1
|
Wei Y, Chen X, Ding R, Zhang J, Chen H, Zhu J, Zhang J, Shen P. Differentiation of puerarin chelate from salt by phase solubility test. J Pharm Sci 2024:S0022-3549(24)00445-3. [PMID: 39419478 DOI: 10.1016/j.xphs.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Different from salt, metal chelate is a novel state of drug constructed by more separate coordinate bonds to form a chelating circle. Due to their composition similarity, it is hard to distinguish them except identifying ionic bond (i.e., salt) or coordinate bond (i.e., chelate) in the single crystal structure. In this study, sodium chelate (CDCC No: 1865670) and lithium salt (CDCC No: 2161617) of puerarin (PUE) was prepared. In addition to difference in single crystal structure, it was found that they showed totally different phase solubility behaviors: lithium salt demonstrated a typical inverse proportion curve as other common salts, while sodium chelate exhibited disordered scatters. However, when incorporating the unit PUE-Na complex in solution state and complexation constant K11 in chemical equation, the scatters in phase solubility diagram of chelate could be well fitted and the value of K11 was dramatically higher with orders of magnitude than the dissociation constant Kc; while processing phase solubility curve of lithium salt by incorporating complex item, it could not well match the curve at all. PUE sodium chelate is more likely to be a weak electrolyte with partial dissociation, while PUE lithium salt acted as a strong electrolyte with complete dissociation. The phase solubility test would be served as a surrogate tool for differentiation of chelates from salts when single crystal was not available.
Collapse
Affiliation(s)
- Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Chen
- Drug research institute, Zhejiang Yongning Pharmaceutical Co., Ltd., Taizhou 318020, China
| | - Runxue Ding
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Junxiao Zhu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Peiya Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Emsley L. Spiers Memorial Lecture: NMR crystallography. Faraday Discuss 2024. [PMID: 39405130 PMCID: PMC11477664 DOI: 10.1039/d4fd00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Chemical function is directly related to the spatial arrangement of atoms. Consequently, the determination of atomic-level three-dimensional structures has transformed molecular and materials science over the past 60 years. In this context, solid-state NMR has emerged to become the method of choice for atomic-level characterization of complex materials in powder form. In the following we present an overview of current methods for chemical shift driven NMR crystallography, illustrated with applications to complex materials.
Collapse
Affiliation(s)
- Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Aitipamula S, Bolla G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol Pharm 2024; 21:3121-3143. [PMID: 38814314 DOI: 10.1021/acs.molpharmaceut.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market. This review explores the potential of pharmaceutical cocrystals as an ecofriendly alternative to traditional solid forms, offering a sustainable approach to drug development. From reducing the number of required doses to improving the stability of actives, from eliminating synthetic operations to using pharmaceutically approved chemicals, from the use of continuous and solvent-free manufacturing methods to leveraging published data on the safety and toxicology, the cocrystallization approach contributes to sustainability of drug development. The latest trends suggest a promising role of pharmaceutical cocrystals in bringing novel and improved medicines to the market, which has been further fuelled by the recent guidance from the major regulatory agencies.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Geetha Bolla
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Inukai M, Sato H, Miyanishi K, Negoro M, Kagawa A, Hori Y, Shigeta Y, Kurihara T, Nakamura K. Cocrystalline Matrices for Hyperpolarization at Room Temperature Using Photoexcited Electrons. J Am Chem Soc 2024; 146:14539-14545. [PMID: 38754971 DOI: 10.1021/jacs.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We propose using cocrystals as effective polarization matrices for triplet dynamic nuclear polarization (DNP) at room temperature. The polarization source can be uniformly doped into cocrystals formed through acid-acid, amide-amide, and acid-amide synthons. The dense-packing crystal structures, facilitated by multiple hydrogen bonding and π-π interactions, result in extended T1 relaxation times, enabling efficient polarization diffusion within the crystals. Our study demonstrates the successful polarization of a DNP-magnetic resonance imaging molecular probe, such as urea, within a cocrystal matrix at room temperature using triplet-DNP.
Collapse
Affiliation(s)
- Munehiro Inukai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| | - Haruki Sato
- Graduate School of Science and Technology for Innovation, Tokushima University, Tokushima 770-8506, Japan
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Makoto Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-Ku, Chiba 263-8555, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akinori Kagawa
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Takuya Kurihara
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Koichi Nakamura
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| |
Collapse
|
5
|
Li HQ, Xu JY, Wu SS, Jin L. Molecular Insights into Water-Chloride and Water-Water Interactions in the Supramolecular Architecture of Aconine Hydrochloride Dihydrate. ACS OMEGA 2024; 9:11925-11941. [PMID: 38496984 PMCID: PMC10938397 DOI: 10.1021/acsomega.3c09696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Despite the previous preparation of aconine hydrochloride monohydrate (AHM), accurate determination of the crystal's composition was hindered by severely disordered water molecules within the crystal. In this study, we successfully prepared a new dihydrate form of the aconine hydrochloride [C25H42NO9+Cl-·2(H2O), aconine hydrochloride dihydrate (AHD)] and accurately refined all water molecules within the AHD crystal. Our objective is to elucidate both water-chloride and water-water interactions in the AHD crystal. The crystal structure of AHD was determined at 136 K using X-ray diffraction and a multipolar atom model was constructed by transferring charge-density parameters to explore the topological features of key short contacts. By comparing the crystal structures of dihydrate and monohydrate forms, we have observed that both AHD and AHM exhibit identical aconine cations, except for variations in the number of water molecules present. In the AHD crystal, chloride anions and water molecules serve as pivotal connecting hubs to establish three-dimensional hydrogen bonding networks and one-dimensional hydrogen bonding chain; both water-chloride and water-water interactions assemble supramolecular architectures. The crystal packing of AHD exhibits a complete reversal in the stacking order compared to AHM, thereby emphasizing distinct disparities between them. Hirshfeld surface analysis reveals that H···Cl- and H···O contacts play a significant role in constructing the hydrogen bonding network and chain within these supramolecular architectures. Furthermore, topological analysis and electrostatic interaction energy confirm that both water-chloride and water-water interactions stabilize supramolecular architectures through electrostatic attraction facilitated by H···Cl- and H···O contacts. Importantly, these findings are strongly supported by the existing literature evidence. Consequently, navigating these water-chloride and water-water interactions is imperative for ensuring storage and safe processing of this pharmaceutical compound.
