1
|
Yang DS, Tilson A, Sherman MB, Varadarajan N, Vekilov PG. Mesoscopic p53-rich clusters represent a new class of protein condensates. BIOPHYSICS REVIEWS 2025; 6:011308. [PMID: 40124402 PMCID: PMC11928095 DOI: 10.1063/5.0243722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
The protein p53 is an important tumor suppressor, which transforms, after mutation, into a potent cancer promotor. Both mutant and wild-type p53 form amyloid fibrils, and fibrillization is considered one of the pathways of the mutants' oncogenicity. p53 incorporates structured domains, essential to its function, and extensive disordered regions. Here, we address the roles of the ordered (where the vast majority of oncogenic mutations localize) and disordered (implicated in aggregation and condensation of numerous other proteins) domains in p53 aggregation. We show that in the cytosol of model breast cancer cells, the mutant p53 R248Q reproducibly forms fluid aggregates with narrow size distribution centered at approximately 40 nm. Similar aggregates were observed in experiments with purified p53 R248Q, which identified the aggregates as mesoscopic protein-rich clusters, a unique protein condensate. Direct TEM imaging demonstrates that the mesoscopic clusters host and facilitate the nucleation of amyloid fibrils. We show that in solutions of stand-alone ordered domain of WT p53 clusters form and support fibril nucleation, whereas the disordered N-terminus domain forms common dense liquid and no fibrils. These results highlight two unique features of the mesoscopic protein-rich clusters: their role in amyloid fibrillization that may have implications for the oncogenicity of p53 mutants and the defining role of the ordered protein domains in their formation. In a broader context, these findings demonstrate that mutations in the DBD domain, which underlie the loss of cancer-protective transcription function, are also responsible for fibrillization and, thus, the gain of oncogenic function of p53 mutants.
Collapse
Affiliation(s)
- David S. Yang
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 M.L. King Blvd., Houston, Texas 77204-4004, USA
| | - Alexander Tilson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 M.L. King Blvd., Houston, Texas 77204-4004, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1055, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 M.L. King Blvd., Houston, Texas 77204-4004, USA
| | | |
Collapse
|
2
|
Martinelli A, Buzzaccaro S, Galand Q, Behra J, Segers N, Leussink E, Dhillon YS, Maes D, Lutsko J, Piazza R, Cipelletti L. An advanced light scattering apparatus for investigating soft matter onboard the International Space Station. NPJ Microgravity 2024; 10:115. [PMID: 39702437 DOI: 10.1038/s41526-024-00455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Colloidal solids (COLIS) is a state-of-the-art light scattering setup developed for experiments onboard the International Space Station (ISS). COLIS allows for probing the structure and dynamics of soft matter systems on a wide range of length scales, from a few nm to tens of microns, and on time scales from 100 ns to tens of hours. In addition to conventional static and dynamic light scattering, COLIS includes depolarized dynamic light scattering, a small-angle camera, photon correlation imaging, and optical manipulation of thermosensitive samples through an auxiliary near-infrared laser beam, thereby providing a unique platform for probing soft matter systems. We demonstrate COLIS through ground tests on standard Brownian suspensions, and on protein, colloidal glasses, and gel systems similar to those to be used in future ISS experiments.
Collapse
Affiliation(s)
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
| | - Quentin Galand
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Juliette Behra
- L2C, Université Montpellier, P. Bataillon, Montpellier, 34095, France
- Instrumat AG, Chemin de la Rueyre 116/118, Renens, CH-1020, Switzerland
| | - Niel Segers
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
| | - Erik Leussink
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
| | - Yadvender Singh Dhillon
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
- School of Engineering, Macquarie University, Wallumattagal Campus, Macquarie Park, Sidney, NSW, 2109, Australia
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - James Lutsko
- Center for Nonlinear Phenomena and Complex Systems, CP231 and BLU-ULB Space Research Center, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Luca Cipelletti
- L2C, Université Montpellier, P. Bataillon, Montpellier, 34095, France.
- Institut Universitaire de France, 1, Rue Descartes, Paris, 75231, France.
