC, Reis R, Siligardi G, Hussain R, Cheruvara H, Moraes I. Selection of Biophysical Methods for Characterisation of Membrane Proteins. Int J Mol Sci 2019; 20:E2605. [PMID: 31137900 PMCID: PMC6566885 DOI: 10.3390/ijms20102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Over the years, there have been many developments and advances in the field of integral membrane protein research. As important pharmaceutical targets, it is paramount to understand the mechanisms of action that govern their structure-function relationships. However, the study of integral membrane proteins is still incredibly challenging, mostly due to their low expression and instability once extracted from the native biological membrane. Nevertheless, milligrams of pure, stable, and functional protein are always required for biochemical and structural studies. Many modern biophysical tools are available today that provide critical information regarding to the characterisation and behaviour of integral membrane proteins in solution. These biophysical approaches play an important role in both basic research and in early-stage drug discovery processes. In this review, it is not our objective to present a comprehensive list of all existing biophysical methods, but a selection of the most useful and easily applied to basic integral membrane protein research.
Collapse
Affiliation(s)
- Tristan O C Kwan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Rosana Reis
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Harish Cheruvara
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
22
|
Yasinska IM, Calzolai L, Raap U, Hussain R, Siligardi G, Sumbayev VV, Gibbs BF. Targeting of Basophil and Mast Cell Pro-Allergic Reactivity Using Functionalised Gold Nanoparticles. Front Pharmacol 2019; 10:333. [PMID: 30984005 PMCID: PMC6449467 DOI: 10.3389/fphar.2019.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 01/09/2023] Open
Abstract
Calcineurin inhibitors potentially prevent pro-allergic mediator release from basophils and mast cells but are rarely used systemically due to ubiquitous expressions of target signaling proteins. However, specific targeting of allergic effector cells with these inhibitors could circumvent unwanted side effects. We recently demonstrated the biocompatibility of gold nanoparticles (AuNPs) as a platform for non-toxic delivery of signaling inhibitors due to unique physicochemical properties of these nanomaterials. Since AuNPs can be conjugated with both anti-allergic drugs and antibodies or other proteins that specifically recognize basophils and mast cells, our aims were to assess specific targeting of allergic effector cell function using AuNPs conjugated with the calcineurin inhibitor ascomycin. Purified human basophils and LAD2 human mast cells were used for investigations with AuNPs conjugated either to CD203c antibodies or containing stem cell factor (SCF), respectively, which were amine-coupled to acidic groups of reduced glutathione (GSH). GSH was also used as a spacer for immobilization of ascomycin on the gold surface. AuNPs conjugated with anti-CD203c and ascomycin strikingly blocked IgE-dependent degranulation of both purified basophils and those present in mixed leukocyte preparations, suggesting specific targeting of these cells. In contrast, LAD2 mast cell responses were not inhibited using anti-CD203c-containing nanoconjugates but were when the conjugates contained SCF. Successful targeting of allergic effector cells using gold nanoconjugates indicates that this technology may have therapeutic potential for the treatment of allergies by specifically delivering highly effective signaling inhibitors with reduced side effects.