Collapse
Affiliation(s)
- Han-Qing Li
- State
Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
- Mongolian
Medicine Laboratory, International Mongolian
Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic of China
| | - Jia-Yin Xu
- Mongolian
Pharmaceutical Preparation Center, International
Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
| | - Shan-Shan Wu
- State
Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
| | - Liang Jin
- State
Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People’s Republic
of China
| |
Collapse
|
6
|
Ogaeri Y, Suzuki N, Fukami T, Nishiyama Y. Internuclear distance measurements between 1H and 14N in multi-component rigid solids at fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107378. [PMID: 36702044 DOI: 10.1016/j.jmr.2023.107378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
1H-14N internuclear distances are readily and accurately measured using the symmetry-based phase-modulated resonance-echo saturation-pulse double-resonance (PM-S-RESPDOR) method in rigid solids. The fraction curve, (S0 - S')/S0, is represented by a single variable of a 1H-14N heteronuclear dipolar coupling, where S0 and S' are the PM-S-RESPDOR signal intensity with and without 14N PM saturation pulse, respectively. Analytical equation of the fraction curve easily provides 1H-14N couplings. This treatment is only applicable when NH proton resonance is well separated from the other proton peaks. With the limited 1H resolution even at fast MAS > 60 kHz, unfortunately, this condition is not necessarily satisfied especially in multi-component systems which often appear in pharmaceutical applications. To overcome this problem, T-HMQC filtering is applied to suppress the 1H signals other than NH proton prior to the PM-S-RESPDOR experiments. The method is well demonstrated on two components acetaminophen-oxalic acid (APAP-OXA) systems. Further analysis of orientation dependence of T-HMQC and PM-S-RESPDOR shows that the analytical equation can be safely applied in the analysis of T-HMQC filtered PM-S-RESPDOR experiments.
Collapse
Affiliation(s)
- Yutaro Ogaeri
- JEOL Ltd., Akishima, Tokyo 196-8558, Japan; RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo 196-8558, Japan; RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
7
|
Ghosh S, Sarkar S, Paul S, Shil S, Mohapatra S, Biswas AN, De GC. Highly Luminescent and Semiconducting Supramolecular Organic Charge Transfer Complex Generated via H‐Bonding Interaction Pathway. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sushobhan Ghosh
- Department of Chemistry Alipurduar University Alipurduar West Bengal 736122 India
| | - Sudip Sarkar
- Department of Chemistry Alipurduar University Alipurduar West Bengal 736122 India
- Dept of Chemistry, Coochbehar Panchanan Barma University Cooch Behar, West Bengal, India and Department of Chemistry Alipurduar University Alipurduar West Bengal 736101 India
| | - Satadal Paul
- Department of Chemistry Bangabasi Morning College Kolkata 700009 India
| | - Suranjan Shil
- Department of Chemistry Manipal Centre for Natural Sciences (MCNS) Karnataka 576104 India
| | - Sudip Mohapatra
- Department of Chemistry Kurseong College Westbengal 734203 India
| | | | - Gobinda Chandra De
- Dept of Chemistry, Coochbehar Panchanan Barma University Cooch Behar, West Bengal, India and Department of Chemistry Alipurduar University Alipurduar West Bengal 736101 India
| |
Collapse
|
8
|
Blahut J, Štoček JR, Šála M, Dračínský M. The hydrogen bond continuum in solid isonicotinic acid. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107334. [PMID: 36410062 DOI: 10.1016/j.jmr.2022.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The understanding and correct description of intermolecular hydrogen bonds are crucial in the field of multicomponent pharmaceutical solids, such as salts and cocrystals. Solid isonicotinic acid can serve as a suitable model for the development of methods that can accurately characterize these hydrogen bonds. Experimental solid-state NMR has revealed a remarkable temperature dependence and deuterium-isotope-induced changes of the chemical shifts of the atoms involved in the intermolecular hydrogen bond; these NMR data are related to changes of the average position of the hydrogen atom. These changes of NMR parameters were interpreted using periodic DFT path-integral molecular dynamics (PIMD) simulations. The small size of the unit cell of isonicotinic acid allowed for PIMD simulations with the computationally demanding hybrid DFT functional. Calculations of NMR parameters based on the hybrid-functional PIMD simulations are in excellent agreement with experiment. It is thus demonstrated that an accurate characterization of intermolecular hydrogen bonds can be achieved by a combination of NMR experiments and advanced computations.