| |
Collapse
|
3
|
Lutsko JF, Schoonen C. A microscopic approach to crystallization: Challenging the classical/non-classical dichotomy. J Chem Phys 2024; 161:104502. [PMID: 39254162 DOI: 10.1063/5.0225658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
We present a fundamental framework for the study of crystallization based on a combination of classical density functional theory and fluctuating hydrodynamics that is free of any assumptions regarding order parameters and that requires no input other than molecular interaction potentials. We use it to study the nucleation of both droplets and crystalline solids from a low-concentration solution of colloidal particles using two different interaction potentials. We find that the nucleation pathways of both droplets and crystals are remarkably similar at the early stages of nucleation until they diverge due to a rapid ordering along the solid pathways in line with the paradigm of "non-classical" crystallization. We compute the unstable modes at the critical clusters and find that despite the non-classical nature of solid nucleation, the size of the nucleating clusters remains the principle order parameter in all cases, supporting a "classical" description of the dynamics of crystallization. We show that nucleation rates can be extracted from our formalism in a systematic way. Our results suggest that in some cases, despite the non-classical nature of the nucleation pathways, classical nucleation theory can give reasonable results for solids but that there are circumstances where it may fail. This contributes a nuanced perspective to recent experimental and simulation work, suggesting that important aspects of crystal nucleation can be described within a classical framework.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| | - Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Yerragunta M, Tiwari A, Chakrabarti R, Rimer JD, Kahr B, Vekilov PG. A dual growth mode unique for organic crystals relies on mesoscopic liquid precursors. Commun Chem 2024; 7:190. [PMID: 39198705 PMCID: PMC11358147 DOI: 10.1038/s42004-024-01275-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Organic solvents host the synthesis of high-value crystals used as pharmaceuticals and optical devices, among other applications. A knowledge gap persists on how replacing the hydrogen bonds and polar attraction that dominate aqueous environments with the weaker van der Waals forces affects the growth mechanism, including its defining feature, whether crystals grow classically or nonclassically. Here we demonstrate a rare dual growth mode of etioporphyrin I crystals, enabled by liquid precursors that associate with crystal surfaces to generate stacks of layers, which then grow laterally by incorporating solute molecules. Our findings reveal the precursors as mesoscopic solute-rich clusters, a unique phase favored by weak bonds such as those between organic solutes. The lateral spreading of the precursor-initiated stacks of layers crucially relies on abundant solute supply directly from the solution, bypassing diffusion along the crystal surface; the direct incorporation pathway may, again, be unique to organic solvents. Clusters that evolve to amorphous particles do not seamlessly integrate into crystal lattices. Crystals growing fast and mostly nonclassically at high supersaturations are not excessively strained. Our findings demonstrate that the weak interactions typical of organic systems promote nonclassical growth modes by supporting liquid precursors and enabling the spreading of multilayer stacks.
Collapse
Affiliation(s)
- Manasa Yerragunta
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
| | - Akash Tiwari
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Rajshree Chakrabarti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA
| | - Bart Kahr
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY, 10003, USA
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX, 77204-4004, USA.
- Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX, 77204-4004, USA.
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX, 77204-5003, USA.
| |
Collapse
|
5
|
Goto Y, Nakajima K, Yamamoto S, Yamaguchi K. Supersaturation, a Critical Factor Underlying Proteostasis of Amyloid Fibril Formation. J Mol Biol 2024; 436:168475. [PMID: 38311232 DOI: 10.1016/j.jmb.2024.168475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
From a physicochemical viewpoint, amyloid fibril formation is a phase transition from soluble to crystal-like sates limited by supersaturation. It occurs only above solubility (i.e., the solubility limit) coupled with a breakdown of supersaturation. Although many studies have examined the role of molecular chaperones in the context of proteostasis, the role of supersaturation has not been addressed. Moreover, although molecular chaperone-dependent disaggregations have been reported for preformed amyloid fibrils, amyloid fibrils will not dissolve above the solubility of monomers, even if agitations fragment long fibrils to shorter amyloid particles. On the other hand, on considering a reversible and coupled equilibrium of interactions, folding/unfolding and amyloid formation/disaggregation, molecules stabilizing native states can work as a disaggregase reversing the amyloid fibrils to monomers. It is likely that the proteostasis network has various intra- and extracellular components which disaggregate preformed amyloid fibrils as well as prevent amyloid formation. Further studies with a view of solubility and supersaturation will be essential for comprehensive understanding of proteostasis.
Collapse
Affiliation(s)
- Yuji Goto
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kichitaro Nakajima
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keiichi Yamaguchi
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Toledo PL, Gianotti AR, Vazquez DS, Ermácora MR. Protein nanocondensates: the next frontier. Biophys Rev 2023; 15:515-530. [PMID: 37681092 PMCID: PMC10480383 DOI: 10.1007/s12551-023-01105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
8
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Sun X, Chintakunta PK, Badachhape AA, Bhavane R, Lee H, Yang DS, Starosolski Z, Ghaghada KB, Vekilov PG, Annapragada AV, Tanifum EA. Rational Design of a Self-Assembling High Performance Organic Nanofluorophore for Intraoperative NIR-II Image-Guided Tumor Resection of Oral Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206435. [PMID: 36721029 PMCID: PMC10074073 DOI: 10.1002/advs.202206435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50-75%. Advanced real-time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near-infrared (NIR-II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR-II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR-II fluorophore, XW-03-66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW-03-66 self-assembles into nanoparticles (≈80 nm) and has a systemic circulation half-life (t1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV- OSCC, XW-03-66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR-II image-guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications.
Collapse
Affiliation(s)
- Xianwei Sun
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
| | - Praveen Kumar Chintakunta
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Present address:
Sai Life Sciences LtdTurakapallyTelanganaIndia
| | | | - Rohan Bhavane
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Huan‐Jui Lee
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
| | - David S. Yang
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
| | - Zbigniew Starosolski
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Ketan B. Ghaghada
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Peter G. Vekilov
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
- Department of ChemistryUniversity of HoustonHoustonTX77204USA
| | - Ananth V. Annapragada
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Eric A. Tanifum
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| |
Collapse
|
10
|
Das D, Deniz AA. Topological Considerations in Biomolecular Condensation. Biomolecules 2023; 13:151. [PMID: 36671536 PMCID: PMC9855981 DOI: 10.3390/biom13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Biomolecular condensation and phase separation are increasingly understood to play crucial roles in cellular compartmentalization and spatiotemporal regulation of cell machinery implicated in function and pathology. A key aspect of current research is to gain insight into the underlying physical mechanisms of these processes. Accordingly, concepts of soft matter and polymer physics, the thermodynamics of mixing, and material science have been utilized for understanding condensation mechanisms of multivalent macromolecules resulting in viscoelastic mesoscopic supramolecular assemblies. Here, we focus on two topological concepts that have recently been providing key mechanistic understanding in the field. First, we will discuss how percolation provides a network-topology-related framework that offers an interesting paradigm to understand the complex networking of dense 'connected' condensate structures and, therefore, their phase behavior. Second, we will discuss the idea of entanglement as another topological concept that has deep roots in polymer physics and important implications for biomolecular condensates. We will first review some historical developments and fundamentals of these concepts, then we will discuss current advancements and recent examples. Our discussion ends with a few open questions and the challenges to address them, hinting at unveiling fresh possibilities for the modification of existing knowledge as well as the development of new concepts relevant to condensate science.