Collapse
Affiliation(s)
- Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra, Italy
| | - Ulrike Raap
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | | | | | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Bernhard F Gibbs
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.,Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
23
|
Albano G, Górecki M, Pescitelli G, Di Bari L, Jávorfi T, Hussain R, Siligardi G. Electronic circular dichroism imaging (CDi) maps local aggregation modes in thin films of chiral oligothiophenes. NEW J CHEM 2019. [DOI: 10.1039/c9nj02746g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed investigation of the circular dichroism imaging (CDi) technique on thin films of a chiral 1,4-dialkoxyphenylene-based oligothiophene with outstanding chiroptical features revealed the primary role of local supramolecular structures.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
- Institute of Organic Chemistry
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | | | | | | |
Collapse
|
24
|
Siligardi G, Hughes CS, Hussain R. Characterisation of sensor kinase by CD spectroscopy: golden rules and tips. Biochem Soc Trans 2018; 46:1627-1642. [PMID: 30514767 PMCID: PMC6299240 DOI: 10.1042/bst20180222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023]
Abstract
This is a review that describes the golden rules and tips on how to characterise the molecular interactions of membrane sensor kinase proteins with ligands using mainly circular dichroism (CD) spectroscopy. CD spectroscopy is essential for this task as any conformational change observed in the far-UV (secondary structures (α-helix, β-strands, poly-proline of type II, β-turns, irregular and folding) and near-UV regions [local environment of the aromatic side-chains of amino acid residues (Phe, Tyr and Trp) and ligands (drugs) and prosthetic groups (porphyrins, cofactors and coenzymes (FMN, FAD, NAD))] upon ligand addition to the protein can be used to determine qualitatively and quantitatively ligand-binding interactions. Advantages of using CD versus other techniques will be discussed. The difference CD spectra of the protein-ligand mixtures calculated subtracting the spectra of the ligand at various molar ratios can be used to determine the type of conformational changes induced by the ligand in terms of the estimated content of the various elements of protein secondary structure. The highly collimated microbeam and high photon flux of Diamond Light Source B23 beamline for synchrotron radiation circular dichroism (SRCD) enable the use of minimal amount of membrane proteins (7.5 µg for a 0.5 mg/ml solution) for high-throughput screening. Several examples of CD titrations of membrane proteins with a variety of ligands are described herein including the protocol tips that would guide the choice of the appropriate parameters to conduct these titrations by CD/SRCD in the best possible way.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K
| | - Charlotte S Hughes
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K.
| |
Collapse
|
25
|
Hussain R, Longo E, Siligardi G. UV-Denaturation Assay to Assess Protein Photostability and Ligand-Binding Interactions Using the High Photon Flux of Diamond B23 Beamline for SRCD. Molecules 2018; 23:molecules23081906. [PMID: 30065161 PMCID: PMC6222506 DOI: 10.3390/molecules23081906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Light irradiation with high photon flux in the vacuum and far-UV region is known to denature the conformation of biopolymers. Measures are in place at Diamond Light Source B23 beamline for Synchrotron Radiation Circular Dichroism (SRCD) to control and make this effect negligible. However, UV denaturation of proteins can also be exploited as a novel method for assessing biopolymer photostability as well as ligand-binding interactions. Usually, host–ligand binding interactions can be assessed monitoring CD changes of the host biopolymer upon ligand addition. The novel method of identifying ligand binding monitoring the change of relative rate of UV denaturation using SRCD is especially important when there are very little or insignificant secondary structure changes of the host protein upon ligand binding. The temperature study, another method used to determine molecular interactions, can often be inconclusive when the thermal effect associated with the displacement of the bound solvent molecules by the ligand is also small, making the determination of the binding interaction inconclusive. Herein we present a review on the UV-denaturation assay as a novel method to determine the relative photostability of protein formulations as well as the screening of ligand-binding interactions using the high photon flux Diamond B23 beamline for SRCD.
Collapse
Affiliation(s)
- Rohanah Hussain
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot OX11 0DE, UK.
| | - Edoardo Longo
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot OX11 0DE, UK.
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot OX11 0DE, UK.
| |
Collapse
|
26
|
Townsend D, Hughes E, Akien G, Stewart KL, Radford SE, Rochester D, Middleton DA. Epigallocatechin-3-gallate remodels apolipoprotein A-I amyloid fibrils into soluble oligomers in the presence of heparin. J Biol Chem 2018; 293:12877-12893. [PMID: 29853648 PMCID: PMC6102129 DOI: 10.1074/jbc.ra118.002038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
Amyloid deposits of WT apolipoprotein A-I (apoA-I), the main protein component of high-density lipoprotein, accumulate in atherosclerotic plaques where they may contribute to coronary artery disease by increasing plaque burden and instability. Using CD analysis, solid-state NMR spectroscopy, and transmission EM, we report here a surprising cooperative effect of heparin and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), a known inhibitor and modulator of amyloid formation, on apoA-I fibrils. We found that heparin, a proxy for glycosaminoglycan (GAG) polysaccharides that co-localize ubiquitously with amyloid in vivo, accelerates the rate of apoA-I formation from monomeric protein and associates with insoluble fibrils. Mature, insoluble apoA-I fibrils bound EGCG (KD = 30 ± 3 μm; Bmax = 40 ± 3 μm), but EGCG did not alter the kinetics of apoA-I amyloid assembly from monomer in the presence or absence of heparin. EGCG selectively increased the mobility of specific backbone and side-chain sites of apoA-I fibrils formed in the absence of heparin, but the fibrils largely retained their original morphology and remained insoluble. By contrast, fibrils formed in the presence of heparin were mobilized extensively by the addition of equimolar EGCG, and the fibrils were remodeled into soluble 20-nm-diameter oligomers with a largely α-helical structure that were nontoxic to human umbilical artery endothelial cells. These results argue for a protective effect of EGCG on apoA-I amyloid associated with atherosclerosis and suggest that EGCG-induced remodeling of amyloid may be tightly regulated by GAGs and other amyloid co-factors in vivo, depending on EGCG bioavailability.