Collapse
Affiliation(s)
- Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, 128 40 Prague 2, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
9
|
Improved Pharmaceutical Properties of Honokiol via Salification with Meglumine: an Exception to Oft-quoted ∆pK a Rule. Pharm Res 2022; 39:2263-2276. [PMID: 35836038 DOI: 10.1007/s11095-022-03335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Honokiol (HK), a BCS class II drug with a wide range of pharmacological activities, has poor solubility and low oral bioavailability, severely limiting its clinical application. In the current study, incorporating a water-soluble meglumine (MEG) into the crystal lattice of HK molecule was performed to improve its physicochemical properties. The binary mixture of HK and MEG was obtained by anti-solvent method and characterized by TGA, DSC, FTIR, and PXRD. The SCXRD analysis showed that two HK- molecules and two MEG+ molecules were coupled in each unit cell via the ionic interaction along with intermolecular hydrogen bonds, suggesting the formation of a salt, which was further confirmed by the XPS measurements. However, the ∆pKa value between HK and MEG was found to be less than 1, which did not follow the oft-quoted ∆pKa rule for salt formation. After salification with MEG, the solubility and dissolution rate of HK exhibited 3.50 and 25.33 times improvement than crystalline HK, respectively. Simultaneously, the powder flowability, tabletability and stability of HK-MEG salt was also significantly enhanced, and the salt was not more hygroscopic, and that salt formation did not compromise processability in that regard. Further, in vivo pharmacokinetic study showed that Cmax and AUC0-t of HK-MEG salt were enhanced by 2.92-fold and 2.01-fold compared to those of HK, respectively, indicating a considerable improvement in HK oral bioavailability.
Collapse
|
10
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
11
|
Cruz-Cabeza AJ, Lusi M, Wheatcroft HP, Bond AD. The role of solvation in proton transfer reactions: implications for predicting salt/co-crystal formation using the Δp Ka rule. Faraday Discuss 2022; 235:446-466. [PMID: 35446321 DOI: 10.1039/d1fd00081k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ΔpKa rule is commonly applied by chemists and crystal engineers as a guideline for the rational design of molecular salts and co-crystals. For multi-component crystals containing acid and base constituents, empirical evidence has shown that ΔpKa > 4 almost always leads to salts, ΔpKa < -1 almost always leads to co-crystals and ΔpKa between -1 and 4 can be either. This paper reviews the theoretical background of the ΔpKa rule and highlights the crucial role of solvation in determining the outcome of the potential proton transfer from acid to base. New data on the frequency of the occurrence of co-crystals and salts in multi-component crystal structures containing acid and base constituents show that the relationship between ΔpKa and the frequency of salt/co-crystal formation is influenced by the composition of the crystal. For unsolvated co-crystals/salts, containing only the principal acid and base components, the point of 50% probability for salt/co-crystal formation occurs at ΔpKa ≈ 1.4, while for hydrates of co-crystals and salts, this point is shifted to ΔpKa ≈ -0.5. For acid-base crystals with the possibility for two proton transfers, the overall frequency of occurrence of any salt (monovalent or divalent) versus a co-crystal is comparable to that of the whole data set, but the point of 50% probability for observing a monovalent salt vs. a divalent salt lies at ΔpKa,II ≈ -4.5. Hence, where two proton transfers are possible, the balance is between co-crystals and divalent salts, with monovalent salts being far less common. Finally, the overall role played by the "crystal" solvation is illustrated by the fact that acid-base complexes in the intermediate region of ΔpKa tip towards salt formation if ancillary hydrogen bonds can exist. Thus, the solvation strength of the lattice plays a key role in the stabilisation of the ions.
Collapse
Affiliation(s)
- Aurora J Cruz-Cabeza
- Department of Chemical Engineering, School of Engineering, University of Manchester, UK. .,Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Matteo Lusi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Helen P Wheatcroft
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Štoček JR, Socha O, Císařová I, Slanina T, Dračínský M. Importance of Nuclear Quantum Effects for Molecular Cocrystals with Short Hydrogen Bonds. J Am Chem Soc 2022; 144:7111-7116. [PMID: 35394771 DOI: 10.1021/jacs.1c10885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many efforts have been recently devoted to the design and investigation of multicomponent pharmaceutical solids, such as salts and cocrystals. The experimental distinction between these solid forms is often challenging. Here, we show that the transformation of a salt into a cocrystal with a short hydrogen bond does not occur as a sharp phase transition but rather a smooth shift of the positional probability of the hydrogen atoms. A combination of solid-state NMR spectroscopy, X-ray diffraction, and diffuse reflectance measurements with density functional theory calculations that include nuclear quantum effects (NQEs) provides evidence of temperature-induced hydrogen atom shift in cocrystals with short hydrogen bonds. We demonstrate that for the predictions of the salt/cocrystal solid forms with short H-bonds, the computations have to include NQEs (particularly hydrogen nuclei delocalization) and temperature effects.
Collapse
Affiliation(s)
- Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2 12840, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2 12840, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| |
Collapse
|
13
|
Gołdyn M, Skowronek J, Komasa A, Bartoszak-Adamska E, Lewandowska A, Dega-Szafran Z, Cofta G. Synthesis and structural characteristic of pyridine carboxylic acid adducts with squaric acid. CrystEngComm 2022. [DOI: 10.1039/d2ce00760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Squaric acid was used as a coformer to pyridine carboxylic acid cocrystallization. Adducts were obtained by evaporation from solution. Spectroscopic and theoretical studies were also performed. Thermal analysis reveals the high thermal stability of the obtained complexes.
Collapse
Affiliation(s)
- Mateusz Gołdyn
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Julia Skowronek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Anna Komasa
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | | | - Aneta Lewandowska
- Department of Polymers, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznań 60-965, Poland
| | - Zofia Dega-Szafran
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Grzegorz Cofta
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, Poznań 60-637, Poland
| |
Collapse
|
14
|
Yano Y, Ono T, Ohhara T, Hisaeda Y. Insights into Proton Dynamics in a Photofunctional Salt-Cocrystal Continuum: Single-Crystal X-ray, Neutron Diffraction, and Hirshfeld Atom Refinement. Chemistry 2021; 27:17802-17807. [PMID: 34751473 DOI: 10.1002/chem.202103044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/09/2022]
Abstract
X-ray diffraction, neutron diffraction, and theoretical calculations were used to investigate the relationship between the optical properties and degree of protonation in acid-base complexes. We prepared five acid-base complexes by using a pyridine-modified pyrrolopyrrole derivative and salicylic acid. Two of the prepared acid-base complexes were polymorphs of guest-free crystals with green emission; the other three were guest-inclusion crystals with yellow emission containing CH2 Cl2 , CH2 Br2 , or C2 H4 Cl2 . The presence or absence of guests caused the emission to change color, altering the hydrogen bond strength between the acid-base complexes. Accurate N⋅⋅⋅H distances between the pyridyl moiety and the carboxy group over the temperature range 123 to 273 K were 1.40 Å for the guest-free crystals and 1.25 Å for the guest-inclusion crystals. Our findings contribute to a better understanding of the complex relationship between photofunction and proton dynamics in acid-base complexes.