Collapse
Affiliation(s)
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Vazquez DS, Toledo PL, Gianotti AR, Ermácora MR. Protein conformation and biomolecular condensates. Curr Res Struct Biol 2022; 4:285-307. [PMID: 36164646 PMCID: PMC9508354 DOI: 10.1016/j.crstbi.2022.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/27/2022] Open
Abstract
Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
12
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|
13
|
Peters B. Crystal nucleation: Rare made common and captured by Raman. Proc Natl Acad Sci U S A 2022; 119:e2204971119. [PMID: 35584118 PMCID: PMC9173772 DOI: 10.1073/pnas.2204971119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
14
|
Katsumi S, Saigusa M, Ito F. Molecular Aggregation Dynamics via a Liquid-like Cluster Intermediate during Heterogeneous Evaporation as Revealed by Hyperspectral Camera Fluorescence Imaging. J Phys Chem B 2022; 126:976-984. [PMID: 35077181 DOI: 10.1021/acs.jpcb.1c09507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A hyperspectral camera (HSC) is a camera with great potential to obtain spectral information at each pixel, together with spatial imaging. HSC fluorescence imaging enables the molecular aggregation dynamics of the evaporative crystallization process to be followed in real-time. The key intermediate liquid-like cluster state for the two-step nucleation mechanism is visualized by the fluorescence color changes of mechanochromic luminescent dibenzoylmethanatoboron difluoride derivatives. Three types of emissive species (Crystal, BG-aggregates, and Amorphous) are generated from monomers in solution (low order and density) via liquid-like cluster (high density and low order) during solvent evaporation. These emissive species have partially different aggregated states based on fluorescence decay and fluorescence excitation spectral measurements. In terms of crystallization dynamics, our results indicate that it is important not only to generate supersaturated states but also to maintain the survival time of the liquid-like cluster. Moreover, we demonstrate that HSC fluorescence imaging can be a powerful tool for visualizing heterogeneous molecular aggregation processes.
Collapse
Affiliation(s)
- Shiho Katsumi
- Graduate School of Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda 386-8567, Japan
| | - Mai Saigusa
- Department of Chemistry, Institute of Education, Shinshu University, 6-ro, Nishinagano, Nagano 380-8544, Japan
| | - Fuyuki Ito
- Department of Chemistry, Institute of Education, Shinshu University, 6-ro, Nishinagano, Nagano 380-8544, Japan
| |
Collapse
|
15
|
Ahn B, Bosetti L, Mazzotti M. Accounting for the Presence of Molecular Clusters in Modeling and Interpreting Nucleation and Growth. CRYSTAL GROWTH & DESIGN 2022; 22:661-672. [PMID: 35024005 PMCID: PMC8739834 DOI: 10.1021/acs.cgd.1c01193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Indexed: 06/02/2023]
Abstract
The effect of molecular cluster formation on the estimation of kinetic parameters for primary nucleation and growth in different systems has been studied using computationally generated data and three sets of experimental data in the literature. It is shown that the formation of molecular clusters decreases the concentration of monomers and hence the thermodynamic driving force for crystallization, which consequently affects the crystallization kinetics. For a system exhibiting a strong tendency to form molecular clusters, accounting for cluster formation in a kinetic model is critical to interpret kinetic data accurately, for instance, to estimate the specific surface energy γ from a set of primary nucleation rates. On the contrary, for a system with negligible cluster formation, a consideration of cluster formation does not affect parameter estimation outcomes. Moreover, it is demonstrated that using a growth kinetic model that accounts for cluster formation allows the estimation of γ from typical growth kinetic data (i.e., de-supersaturation profiles of seeded batch crystallization), which is a novel method of estimating γ developed in this work. The applicability of the novel method to different systems is proven by showing that the estimated values of γ are closely comparable to the actual values used for generating the kinetic data or the corresponding estimates reported in the literature.
Collapse
Affiliation(s)
- Byeongho Ahn
- Institute of Energy and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Luca Bosetti
- Institute of Energy and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int J Pharm 2022; 611:121320. [PMID: 34843866 DOI: 10.1016/j.ijpharm.2021.121320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Drug polymorphism, an established term used to describe the phenomenon that a drug can exist in different crystalline phases, has attracted great interests in pharmaceutical field in consideration of its important role in affecting the pharmaceutical performance of oral formulations. This paper presents an overview of recent advances in the research on polymorphic drug systems including understandings on nucleation, crystal growth, dissolution, mechanical properties, polymorphic transformation, etc. Moreover, new strategies and mechanisms in the control of polymorphic forms are also highlighted in this review. Furthermore, challenges and trends in the development of polymorphic drugs are briefly discussed, aiming at developing effective and efficient pharmaceutical formulations containing the polymorphic drugs.