Collapse
Affiliation(s)
- David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Geoffrey Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Rochester
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | | |
Collapse
|
27
|
Ojea-Jiménez I, Capomaccio R, Osório I, Mehn D, Ceccone G, Hussain R, Siligardi G, Colpo P, Rossi F, Gilliland D, Calzolai L. Rational design of multi-functional gold nanoparticles with controlled biomolecule adsorption: a multi-method approach for in-depth characterization. NANOSCALE 2018; 10:10173-10181. [PMID: 29786727 DOI: 10.1039/c8nr00973b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multi-functionalized nanoparticles are of great interest in biotechnology and biomedicine, especially for diagnostic and therapeutic purposes. However, at the moment the characterization of complex, multi-functional nanoparticles is still challenging and this hampers the development of advanced nanomaterials for biological applications. In this work, we have designed a model system consisting of gold nanoparticles functionalized with two differentially-terminated poly(ethylene oxide) ligands, providing both "stealth" properties and protein-binding capabilities to the nanoparticles. We use a combination of techniques (Centrifugal Liquid Sedimentation, Dynamic Light Scattering, Flow Field Flow Fractionation, Transmission Electron Microscopy, and Circular Dichroism) to: (i) monitor and quantify the ratios of ligand molecules per nanoparticle; (ii) determine the effect of coating density on non-specific protein adsorption; (iii) to assess the number and structure of the covalently-bound proteins. This article aims at comparing the complementary outcomes from typical and orthogonal techniques used in nanoparticle characterization by employing a versatile nanoparticle-ligands-biomolecule model system.
Collapse
Affiliation(s)
- Isaac Ojea-Jiménez
- European Commission, DG-Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Domingo-Espín J, Nilsson O, Bernfur K, Del Giudice R, Lagerstedt JO. Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2822-2834. [PMID: 29802959 DOI: 10.1016/j.bbadis.2018.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Prolonged hyperglycemia in poorly controlled diabetes leads to an increase in reactive glucose metabolites that covalently modify proteins by non-enzymatic glycation reactions. Apolipoprotein A-I (apoA-I) of high-density lipoprotein (HDL) is one of the proteins that becomes glycated in hyperglycemia. The impact of glycation on apoA-I protein structure and function in lipid and glucose metabolism were investigated. ApoA-I was chemically glycated by two different glucose metabolites (methylglyoxal and glycolaldehyde). Synchrotron radiation and conventional circular dichroism spectroscopy were used to study apoA-I structure and stability. The ability to bind lipids was measured by lipid-clearance assay and native gel analysis, and cholesterol efflux was measured by using lipid-laden J774 macrophages. Diet induced obese mice with established insulin resistance, L6 rat and C2C12 mouse myocytes, as well as INS-1E rat insulinoma cells, were used to determine in vivo and in vitro glucose uptake and insulin secretion. Site-specific, covalent modifications of apoA-I (lysines or arginines) led to altered protein structure, reduced lipid binding capability and a reduced ability to catalyze cholesterol efflux from macrophages, partly in a modification-specific manner. The stimulatory effects of apoA-I on the in vivo glucose clearance were negatively affected when apoA-I was modified with methylglyoxal, but not with glycolaldehyde. The in vitro data showed that both glucose uptake in muscle cells and insulin secretion from beta cells were affected. Taken together, glycation modifications impair the apoA-I protein functionality in lipid and glucose metabolism, which is expected to have implications for diabetes patients with poorly controlled blood glucose.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, S-221 84 Lund, Sweden
| | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden.