Collapse
Affiliation(s)
- Yoshio Yano
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takashi Ohhara
- J-PARC Center, Japan Atomic Energy Agency Tokai, Naka-gun, 319-1195, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Szell PMJ, Nilsson Lill SO, Blade H, Brown SP, Hughes LP. A toolbox for improving the workflow of NMR crystallography. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 116:101761. [PMID: 34736104 DOI: 10.1016/j.ssnmr.2021.101761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
NMR crystallography is a powerful tool with applications in structural characterization and crystal structure verification, to name two. However, applying this tool presents several challenges, especially for industrial users, in terms of consistency, workflow, time consumption, and the requirement for a high level of understanding of experimental solid-state NMR and GIPAW-DFT calculations. Here, we have developed a series of fully parameterized scripts for use in Materials Studio and TopSpin, based on the .magres file format, with a focus on organic molecules (e.g. pharmaceuticals), improving efficiency, robustness, and workflow. We separate these tools into three major categories: performing the DFT calculations, extracting & visualizing the results, and crystallographic modelling. These scripts will rapidly submit fully parameterized CASTEP jobs, extract data from the calculations, assist in visualizing the results, and expedite the process of structural modelling. Accompanied with these tools is a description on their functionality, documentation on how to get started and use the scripts, and links to video tutorials for guiding new users. Through the use of these tools, we hope to facilitate NMR crystallography and to harmonize the process across users.
Collapse
Affiliation(s)
| | - Sten O Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| |
Collapse
|
16
|
Enkelmann D, Lipinski G, Merz K. Cyanopyridines – Suitable Heterocycles for Cocrystal Syntheses. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dennis Enkelmann
- Ruhr-University Bochum Inorganic Chemistry I Universitatsstrasse 150 44801 Bochum Germany
| | - Gregor Lipinski
- Chemnitz University of Technology Applied Thermodynamics Reichenhainer Straße 70 09126 Chemnitz Germany
| | - Klaus Merz
- Ruhr-University Bochum Inorganic Chemistry I Universitatsstrasse 150 44801 Bochum Germany
| |
Collapse
|
17
|
Kendall T, Stratford S, Patterson AR, Lunt RA, Cruickshank D, Bonnaud T, Scott CD. An industrial perspective on co-crystals: Screening, identification and development of the less utilised solid form in drug discovery and development. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:345-442. [PMID: 34147205 DOI: 10.1016/bs.pmch.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Active pharmaceutical ingredients are commonly marketed as a solid form due to ease of transport, storage and administration. In the design of a drug formulation, the selection of the solid form is incredibly important and is traditionally based on what polymorphs, hydrates or salts are available for that compound. Co-crystals, another potential solid form available, are currently not as readily considered as a viable solid form for the development process. Even though co-crystals are gaining an ever-increasing level of interest within the pharmaceutical community, their acceptance and application is still not as standard as other solid forms such as the ubiquitous pharmaceutical salt and stabilised amorphous formulations. Presented in this chapter is information that would allow for a co-crystal screen to be planned and conducted as well as scaled up using solution and mechanochemistry based methods commonly employed in both the literature and industry. Also presented are methods for identifying the formation of a co-crystal using a variety of analytical techniques as well as the importance of confirming the formation of co-crystals from a legal perspective and demonstrating the legal precedent by looking at co-crystalline products already on the market. The benefits of co-crystals have been well established, and presented in this chapter are a selection of examples which best exemplify their potential. The goal of this chapter is to increase the understanding of co-crystals and how they may be successfully exploited in early stage development.
Collapse
Affiliation(s)
- Thomas Kendall
- Technobis Crystallization Systems, Alkmaar, The Netherlands.