Collapse
|
17
|
Strofaldi A, Khan AR, McManus JJ. Surface Exposed Free Cysteine Suppresses Crystallization of Human γD-Crystallin. J Mol Biol 2021; 433:167252. [PMID: 34537240 DOI: 10.1016/j.jmb.2021.167252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
Human γD-crystallin (HGD) has remarkable stability against condensation in the human lens, sometimes over a whole lifetime. The native protein has a surface exposed free cysteine that forms dimers (Benedek, 1997; Ramkumar et al., 1864)1,2 without specific biological function and leads to further protein association and/or aggregation, which creates a paradox for understanding its stability. Previous work has demonstrated that chemical modification of the protein at the free cysteine (C110), increases the temperature at which liquid-liquid phase separation occurs (LLPS), lowers protein solubility and suggests an important role for this amino acid in maintaining its long-term resistance to condensation. Here we demonstrate that mutation of the cysteine does not alter the structure or solubility (liquidus) line for the protein, but dramatically increases the protein crystal nucleation rate following LLPS, suggesting that the free cysteine has a vital role in suppressing crystallization in the human lens.
Collapse
Affiliation(s)
- Alessandro Strofaldi
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; H. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Amir R Khan
- Division of Newborn Medicine, Boston Children's Hospital, Boston, USA; School of Biochemistry, Trinity College Dublin, Ireland
| | - Jennifer J McManus
- H. H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
| |
Collapse
|
18
|
Yang DS, Saeedi A, Davtyan A, Fathi M, Sherman MB, Safari MS, Klindziuk A, Barton MC, Varadarajan N, Kolomeisky AB, Vekilov PG. Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proc Natl Acad Sci U S A 2021; 118:e2015618118. [PMID: 33653952 PMCID: PMC7958401 DOI: 10.1073/pnas.2015618118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein p53 is a crucial tumor suppressor, often called "the guardian of the genome"; however, mutations transform p53 into a powerful cancer promoter. The oncogenic capacity of mutant p53 has been ascribed to enhanced propensity to fibrillize and recruit other cancer fighting proteins in the fibrils, yet the pathways of fibril nucleation and growth remain obscure. Here, we combine immunofluorescence three-dimensional confocal microscopy of human breast cancer cells with light scattering and transmission electron microscopy of solutions of the purified protein and molecular simulations to illuminate the mechanisms of phase transformations across multiple length scales, from cellular to molecular. We report that the p53 mutant R248Q (R, arginine; Q, glutamine) forms, both in cancer cells and in solutions, a condensate with unique properties, mesoscopic protein-rich clusters. The clusters dramatically diverge from other protein condensates. The cluster sizes are decoupled from the total cluster population volume and independent of the p53 concentration and the solution concentration at equilibrium with the clusters varies. We demonstrate that the clusters carry out a crucial biological function: they host and facilitate the nucleation of amyloid fibrils. We demonstrate that the p53 clusters are driven by structural destabilization of the core domain and not by interactions of its extensive unstructured region, in contradistinction to the dense liquids typical of disordered and partially disordered proteins. Two-step nucleation of mutant p53 amyloids suggests means to control fibrillization and the associated pathologies through modifying the cluster characteristics. Our findings exemplify interactions between distinct protein phases that activate complex physicochemical mechanisms operating in biological systems.
Collapse
Affiliation(s)
- David S Yang
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Aram Davtyan
- Department of Chemistry, Rice University, Houston, TX 77251
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Mohammad S Safari
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, TX 77251
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77251
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204;
- Department of Chemistry, University of Houston, Houston, TX 77204
| |
Collapse
|
19
|
Liu H, Zhang J, Li W. The distinct binding modes of pesticides affect the phase transitions of lysozyme. CrystEngComm 2021. [DOI: 10.1039/d1ce00108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the aggregation and nucleation of proteins in the presence of organic molecules is helpful for disclosing the mechanisms of protein crystallization.
Collapse
Affiliation(s)
- Han Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
20
|
Effect of Choice of Solvent on Crystallization Pathway of Paracetamol: An Experimental and Theoretical Case Study. CRYSTALS 2020. [DOI: 10.3390/cryst10121107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The choice of solvents influences crystalline solid formed during the crystallization of active pharmaceutical ingredients (API). The underlying effects are not always well understood because of the complexity of the systems. Theoretical models are often insufficient to describe this phenomenon. In this study, the crystallization behavior of the model drug paracetamol in different solvents was studied based on experimental and molecular dynamics data. The crystallization process was followed in situ using time-resolved Raman spectroscopy. Molecular dynamics with simulated annealing algorithm was used for an atomistic understanding of the underlying processes. The experimental and theoretical data indicate that paracetamol molecules adopt a particular geometry in a given solvent predefining the crystallization of certain polymorphs.