| |
Collapse
|
29
|
Spectroscopy data of ceftriaxone-lysozyme interaction and computational studies. Data Brief 2018; 18:1808-1818. [PMID: 29904682 PMCID: PMC5998221 DOI: 10.1016/j.dib.2018.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
The data article presents the results obtained from fluorescence and synchrotron radiation circular dichroism spectroscopies about the lysozyme-ceftriaxone interaction at neutral and acidic pH values as well as the computational calculations described in the accompanying research article (Ruzza et al., sub) [1].
Collapse
|
30
|
Ruzza P, Vitale RM, Hussain R, Montini A, Honisch C, Pozzebon A, Hughes CS, Biondi B, Amodeo P, Sechi G, Siligardi G. Chaperone-like effect of ceftriaxone on HEWL aggregation: A spectroscopic and computational study. Biochim Biophys Acta Gen Subj 2018. [PMID: 29524538 DOI: 10.1016/j.bbagen.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Lysozyme is a widely distributed enzyme present in a variety of tissue and body fluids. Human and hen egg white lysozyme are used as validated model to study protein folding and stability and to understand protein misfolding and aggregation. We recently found that ceftriaxone, a β-lactam antibiotic able to overcome the blood-brain barrier, successfully eliminated the cellular toxic effects of misfolded proteins as Glial Fibrillary Acidic Protein (GFAP) and α-synuclein. To further understand the anti-amyloidogenic properties of ceftriaxone, we studied its activity towards lysozyme aggregation with the aim to investigate a possible chaperone-like activity of this molecule. METHODS Here we present the results obtained from fluorescence and synchrotron radiation circular dichroism spectroscopies and from molecular docking and molecular dynamics about the lysozyme-ceftriaxone interaction at neutral and acidic pH values. RESULTS We found that ceftriaxone exhibits comparable affinity constants to lysozyme in both experimental pH conditions and that its addition enhanced lysozyme stability reducing its aggregation propensity in acidic conditions. Computational methods allowed the identification of the putative binding site of ceftriaxone, thus rationalizing the spectroscopic results. CONCLUSIONS Spectroscopy data and molecular dynamics indicated a protective effect of ceftriaxone on pathological aggregation phenomena suggesting a chaperone-like effect of this molecule on protein folding. General significance These results, in addition to our previous studies on α-synuclein and GFAP, confirm the property of ceftriaxone to inhibit the pathological protein aggregation of lysozyme also by a chaperone-like mechanism, extending the potential therapeutic application of this molecule to some forms of human hereditary systemic amyloidosis.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua, Italy.
| | | | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Alessia Montini
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua, Italy
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua, Italy
| | - Alice Pozzebon
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua, Italy
| | - Charlotte S Hughes
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Barbara Biondi
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry of CNR, Pozzuoli, Italy
| | - GianPietro Sechi
- Department of Clinical, Surgery and Experimental Medicine, Medical School, University of Sassari, Sassari, Italy
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
31
|
Hussain R, Hughes CS, Jávorfi T, Siligardi G, Williams P, Bonev BB. To Boil an Egg: Substrate Binding Affects Critical Stability in Thermal Unfolding of Proteins. J Phys Chem B 2018; 122:2213-2218. [PMID: 29401389 DOI: 10.1021/acs.jpcb.7b10643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermal unfolding of proteins is used extensively in screening of drug candidates because molecular interactions with ligands and substrates affect strongly protein stability, transition temperature, and cooperativity. We use synchrotron radiation circular dichroism to monitor the thermal evolution of secondary structure in proteins as they approach the melting point and the impact of substrate on their thermal behavior. Using Landau free energy expansion, we quantify transition strength and proximity to a critical point through the relative separation τ+ between the transition temperature Tm and the spinodal T+, obtained from the equation of state. The weakest transition was observed in lysozyme with τ+ = -0.0167 followed by holo albumin with τ+ = -0.0208 with the strongest transition in monomeric apo albumin τ+ = -0.0242. A structural transition at 45 °C in apo albumin leads to a noncooperative melt with τ+ = -0.00532 and amyloidogenic increase in beta content.