| | - Sam Stratford
- Johnson Matthey, Pharmorphix, Cambridge, United Kingdom
| | | | - Ruth A Lunt
- Johnson Matthey, Pharmorphix, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
18
|
Chen H, Pang Z, Qiao Q, Xia Y, Wei Y, Gao Y, Zhang J, Qian S. Puerarin-Na Chelate Hydrate Simultaneously Improves Dissolution and Mechanical Behavior. Mol Pharm 2021; 18:2507-2520. [PMID: 34142830 DOI: 10.1021/acs.molpharmaceut.1c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Puerarin monohydrate (PUEM), as the commercial solid form of the natural anti-hypertension drug puerarin (PUE), has low solubility, poor flowability, and mechanical properties. In this study, a novel solid form as PUE-Na chelate hydrate was prepared by a reactive crystallization method. Crystal structure analysis demonstrated that PUE-Na contains PUE-, Na+, and water in a molar ratio of 1:1:7. It crystallizes in the monoclinic space group P21, and Na+ is linked with PUE- and four water molecules through Na+ ← O coordination bonds. Another three crystal water molecules occupy channels along the crystallographic b-axis. Observing along the b-axis, the crystal structure features a distinct tubular helix and a DNA-like twisted helix. The complexation between Na+ and PUE- in aqueous solution was confirmed by the Na+ selective electrode, indicating that PUE-Na chelate hydrate belongs to a type of chelate rather than organic metal salt. Compared with PUEM, PUE-Na exhibited a superior dissolution rate (i.e., ∼38-fold increase in water) owing to its lower solvation free energy and clear-enriched exposed polar groups. Moreover, PUE-Na enhanced the tabletability and flowability of PUEM, attributing to its better elastoplastic deformation and lower-friction crystal habit. The unique PUE-Na chelate hydrate with significantly enhanced pharmaceutical properties is a very promising candidate for future product development of PUE.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qiyang Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanming Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
19
|
Cocrystals Based on 4,4’-bipyridine: Influence of Crystal Packing on Melting Point. CRYSTALS 2021. [DOI: 10.3390/cryst11020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reactions of piperonylic acid (HPip) and cinnamic acid (HCinn) with 4,4’-bipyridine (4,4’-bipy) have been assayed using the same synthetic methodology, yielding two binary cocrystals with different acid:4,4’-bipy molar ratios, (HPip)(4,4’-bipy) (1) and (HCinn)2(4,4’-bipy) (2). The melting point (m.p.) of these cocrystals have been measured and a remarkable difference (ΔT ≈ 78 °C) between them was observed. Moreover, the two cocrystals have been characterized by powder X-ray diffraction (PXRD), elemental analysis (EA), FTIR-ATR, 1H NMR spectroscopies, and single-crystal X-ray diffraction. The study of their structural packings via Hirshfeld surface analysis and energy frameworks revealed the important contribution of the π···π and C-H···π interactions to the formation of different structural packing motifs, this being the main reason for the difference of m.p. between them. Moreover, it has been observed that 1 and 2 presented the same packing motifs as the crystal structure of their corresponding carboxylic acids, but 1 and 2 showed lower m.p. than those of the carboxylic acids, which could be related to the lower strength of the acid-pyridine heterosynthons respect to the acid-acid homosynthons in the crystal structures.
Collapse
|
20
|
Funnell NP, Allan DR, Maloney AGP, Smith RI, Wilson CJG, Parsons S. Suppression of isotopic polymorphism. CrystEngComm 2021. [DOI: 10.1039/d0ce01636e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallisation at pressure overcomes the effect of isotopic polymorphism in the methylpyridine pentachlorophenol co-crystal. Though the hydrogenated Cc polymorph can only be obtained at pressure, it is stable on recovery to ambient conditions.
Collapse
Affiliation(s)
| | - David R. Allan
- Diamond Light Source
- Diamond House
- Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Ronald I. Smith
- ISIS Neutron and Muon Facility
- Rutherford Appleton Laboratory
- Didcot
- UK
| | - Cameron J. G. Wilson
- Centre for Science at Extreme Conditions
- School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - Simon Parsons
- Centre for Science at Extreme Conditions
- School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
21
|
Xu J, Gong XF, Li P, Chen XF, Wang HP, Ning LF. Mifepristone polymorph with enhanced solubility, dissolution and oral bioavailability. Steroids 2020; 159:108649. [PMID: 32389717 DOI: 10.1016/j.steroids.2020.108649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Mifepristone is one of potent anti-progesterone agents, which binds to progesterone receptors and glucocorticoid receptors. Until now, there are a lot of research focusing on enhancing the solubility and oral bioavailability of Mifepristone. However, poor solubility and oral bioavailability has some undesirable consequences. In this work, Mifepristone in form D was discovered for the first time and characterized by PXRD, TGA, DSC, FT-IR, SEM and SS NMR. Form D was a metastable crystal type which manifested favorable stability under ambient conditions. Form D had better dissolution characteristic compared with commercial Mifepristone in 0.5% SDS solution. In addition, Mifepristone in form D exhibited a 1.43-fold higher peak plasma concentration (Cmax) and 1.46-fold higher area under the curve (AUC) in rats. The work in this paper is a complement to the present understanding of drug polymorphism on the in vitro and in vivo behavior, and establishes the ground work for future development of Mifepristone in form D as a promising drug for the market.
Collapse
Affiliation(s)
- Juan Xu
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Xiao-Fang Gong
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Peng Li
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Xiao-Feng Chen
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Hui-Ping Wang
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China
| | - Li-Feng Ning
- National Research Institute for Family Planning, Haidian District, No.12, Da Hui Si Road, Beijing 100081, China.
| |
Collapse
|
22
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
23
|
Xu Y, Szell PM, Kumar V, Bryce DL. Solid-state NMR spectroscopy for the analysis of element-based non-covalent interactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Co-crystals, Salts or Mixtures of Both? The Case of Tenofovir Alafenamide Fumarates. Pharmaceutics 2020; 12:pharmaceutics12040342. [PMID: 32290280 PMCID: PMC7238255 DOI: 10.3390/pharmaceutics12040342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Tenofovir alafenamide fumarate (TAF) is the newest prodrug of tenofovir that constitutes several drug products used for the treatment of HIV/AIDS. Although the solid-state properties of its predecessor tenofovir disoproxil fumarate have been investigated and described in the literature, there are no data in the scientific literature on the solid state properties of TAF. In our report, we describe the preparation of two novel polymorphs II and III of tenofovir alafenamide monofumarate (TA MF2 and TA MF3). The solid-state structure of these compounds was investigated in parallel to the previously known tenofovir alafenamide monofumarate form I (TA MF1) and tenofovir alafenamide hemifumarate (TA HF). Interestingly, the single-crystal X-ray diffraction of TA HF revealed that this derivative exists as a co-crystal form. In addition, we prepared a crystalline tenofovir alafenamide free base (TA) and its hydrochloride salt (TA HCl), which enabled us to determine the structure of TA MF derivatives using 15N-ssNMR (15N-solid state nuclear magnetic resonance). Surprisingly, we observed that TA MF1 exists as a mixed ionization state complex or pure salt, while TA MF2 and TA MF3 can be obtained as pure co-crystal forms.