Collapse
|
21
|
Affiliation(s)
- Peter G. Vekilov
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
22
|
Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. Traffic 2019; 21:220-230. [DOI: 10.1111/tra.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Celestin N. Mudogo
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Department of Basic Sciences, School of MedicineUniversity of Kinshasa Kinshasa Democratic Republic of Congo
| | - Sven Falke
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| | - Hévila Brognaro
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Centre for Free‐Electron‐Laser Science Hamburg Germany
| | - Michael Duszenko
- Institute of Neurophysiology, University of Tübingen Tübingen Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| |
Collapse
|
23
|
Moris M, Van Den Eede MP, Koeckelberghs G, Deschaume O, Bartic C, Van Cleuvenbergen S, Clays K, Verbiest T. Harmonic light scattering study reveals structured clusters upon the supramolecular aggregation of regioregular poly(3-alkylthiophene). Commun Chem 2019. [DOI: 10.1038/s42004-019-0230-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Solubilized poly(3-alkylthiophene)s are known to self-assemble into well-ordered supramolecular aggregates upon lowering the solvent quality. This supramolecular organization largely determines the optical and electronic properties of these polymers. However, despite numerous studies the exact mechanism and kinetics of the aggregation process and the role of external stimuli are still poorly understood. Classical characterization techniques such as electronic spectroscopy, dynamic light scattering, and diffraction-based techniques have not been able to provide a full understanding. Here we use second-harmonic scattering (SHS) and third-harmonic scattering (THS) techniques to investigate this supramolecular aggregation mechanism. Our results indicate that the actual supramolecular aggregation is preceded by the formation of structured polymer-solvent clusters consistent with a nonclassical crystallization pathway.
Collapse
|
24
|
Protein Microgels from Amyloid Fibril Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:223-263. [PMID: 31713201 DOI: 10.1007/978-981-13-9791-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nanofibrillar forms of amyloidogenic proteins were initially discovered in the context of protein misfolding and disease but have more recently been found at the origin of key biological functionality in many naturally occurring functional materials, such as adhesives and biofilm coatings. Their physiological roles in nature reflect their great strength and stability, which has led to the exploration of their use as the basis of artificial protein-based functional materials. Particularly for biomedical applications, they represent attractive building blocks for the development of, for instance, drug carrier agents due to their inherent biocompatibility and biodegradability. Furthermore, the propensity of proteins to self-assemble into amyloid fibrils can be exploited under microconfinement, afforded by droplet microfluidic techniques. This approach allows the generation of multi-scale functional microgels that can host biological additives and can be designed to incorporate additional functionality, such as to aid targeted drug delivery.
Collapse
|
25
|
|
26
|
Boire A, Sanchez C, Morel MH, Lettinga MP, Menut P. Dynamics of liquid-liquid phase separation of wheat gliadins. Sci Rep 2018; 8:14441. [PMID: 30262869 PMCID: PMC6160421 DOI: 10.1038/s41598-018-32278-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023] Open
Abstract
During wheat seeds development, storage proteins are synthetized and subsequently form dense protein phases, also called Protein Bodies (PBs). The mechanisms of PBs formation and the supramolecular assembly of storage proteins in PBs remain unclear. In particular, there is an apparent contradiction between the low solubility in water of storage proteins and their high local dynamics in dense PBs. Here, we probe the interplay between short-range attraction and long-range repulsion of a wheat gliadin isolate by investigating the dynamics of liquid-liquid phase separation after temperature quench. We do so using time-resolved small angle light scattering, phase contrast microscopy and rheology. We show that gliadins undergo liquid-liquid phase separation through Nucleation and Growth or Spinodal Decomposition depending on the quench depth. They assemble into dense phases but remain in a liquid-like state over an extended range of temperatures and concentrations. The analysis of phase separation kinetics reveals that the attraction strength of gliadins is in the same order of magnitude as other proteins. We discuss the respective role of competing interactions, protein intrinsic disorder, hydration and polydispersity in promoting local dynamics and providing this liquid-like behavior despite attractive forces.
Collapse
Affiliation(s)
- Adeline Boire
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France. .,INRA, UR1268 Biopolymers Interactions Assemblies, 44300, Nantes, France.