Collapse
Affiliation(s)
- Rohanah Hussain
- Diamond Light Source Ltd. , Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, U.K
| | - Charlotte S Hughes
- Diamond Light Source Ltd. , Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, U.K
| | - Tamás Jávorfi
- Diamond Light Source Ltd. , Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, U.K
| | - Giuliano Siligardi
- Diamond Light Source Ltd. , Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, U.K
| | - Paul Williams
- School of Life Sciences, University of Nottingham , Queen's Medical Centre, Nottingham NG7 2UH, U.K
| | - Boyan B Bonev
- School of Life Sciences, University of Nottingham , Queen's Medical Centre, Nottingham NG7 2UH, U.K
| |
Collapse
|
32
|
Synchrotron radiation circular dichroism spectroscopy reveals structural divergences in HDL-bound apoA-I variants. Sci Rep 2017; 7:13540. [PMID: 29051568 PMCID: PMC5648894 DOI: 10.1038/s41598-017-13878-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) in high-density lipoprotein (HDL) provides cardiovascular protection. Synchrotron radiation circular dichroism (SRCD) spectroscopy was used to analyze the dynamic solution structure of the apoA-I protein in the apo- and HDL-states and the protein structure conversion in HDL formation. Wild-type apoA-I protein was compared to human variants that either are protective (R173C, Milano) or lead to increased risk for ischaemic heart disease (A164S). Comparable secondary structure distributions in the HDL particles, including significant levels of beta strand/turn, were observed. ApoA-I Milano in HDL displayed larger size heterogeneity, increased protein flexibility, and an altered lipid-binding profile, whereas the apoA-I A164S in HDL showed decrease thermal stability, potentially linking the intrinsic HDL propensities of the variants to disease risk.
Collapse
|
33
|
Del Giudice R, Domingo-Espín J, Iacobucci I, Nilsson O, Monti M, Monti DM, Lagerstedt JO. Structural determinants in ApoA-I amyloidogenic variants explain improved cholesterol metabolism despite low HDL levels. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3038-3048. [PMID: 28887204 DOI: 10.1016/j.bbadis.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022]
Abstract
Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| | - Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
34
|
Quality control and biophysical characterisation data of VanSA. Data Brief 2017; 14:41-47. [PMID: 28765830 PMCID: PMC5526436 DOI: 10.1016/j.dib.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/13/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
This data article presents the results from quality control experiments including N-terminal sequencing, SEC-MALS and Mass Spectrometry for purified VanSA used in experiments described in (Hughes et al., 2017) [1]; in addition to ligand interaction measurements and thermal melting curves of VanSA in the presence of screened ligands from circular dichroism measurements as well as UV–vis absorbance spectra for the binding interaction of VanSA in the presence of screened ligands.
Collapse
|
35
|
Hughes CS, Longo E, Phillips-Jones MK, Hussain R. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci. Biochim Biophys Acta Gen Subj 2017; 1861:1951-1959. [PMID: 28511809 PMCID: PMC5482315 DOI: 10.1016/j.bbagen.2017.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/04/2023]
Abstract
A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanRASA two-component system, comprising the histidine sensor kinase VanSA and the partner response regulator VanRA. The nature of the activating ligand for VanSA has not been identified, therefore this work sought to identify and characterise ligand(s) for VanSA. In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanSA protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanSA with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanSA, proposing them as activators of type A vancomycin resistance in the enterococci.
Collapse
Affiliation(s)
- C S Hughes
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom; Membranes, Membrane Proteins & Peptides Research Group, School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - E Longo
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - M K Phillips-Jones
- Membranes, Membrane Proteins & Peptides Research Group, School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| | - R Hussain
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom.
| |
Collapse
|
36
|
Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions. Biochem Soc Trans 2017; 44:810-23. [PMID: 27284046 PMCID: PMC4900758 DOI: 10.1042/bst20160023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/20/2023]
Abstract
This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins–synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs.