Collapse
|
25
|
Venkatesh A, Hung I, Boteju KC, Sadow AD, Gor'kov PL, Gan Z, Rossini AJ. Suppressing 1H Spin Diffusion in Fast MAS Proton Detected Heteronuclear Correlation Solid-State NMR Experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 105:101636. [PMID: 31816590 DOI: 10.1016/j.ssnmr.2019.101636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Fast magic angle spinning (MAS) and indirect detection by high gyromagnetic ratio (γ) nuclei such as proton or fluorine are increasingly utilized to obtain 2D heteronuclear correlation (HETCOR) solid-state NMR spectra of spin-1/2 nuclei by using cross polarization (CP) for coherence transfer. However, one major drawback of CP HETCOR pulse sequences is that 1H spin diffusion during the back X→1H CP transfer step may result in relayed correlations. This problem is particularly pronounced for the indirect detection of very low-γ nuclei such as 89Y, 103Rh, 109Ag and 183W where long contact times on the order of 10-30 ms are necessary for optimal CP transfer. Here we propose two methods that eliminate relayed correlations and allow more reliable distance information to be obtained from 2D HETCOR NMR spectra. The first method uses Lee-Goldburg (LG) CP during the X→1H back-transfer step to suppress 1H spin diffusion. We determine LG conditions compatible with fast MAS frequencies (νrot) of 40-95 kHz and show that 1H spin diffusion can be efficiently suppressed at low effective radiofrequency (RF) fields (ν1,eff ≪ 0.5νrot) and also at high effective RF fields (ν1,eff ≫ 2νrot). We describe modified Hartmann-Hahn LG-CP match conditions compatible with fast MAS and suitable for indirect detection of moderate-γ nuclei such as 13C, and low-γ nuclei such as 89Y. The second method uses D-RINEPT (dipolar refocused insensitive nuclei enhanced by polarization transfer) during the X→1H back-transfer step of the HETCOR pulse sequence. The effectiveness of these methods for acquiring HETCOR spectra with reduced relayed signal intensities is demonstrated with 1H{13C} HETCOR NMR experiments on l-histidine⋅HCl⋅H2O and 1H{89Y} HETCOR NMR experiments on an organometallic yttrium complex.
Collapse
Affiliation(s)
- Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, USA, 32310
| | - Kasuni C Boteju
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Aaron D Sadow
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, USA, 32310
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, USA, 32310
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA, USA, 50011; Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.
| |
Collapse
|
26
|
Garg U, Azim Y, Kar A, Pradeep CP. Cocrystals/salt of 1-naphthaleneacetic acid and utilizing Hirshfeld surface calculations for acid–aminopyrimidine synthons. CrystEngComm 2020. [DOI: 10.1039/d0ce00106f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Revisit of acid–aminopyrimidine synthons to explore the robustness in presence of linear hetrotetramer and heterotrimer synthon.
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry
- Z.H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh
- India
| | - Yasser Azim
- Department of Applied Chemistry
- Z.H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh
- India
| | - Aranya Kar
- School of Basic Sciences
- Indian Institute of Technology Mandi
- India
| | | |
Collapse
|
27
|
Duong NT, Rossi F, Makrinich M, Goldbourt A, Chierotti MR, Gobetto R, Nishiyama Y. Accurate 1H- 14N distance measurements by phase-modulated RESPDOR at ultra-fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106559. [PMID: 31345769 DOI: 10.1016/j.jmr.2019.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The combination of a phase-modulated (PM) saturation pulse and symmetry-based dipolar recoupling into a rotational-echo saturation-pulse double-resonance (RESPDOR) sequence has been employed to measure 1H-14N distances. Such a measurement is challenging owing to the quadrupolar interaction of 14N nucleus and the intense 1H-1H homonuclear dipolar interactions. Thanks to the recent advances in probe technology, the homonuclear dipolar interaction can be sufficiently suppressed at a fast MAS frequency (νR ≥ 60 kHz). PM pulse is robust to large variations of parameters on quadrupolar spins, but it has not been demonstrated under very fast MAS conditions. On the other hand, the RESPDOR sequence is applicable to such condition when it employs symmetry-based pulses during the recoupling period, but a prior knowledge on the system is required. In this article, we demonstrated the PM-RESPDOR combination for providing accurate 1H-14N distances at a very fast MAS frequency of 70 kHz on two samples, namely L-tyrosine⋅HCl and N-acetyl-L-alanine. This sequence, supported by simulations and experiments, has shown its feasibility at νR = 70 kHz as well as the robustness to the 14N quadrupolar interaction. It is applicable to a wide range of 1H-14N dipolar coupling constants when a radio frequency field on the 14N channel is approximately 80 kHz or more, while the PM pulse length lasts 10 rotor periods. For the first time, multiple 1H-14N heteronuclear dipolar couplings, thus multiple quantitative distances, are simultaneously and reliably extracted by fitting the experimental fraction curves with the analytical expression. The size of the 1H-14N dipolar interaction is solely used as a fitting parameter. These determined distances are in excellent agreement with those derived from diffraction techniques.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Federica Rossi
- Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy
| | - Maria Makrinich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
28
|
Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nat Commun 2019; 10:3537. [PMID: 31388004 PMCID: PMC6684599 DOI: 10.1038/s41467-019-11469-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022] Open
Abstract
Understanding hydrogen-bonding networks in nanocrystals and microcrystals that are too small for X-ray diffractometry is a challenge. Although electron diffraction (ED) or electron 3D crystallography are applicable to determining the structures of such nanocrystals owing to their strong scattering power, these techniques still lead to ambiguities in the hydrogen atom positions and misassignments of atoms with similar atomic numbers such as carbon, nitrogen, and oxygen. Here, we propose a technique combining ED, solid-state NMR (SSNMR), and first-principles quantum calculations to overcome these limitations. The rotational ED method is first used to determine the positions of the non-hydrogen atoms, and SSNMR is then applied to ascertain the hydrogen atom positions and assign the carbon, nitrogen, and oxygen atoms via the NMR signals for 1H, 13C, 14N, and 15N with the aid of quantum computations. This approach elucidates the hydrogen-bonding networks in l-histidine and cimetidine form B whose structure was previously unknown. Electron diffraction can be used to determine nanocrystal structures, but is unsuitable for locating hydrogen atoms. Here the authors combine electron diffraction, solid-state NMR and first-principles calculations to resolve the crystal structures and hydrogen-bonding networks of L-histidine and cimetidine form B.