| | - Christian Sanchez
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France
| | - Marie-Hélène Morel
- UMR IATE, INRA, Université de Montpellier, Montpellier SupAgro, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France
| | - Minne Paul Lettinga
- Soft Condensed Matter Group ICS3, Jülich Forschungscentrum, Jülich, Germany.,Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
| | - Paul Menut
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France.,Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300, Massy, France
| |
Collapse
|
27
|
Sleutel M, Van Driessche AES. Nucleation of protein crystals - a nanoscopic perspective. NANOSCALE 2018; 10:12256-12267. [PMID: 29947625 DOI: 10.1039/c8nr02867b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Macromolecular phase transitions bear great medical, scientific and industrial relevance, yet the molecular picture of their earliest beginnings is still far from complete. For decades, progress has been hampered by the challenges associated with studying stochastic nucleation phenomena occurring on nanoscopic length scales. In the last 5 years, however, the field has advanced with great strides due to the recent buildout of experimental techniques that allow us to observe details of the nucleation process on the nanoscale. In this review, we present a historical overview and state-of-the-art analysis of protein crystal nucleation from an experimentalist's perspective. After a short introduction of key concepts from classical nucleation theory, we discuss the advancements that have led to the development of alternative models of protein nucleation. We summarize the experimental proof in favour of these various models, but we also focus on some of their shortcomings and experimental blind spots. In our penultimate section we highlight recent works that have provided direct nanoscopic insight into the nucleation of protein crystals. We end with concluding paragraphs discussing outstanding questions and possible strategies to advance the field further in the future.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | |
Collapse
|
28
|
Xiao Z, Sun X, Li X, Wang Y, Wang Z, Zhang B, Li XL, Shen Z, Kong LB, Huang Y. Phase Transformation of GeO 2 Glass to Nanocrystals under Ambient Conditions. NANO LETTERS 2018; 18:3290-3296. [PMID: 29667834 DOI: 10.1021/acs.nanolett.8b01142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Theoretically, the accomplishment of phase transformation requires sufficient energy to overcome the barriers of structure rearrangements. The transition of an amorphous structure to a crystalline structure is implemented traditionally by heating at high temperatures. However, phase transformation under ambient condition without involving external energy has not been reported. Here, we demonstrate that the phase transformation of GeO2 glass to nanocrystals can be triggered at ambient conditions when subjected to aqueous environments. In this case, continuous chemical reactions between amorphous GeO2 and water are responsible for the amorphous-to-crystalline transition. The dynamic evolution process is monitored by using in situ liquid-cell transmission electron microscopy, clearly revealing this phase transformation. It is the hydrolysis of amorphous GeO2 that leads to the formation of clusters with a size of ∼0.4 nm, followed by the development of dense liquid clusters, which subsequently aggregate to facilitate the nucleation and growth of GeO2 nanocrystals. Our finding breaks the traditional understanding of phase transformation and will bring about a significant revolution and contribution to the classical glass-crystallization theories.
Collapse
Affiliation(s)
- Zhuohao Xiao
- School of Materials Science and Engineering , Jingdezhen Ceramic Institute , Jingdezhen 333001 , China
| | - Xinyuan Sun
- Department of Physics , Jinggangshan University , Ji'an 343009 , China
| | - Xiuying Li
- School of Materials Science and Engineering , Jingdezhen Ceramic Institute , Jingdezhen 333001 , China
| | - Yongqing Wang
- School of Materials Science and Engineering , Jingdezhen Ceramic Institute , Jingdezhen 333001 , China
| | - Zhiqiang Wang
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Bowei Zhang
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Xiang Lin Li
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Zexiang Shen
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Ling Bing Kong
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
29
|
Falke S, Dierks K, Blanchet C, Graewert M, Cipriani F, Meijers R, Svergun D, Betzel C. Multi-channel in situ dynamic light scattering instrumentation enhancing biological small-angle X-ray scattering experiments at the PETRA III beamline P12. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:361-372. [PMID: 29488914 DOI: 10.1107/s1600577517017568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.
Collapse
Affiliation(s)
- Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| | - Karsten Dierks
- Xtal Concepts GmbH, Marlowring 19, Hamburg 22525, Germany
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Florent Cipriani
- European Molecular Biology Laboratory (EMBL), 71 Avenue des Martyrs, Grenoble 38042, France
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o Notkestrasse 85, Hamburg 22607, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University Hamburg, c/o DESY, Building 22a, Notkestrasse 85, Hamburg 22603, Germany
| |
Collapse
|
30
|
Chatani E, Yamamoto N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 2017; 10:527-534. [PMID: 29214606 DOI: 10.1007/s12551-017-0353-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.
Collapse
Affiliation(s)
- Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
| | - Naoki Yamamoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
31
|
Zhang F. Nonclassical nucleation pathways in protein crystallization. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443002. [PMID: 28984274 DOI: 10.1088/1361-648x/aa8253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Collapse
Affiliation(s)
- Fajun Zhang
- Universität Tübingen, Institut für Angewandte Physik, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Matsushita Y, Sekiguchi H, Wong CJ, Nishijima M, Ikezaki K, Hamada D, Goto Y, Sasaki YC. Nanoscale Dynamics of Protein Assembly Networks in Supersaturated Solutions. Sci Rep 2017; 7:13883. [PMID: 29093529 PMCID: PMC5665898 DOI: 10.1038/s41598-017-14022-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Proteins in solution are conventionally considered macromolecules. Dynamic microscopic structures in supersaturated protein solutions have received increasing attention in the study of protein crystallisation and the formation of misfolded aggregates. Here, we present a method for observing rotational dynamic structures that can detect the interaction of nanoscale lysozyme protein networks via diffracted X-ray tracking (DXT). Our DXT analysis demonstrated that the rearrangement behaviours of lysozyme networks or clusters, which are driven by local density and concentration fluctuations, generate force fields on the femtonewton to attonewton (fN – aN) scale. This quantitative parameter was previously observed in our experiments on supersaturated inorganic solutions. This commonality provides a way to clarify the solution structures of a variety of supersaturated solutions as well as to control nucleation and crystallisation in supersaturated solutions.