Collapse
|
37
|
Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Sci Rep 2017; 7:44695. [PMID: 28317901 PMCID: PMC5357790 DOI: 10.1038/srep44695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
Membrane scission is a crucial step in all budding processes, from endocytosis to viral budding. Many proteins have been associated with scission, though the underlying molecular details of how scission is accomplished often remain unknown. Here, we investigate the process of M2-mediated membrane scission during the budding of influenza viruses. Residues 50–61 of the viral M2 protein bind membrane and form an amphipathic α-helix (AH). Membrane binding requires hydrophobic interactions with the lipid tails but not charged interactions with the lipid headgroups. Upon binding, the M2AH induces membrane curvature and lipid ordering, constricting and destabilizing the membrane neck, causing scission. We further show that AHs in the cellular proteins Arf1 and Epsin1 behave in a similar manner. Together, they represent a class of membrane-induced AH domains that alter membrane curvature and fluidity, mediating the scission of constricted membrane necks in multiple biological pathways.
Collapse
|
38
|
Townsend D, Hughes E, Hussain R, Siligardi G, Baldock S, Madine J, Middleton DA. Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures. Biochemistry 2017; 56:1632-1644. [DOI: 10.1021/acs.biochem.6b01120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, Oxon, England
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, Oxon, England
| | - Sarah Baldock
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jillian Madine
- Department of Biochemistry, Institute
of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
39
|
Hussain R, Jávorfi T, Rudd TR, Siligardi G. High-throughput SRCD using multi-well plates and its applications. Sci Rep 2016; 6:38028. [PMID: 28004702 PMCID: PMC5177961 DOI: 10.1038/srep38028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/03/2016] [Indexed: 12/03/2022] Open
Abstract
The sample compartment for high-throughput synchrotron radiation circular dichroism (HT-SRCD) has been developed to satisfy an increased demand of protein characterisation in terms of folding and binding interaction properties not only in the traditional field of structural biology but also in the growing research area of material science with the potential to save time by 80%. As the understanding of protein behaviour in different solvent environments has increased dramatically the development of novel functions such as recombinant proteins modified to have different functions from harvesting solar energy to metabolonics for cleaning heavy and metal and organic molecule pollutions, there is a need to characterise speedily these system.
Collapse
Affiliation(s)
- Rohanah Hussain
- Diamond Light Source, Diamond House, Chilton, Didcot OX11 0DE, United Kingdom
| | - Tamás Jávorfi
- Diamond Light Source, Diamond House, Chilton, Didcot OX11 0DE, United Kingdom
| | - Timothy R Rudd
- Diamond Light Source, Diamond House, Chilton, Didcot OX11 0DE, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source, Diamond House, Chilton, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
40
|
Gold nanoparticles increases UV and thermal stability of human serum albumin. Biointerphases 2016; 11:04B310. [PMID: 27984858 DOI: 10.1116/1.4972113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet (UV) radiation, temperature, and time can degrade proteins. Here, the authors show that gold nanoparticles significantly protect human serum albumin from denaturation when exposed to "stressing" conditions such as UV irradiation and sustained exposure in suboptimal conditions. In particular, the authors show that gold nanoparticles significantly reduce the decrease in secondary structure induced by UV irradiation or extended exposure to ambient temperature.
Collapse
|
41
|
Guyader CPE, Lamarre B, De Santis E, Noble JE, Slater NK, Ryadnov MG. Autonomously folded α-helical lockers promote RNAi. Sci Rep 2016; 6:35012. [PMID: 27721465 PMCID: PMC5056365 DOI: 10.1038/srep35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Collapse
Affiliation(s)
- Christian P. E. Guyader
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | | | - James E. Noble
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Nigel K. Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| |
Collapse
|
42
|
Ruzza P, Vitale RM, Hussain R, Biondi B, Amodeo P, Sechi G, Siligardi G. Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochim Biophys Acta Gen Subj 2016; 1860:2239-48. [DOI: 10.1016/j.bbagen.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 01/28/2023]
|
43
|
Spectroscopy reveals that ethyl esters interact with proteins in wine. Food Chem 2016; 217:373-378. [PMID: 27664648 DOI: 10.1016/j.foodchem.2016.08.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022]
Abstract
Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them.