Collapse
|
29
|
Sedghiniya S, Soleimannejad J, Janczak J. The salt–cocrystal spectrum in salicylic acid–adenine: the influence of crystal structure on proton-transfer balance. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:412-421. [DOI: 10.1107/s2053229619003127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/02/2019] [Indexed: 11/10/2022]
Abstract
At one extreme of the proton-transfer spectrum in cocrystals, proton transfer is absent, whilst at the opposite extreme, in salts, the proton-transfer process is complete. However, for acid–base pairs with a small ΔpK
a (pK
a of base − pK
a of acid), prediction of the extent of proton transfer is not possible as there is a continuum between the salt and cocrystal ends. In this context, we attempt to illustrate that in these systems, in addition to ΔpK
a, the crystalline environment could change the extent of proton transfer. To this end, two compounds of salicylic acid (SaH) and adenine (Ad) have been prepared. Despite the same small ΔpK
a value (≈1.2), different ionization states are found. Both crystals, namely adeninium salicylate monohydrate, C5H6N5
+·C7H5O3
−·H2O, I, and adeninium salicylate–adenine–salicylic acid–water (1/2/1/2), C5H6N5
+·C7H5O3
−·2C5H5N5·C7H6O3·2H2O, II, have been characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis (C, H and N) techniques. In addition, the intermolecular hydrogen-bonding interactions of compounds I and II have been investigated and quantified in detail on the basis of Hirshfeld surface analysis and fingerprint plots. Throughout the study, we use crystal engineering, which is based on modifications of the intermolecular interactions, thus offering a more comprehensive screening of the salt–cocrystal continuum in comparison with pure pK
a analysis.
Collapse
|
30
|
|
31
|
Saunders LK, Nowell H, Hatcher LE, Shepherd HJ, Teat SJ, Allan DR, Raithby PR, Wilson CC. Exploring short strong hydrogen bonds engineered in organic acid molecular crystals for temperature dependent proton migration behaviour using single crystal synchrotron X-ray diffraction (SCSXRD). CrystEngComm 2019. [DOI: 10.1039/c9ce00925f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Short strong hydrogen bonds in multi-component organic acid molecular crystals exhibit temperature dependent proton migration for certain HB donor–acceptor distances.
Collapse
Affiliation(s)
- Lucy K. Saunders
- Diamond Light Source
- Harwell Science and Innovation Campus
- Didcot OX11 0DE
- UK
| | - Harriott Nowell
- Diamond Light Source
- Harwell Science and Innovation Campus
- Didcot OX11 0DE
- UK
| | | | - Helena J. Shepherd
- School of Physical Sciences
- Ingram Building
- University of Kent
- Canterbury
- UK
| | - Simon J. Teat
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - David R. Allan
- Diamond Light Source
- Harwell Science and Innovation Campus
- Didcot OX11 0DE
- UK
| | | | | |
Collapse
|
32
|
Khan IM, Alam K, Alam MJ, Ahmad M. Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD, experimental and DFT/TD-DFT studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj00332k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic activity of a new CT complex was tested. Spectrophotometric studies were performed to understand its formation through N+–H⋯O− hydrogen bonding, and the structure was confirmed by single crystal XRD.
Collapse
Affiliation(s)
- Ishaat M. Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Kehkashan Alam
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
33
|
Pandey MK, Nishiyama Y. A one-dimensional solid-state NMR approach for 14NH/ 14NH overtone correlation through 1H/ 1H mixing under fast MAS. Phys Chem Chem Phys 2018; 20:25849-25853. [PMID: 30288509 DOI: 10.1039/c8cp05000g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homonuclear correlations are key to structural studies using solid-state NMR. In this contribution, using 14N overtone transition (OT) as a selective excitation approach, we propose a proton-detected one-dimensional (1D) 14NOT/14NOT/1H correlation solid-state NMR method mediated through 1H/1H mixing at fast magic angle spinning to achieve NH/NH proximities in naturally abundant samples. The proposed method is time efficient by a factor of ∼7.5 in comparison to the existing fundamental 14N frequency-based three-dimensional (3D) 14N/14N/1H correlation method.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Indian Institute of Technology (IIT) Ropar, Nangal Road, Rupnagar 140001, Punjab, India.
| | | |
Collapse
|
34
|
Lou X, Shen M, Li C, Chen Q, Hu B. Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T 1 by ball milling in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:20-25. [PMID: 30125796 DOI: 10.1016/j.ssnmr.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical samples have notably long 1H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1H T1, which also leads to enhanced sensitivity in {1H}-13C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.