Collapse
Affiliation(s)
- Y Matsushita
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - H Sekiguchi
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, Japan
| | - C Jae Wong
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - M Nishijima
- Office for University - Industry Collaboration, Osaka University, 2-8, Yamadaoka, Suita, Osaka, Japan
| | - K Ikezaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - D Hamada
- Graduate School of Engineering, Kobe University, 7-1-48 Minato-jima, Minami, Kobe, Hyogo, Japan.,SPring-8/RIKEN, 1-1-1 Kouto, Sayo, Hyogo, Japan
| | - Y Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. .,Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, Japan. .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan.
| |
Collapse
|
33
|
Molitor C, Bijelic A, Rompel A. The potential of hexatungstotellurate(VI) to induce a significant entropic gain during protein crystallization. IUCRJ 2017; 4:734-740. [PMID: 29123675 PMCID: PMC5668858 DOI: 10.1107/s2052252517012349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/25/2017] [Indexed: 06/01/2023]
Abstract
The limiting factor in protein crystallography is still the production of high-quality crystals. In this regard, the authors have recently introduced hexatungstotellurate(VI) (TEW) as a new crystallization additive, which proved to be successful within the liquid-liquid phase separation (LLPS) zone. Presented here are comparative crystal structure analyses revealing that protein-TEW binding not only induces and stabilizes crystal contacts, but also exhibits a significant impact on the solvent-driven crystallization entropy, which is the driving force for the crystallization process. Upon the formation of TEW-mediated protein-protein contacts, the release of water molecules from the hydration shells of both molecules, i.e. TEW and the protein, causes a reduced solvent-accessible surface area, leading to a significant gain in solvent entropy. Based on the crystal structures of aurone synthase (in the presence and absence of TEW), insights have also been provided into the formation of a metastable LLPS, which is caused by the formation of protein clusters, representing an ideal starting point in protein crystallization. The results strongly encourage the classification of TEW as a valuable crystallization additive.
Collapse
Affiliation(s)
- Christian Molitor
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria
| | - Aleksandar Bijelic
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstrasse 14, Wien 1090, Austria
| |
Collapse
|
34
|
Safari MS, Byington MC, Conrad JC, Vekilov PG. Polymorphism of Lysozyme Condensates. J Phys Chem B 2017; 121:9091-9101. [DOI: 10.1021/acs.jpcb.7b05425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad S. Safari
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Michael C. Byington
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Jacinta C. Conrad
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Peter G. Vekilov
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
- Department
of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, Texas 77204-5003, United States
| |
Collapse
|
35
|
Adawy A, Amghouz Z, van Hest JCM, Wilson DA. Sub-Micron Polymeric Stomatocytes as Promising Templates for Confined Crystallization and Diffraction Experiments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700642. [PMID: 28558135 DOI: 10.1002/smll.201700642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The possibility of using sub-micrometer polymeric stomatocytes is investigated to effectuate confined crystallization of inorganic compounds. These bowl-shaped polymeric compartments facilitate confined crystallization while their glassy surfaces provide their crystalline cargos with convenient shielding from the electron beam's harsh effects during transmission electron microscopy experiments. Stomatocytes host the growth of a single nanocrystal per nanocavity, and the electron diffraction experiments reveal that their glassy membranes do not interfere with the diffraction patterns obtained from their crystalline cargos. Therefore, it is expected that the encapsulation and crystallization within these compartments can be considered as a promising template (nanovials) that hold and protect nanocrystals and protein clusters from the direct radiation damage before data acquisition, while they are examined by modern crystallography methodologies such as serial femtosecond crystallography.
Collapse
Affiliation(s)
- Alaa Adawy
- Institute for Molecules and Materials, Radboud University, 6525, AJ, Nijmegen, The Netherlands
| | - Zakariae Amghouz
- HRTEM Laboratory, Scientific-Technical Services, University of Oviedo-CINN, Oviedo, 33006, Spain
| | - Jan C M van Hest
- Institute for Molecules and Materials, Radboud University, 6525, AJ, Nijmegen, The Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Yuyama KI, Ueda M, Nagao S, Hirota S, Sugiyama T, Masuhara H. A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angew Chem Int Ed Engl 2017; 56:6739-6743. [DOI: 10.1002/anie.201702352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ken-ichi Yuyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Present address: Research Institute for Electronic Science; Hokkaido University; N20W10, Kita-Ward Sapporo 001-0020 Japan
| | - Mariko Ueda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
| |
Collapse
|
37
|
Yuyama KI, Ueda M, Nagao S, Hirota S, Sugiyama T, Masuhara H. A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ken-ichi Yuyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Present address: Research Institute for Electronic Science; Hokkaido University; N20W10, Kita-Ward Sapporo 001-0020 Japan
| | - Mariko Ueda
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry; National Chiao Tung University; 1001 University Road Hsinchu 300 Taiwan
| |
Collapse
|
38
|
Abstract
Nucleation, the primary step in crystallization, dictates the number of crystals, the distribution of their sizes, the polymorph selection, and other crucial properties of the crystal population. We used time-resolved liquid-cell transmission electron microscopy (TEM) to perform an in situ examination of the nucleation of lysozyme crystals. Our TEM images revealed that mesoscopic clusters, which are similar to those previously assumed to consist of a dense liquid and serve as nucleation precursors, are actually amorphous solid particles (ASPs) and act only as heterogeneous nucleation sites. Crystalline phases never form inside them. We demonstrate that a crystal appears within a noncrystalline particle assembling lysozyme on an ASP or a container wall, highlighting the role of heterogeneous nucleation. These findings represent a significant departure from the existing formulation of the two-step nucleation mechanism while reaffirming the role of noncrystalline particles. The insights gained may have significant implications in areas that rely on the production of protein crystals, such as structural biology, pharmacy, and biophysics, and for the fundamental understanding of crystallization mechanisms.