Collapse
|
44
|
Hussain R, Siligardi G. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:43-59. [PMID: 27553234 PMCID: PMC6126569 DOI: 10.1007/978-3-319-35072-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane proteins are notoriously difficult to crystallise for use in X-ray crystallographic structural determination, or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour in solution. The advantage of synchrotron radiation circular dichroism (SRCD) measured with synchrotron beamlines compared to the CD from benchtop instruments is the extended spectral far-UV region that increases the accuracy of secondary structure estimations, in particular under high ionic strength conditions. Membrane proteins are often available in small quantities, and for this SRCD measured at the Diamond B23 beamline has successfully facilitated molecular recognition studies. This was done by probing the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells (1-5 cm) of small volume capacity (70 μl-350 μl). In this chapter we describe the use of SRCD to qualitatively and quantitatively screen ligand binding interactions (exemplified by Sbma, Ace1 and FsrC proteins); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by FsrC); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by inositol transporters) as well as the stability of membrane proteins (exemplified by GalP, Ace1). The importance of the in solution characterisation of the conformational behaviour and ligand binding properties of proteins in both far- andnear-UV regions and the use of high-throughput CD (HT-CD) using 96- and 384-well multiplates to study the folding effects in various protein crystallisation buffers are also discussed.
Collapse
Affiliation(s)
- Rohanah Hussain
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Giuliano Siligardi
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| |
Collapse
|
45
|
Abstract
Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range.
Collapse
|
46
|
Ruzza P, Hussain R, Biondi B, Calderan A, Tessari I, Bubacco L, Siligardi G. Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron Radiation Circular Dichroism. Biomolecules 2015; 5:724-34. [PMID: 25946077 PMCID: PMC4496693 DOI: 10.3390/biom5020724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/16/2015] [Indexed: 01/24/2023] Open
Abstract
Many neurodegenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases, are characterized by protein misfolding and aggregation. The capability of trehalose to interfere with protein misfolding and aggregation has been recently evaluated by several research groups. In the present work, we studied, by means of synchrotron radiation circular dichroism (SRCD) spectroscopy, the dose-effect of trehalose on α-synuclein conformation and/or stability to probe the capability of this osmolyte to interfere with α-synuclein’s aggregation. Our study indicated that a low trehalose concentration stabilized α-synuclein folding much better than at high concentration by blocking in vitro α-synuclein’s polymerisation. These results suggested that trehalose could be associated with other drugs leading to a new approach for treating Parkinson’s and other brain-related diseases.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy.
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0QX, UK.
| | - Barbara Biondi
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy.
| | - Andrea Calderan
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy.
| | | | - Luigi Bubacco
- Department of Biology, University of Padua, Padua 35122, Italy.
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0QX, UK.
| |
Collapse
|
47
|
Hussain R, Benning K, Myatt D, Javorfi T, Longo E, Rudd TR, Pulford B, Siligardi G. CDApps: integrated software for experimental planning and data processing at beamline B23, Diamond Light Source. Corrigendum. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:862. [PMID: 25931108 PMCID: PMC4416693 DOI: 10.1107/s1600577515007602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 05/15/2023]
Abstract
In the paper by Hussain et al. [(2015), J. Synchrotron Rad. 22, 465-468], Daniel Myatt is missing from the list of authors. The complete list of authors should be Rohanah Hussain, Kristian Benning, Daniel Myatt, Tamas Javorfi, Edoardo Longo, Timothy R. Rudd, Bill Pulford and Giuliano Siligardi.
Collapse
Affiliation(s)
- Rohanah Hussain
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Correspondence e-mail: ,
| | - Kristian Benning
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Daniel Myatt
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Tamas Javorfi
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Edoardo Longo
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Timothy R. Rudd
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Bill Pulford
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Correspondence e-mail: ,
| |
Collapse
|