Collapse
Affiliation(s)
- Xiaobing Lou
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ming Shen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Qun Chen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
35
|
Paluch P, Pawlak T, Ławniczak K, Trébosc J, Lafon O, Amoureux JP, Potrzebowski MJ. Simple and Robust Study of Backbone Dynamics of Crystalline Proteins Employing 1H- 15N Dipolar Coupling Dispersion. J Phys Chem B 2018; 122:8146-8156. [PMID: 30070484 DOI: 10.1021/acs.jpcb.8b04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new solid-state multidimensional NMR approach based on the cross-polarization with variable-contact pulse sequence [ Paluch , P. ; Pawlak , T. ; Amoureux , J.-P. ; Potrzebowski , M. J. J. Magn. Reson. 233 , 2013 , 56 ], with 1H inverse detection and very fast magic angle spinning (νR = 60 kHz), dedicated to the measurement of local molecular motions of 1H-15N vectors. The introduced three-dimensional experiments, 1H-15N-1H and hCA(N)H, are particularly useful for the study of molecular dynamics of proteins and other complex structures. The applicability and power of this methodology have been revealed by employing as a model sample the GB-1 small protein doped with Na2CuEDTA. The results clearly prove that the dispersion of 1H-15N dipolar coupling constants well correlates with higher order structure of the protein. Our approach complements the conventional studies and offers a fast and reasonably simple method.
Collapse
Affiliation(s)
- Piotr Paluch
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| | - Karol Ławniczak
- Department of Theoretical Physics, Faculty of Physics and Applied Informatics , University of Łódź , Pomorska 149/153 , PL-90236 Łódź , Poland
| | - Julien Trébosc
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Olivier Lafon
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS) , Univ. Lille, UMR 8181 , F-59000 Lille , France.,Bruker France , 34 rue de l'Industrie , F-67166 Wissembourg , France
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Sienkiewicza 112 , PL-90363 Łódź , Poland
| |
Collapse
|
36
|
Abidi SSA, Azim Y, Gupta AK, Pradeep CP. Cocrystals of indole-3-acetic acid and indole-3-butyric acid: Synthesis, structural characterization and Hirshfeld surface analysis. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Sathisaran I, Dalvi SV. Engineering Cocrystals of PoorlyWater-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics 2018; 10:E108. [PMID: 30065221 PMCID: PMC6161265 DOI: 10.3390/pharmaceutics10030108] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023] Open
Abstract
Biopharmaceutics Classification System (BCS) Class II and IV drugs suffer from poor aqueous solubility and hence low bioavailability. Most of these drugs are hydrophobic and cannot be developed into a pharmaceutical formulation due to their poor aqueous solubility. One of the ways to enhance the aqueous solubility of poorlywater-soluble drugs is to use the principles of crystal engineering to formulate cocrystals of these molecules with water-soluble molecules (which are generally called coformers). Many researchers have shown that the cocrystals significantly enhance the aqueous solubility of poorly water-soluble drugs. In this review, we present a consolidated account of reports available in the literature related to the cocrystallization of poorly water-soluble drugs. The current practice to formulate new drug cocrystals with enhanced solubility involves a lot of empiricism. Therefore, in this work, attempts have been made to understand a general framework involved in successful (and unsuccessful) cocrystallization events which can yield different solid forms such as cocrystals, cocrystal polymorphs, cocrystal hydrates/solvates, salts, coamorphous solids, eutectics and solid solutions. The rationale behind screening suitable coformers for cocrystallization has been explained based on the rules of five i.e., hydrogen bonding, halogen bonding (and in general non-covalent bonding), length of carbon chain, molecular recognition points and coformer aqueous solubility. Different techniques to screen coformers for effective cocrystallization and methods to synthesize cocrystals have been discussed. Recent advances in technologies for continuous and solvent-free production of cocrystals have also been discussed. Furthermore, mechanisms involved in solubilization of these solid forms and the parameters influencing dissolution and stability of specific solid forms have been discussed. Overall, this review provides a consolidated account of the rationale for design of cocrystals, past efforts, recent developments and future perspectives for cocrystallization research which will be extremely useful for researchers working in pharmaceutical formulation development.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Sameer Vishvanath Dalvi
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
38
|
Synthesis of a Glibenclamide Cocrystal: Full Spectroscopic and Thermal Characterization. J Pharm Sci 2018; 107:1597-1604. [PMID: 29432762 DOI: 10.1016/j.xphs.2018.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/23/2022]
Abstract
A cocrystal of glibenclamide, an antidiabetic drug classified as type II compound according to the Biopharmaceutics Classification System, has been synthesized using tromethamine as coformer in 1:1 molar ratio, by slow solvent evaporation cocrystalization. The cocrystal obtained was characterized by X-ray powder diffraction, differential scanning calorimetry, Raman, mid infrared, and near-infrared spectroscopy. The results consistently show the formation of a cocrystal between active pharmaceutical ingredients and conformer with the synthons corresponding to hydrogen bonding between hydrogen in amines of tromethamine and carbonyl and sulfonyl groups in glibenclamide.
Collapse
|
39
|
Abstract
By controlling nucleation and growth through choice of crystallization conditions, the stable co-crystal or metastable salt can be reproducibly obtained in accordance with Ostwald's rule of stages and the concept of ‘disappearing polymorphs’.
Collapse
Affiliation(s)
- E. A. Losev
- Group of Reactivity of Solids
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk
- Russian Federation
- Laboratory of Solid State Reactivity
| | - E. V. Boldyreva
- Group of Reactivity of Solids
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk
- Russian Federation
- Department of Solid State Chemistry
| |
Collapse
|
40
|
Szell PMJ, Dragon J, Zablotny S, Harrigan SR, Gabidullin B, Bryce DL. Mechanochemistry and cocrystallization of 3-iodoethynylbenzoic acid with nitrogen-containing heterocycles: concurrent halogen and hydrogen bonding. NEW J CHEM 2018. [DOI: 10.1039/c8nj00437d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen-bonded and hydrogen-bonded cocrystals of 3-iodoethynylbenzoic acid and several nitrogen-containing heterocycles are formed using mechanochemical and solvent-based slow evaporation methods.
Collapse
Affiliation(s)
- Patrick M. J. Szell
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Julien Dragon
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Scott Zablotny
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Stephen R. Harrigan
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - David L. Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|