Collapse
|
39
|
Vorontsova MA, Vekilov PG, Maes D. Characterization of the diffusive dynamics of particles with time-dependent asymmetric microscopy intensity profiles. SOFT MATTER 2016; 12:6926-6936. [PMID: 27489111 DOI: 10.1039/c6sm00946h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We put forth an algorithm to track isolated micron-size solid and liquid particles that produce time-dependent asymmetric intensity patterns. This method quantifies the displacement of a particle in the image plane from the peak of a spatial cross-correlation function with a reference image. The peak sharpness results in subpixel resolution. We demonstrate the utility of the method for tracking liquid droplets with changing shapes and micron-size particles producing images with exaggerated asymmetry. We compare the accuracy of diffusivity determination with particles of known size by this method to that by common tracking techniques and demonstrate that our algorithm is superior. We address several open questions on the characterization of diffusive behaviors. We show that for particles, diffusing with a root-mean-square displacement of 0.6 pixel widths in the time between two successive recorded frames, more accurate diffusivity determinations result from mean squared displacement (MSD) for lag times up to 5 time intervals and that MSDs determined from non-overlapping displacements do not yield more accurate diffusivities. We discuss the optimal length of image sequences and demonstrate that lower frame rates do not affect the accuracy of the estimated diffusivity.
Collapse
Affiliation(s)
- Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA. and Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Dominique Maes
- Structural Biology Brussels, SBB, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
40
|
Byington MC, Safari MS, Conrad JC, Vekilov PG. Protein Conformational Flexibility Enables the Formation of Dense Liquid Clusters: Tests Using Solution Shear. J Phys Chem Lett 2016; 7:2339-2345. [PMID: 27267087 DOI: 10.1021/acs.jpclett.6b00822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
According to recently proposed two-step nucleation mechanisms, crystal nuclei form within preexisting dense liquid clusters. Clusters with radii about 100 nm, which capture from 10(-7) to 10(-3) of the total protein, have been observed with numerous proteins and shown to host crystal nucleation. Theories aiming to understand the mesoscopic size and small protein fraction held in the clusters have proposed that in solutions of single-chain proteins, the clusters consist of partially misfolded protein molecules. To test this conjecture, we perturb the protein conformation by shearing solutions of the protein lysozyme. We demonstrate that shear rates greater than a threshold applied for longer than 1 h reduce the volume of the cluster population. The likely mechanism of the observed response involves enhanced partial unfolding of lysozyme molecules, which exposes hydrophobic surfaces between the constituent domains to the aqueous solution.
Collapse
Affiliation(s)
- Michael C Byington
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Mohammad S Safari
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| |
Collapse
|
41
|
Liu YM, Li HS, Wu ZQ, Chen RQ, Lu QQ, Guo YZ, Zhang CY, Yin DC. Sensitivity of lysozyme crystallization to temperature variation. CrystEngComm 2016. [DOI: 10.1039/c6ce00060f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Time-resolved X-ray Tracking of Expansion and Compression Dynamics in Supersaturating Ion-Networks. Sci Rep 2015; 5:17647. [PMID: 26658326 PMCID: PMC4677280 DOI: 10.1038/srep17647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Supersaturation of a solution system is a metastable state containing more solute than can be normally solubilized. Moreover, this condition is thermodynamically important for a system undergoing a phase transition. This state plays critical roles in deposition morphology in inorganic, organic, polymer and protein solution systems. In particular, microscopic solution states under supersaturated conditions have recently received much attention. In this report, we observed the dynamic motion of individual ion-network domains (INDs) in a supersaturated sodium acetate trihydrate solution (6.4 M) by using microsecond time-resolved and high accuracy (picometre scale) X-ray observations (diffracted X-ray tracking; DXT). We found that there are femto-Newton (fN) anisotropic force fields in INDs that correspond to an Angstrom-scale relaxation process (continuous expansion and compression) of the INDs at 25 μs time scale. The observed anisotropic force-field (femto-Newton) from DXT can lead to new explanations of how material crystallization is triggered. This discovery could also influence the interpretation of supercooling, bio-polymer and protein aggregation processes, and supersaturated systems of many other materials.
Collapse
|
43
|
Vorontsova MA, Chan HY, Lubchenko V, Vekilov PG. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics. Biophys J 2015; 109:1959-68. [PMID: 26536272 PMCID: PMC4643268 DOI: 10.1016/j.bpj.2015.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role.
Collapse
Affiliation(s)
- Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas
| | - Ho Yin Chan
- Department of Physics, University of Houston, Houston, Texas
| | - Vassiliy Lubchenko
- Department of Physics, University of Houston, Houston, Texas; Department of Chemistry, University of Houston, Houston, Texas
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas; Department of Chemistry, University of Houston, Houston, Texas.
| |
Collapse
|
44
|
Safari MS, Vorontsova MA, Poling-Skutvik R, Vekilov PG, Conrad JC. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042712. [PMID: 26565277 DOI: 10.1103/physreve.92.042712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 05/09/2023]
Abstract
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10(-5). With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90°. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
Collapse
Affiliation(s)
- Mohammad S Safari
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
- Department of Chemistry, University of Houston, Houston, Texas 77204-4004, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| |
Collapse
|