1
|
Sidar A, Voshol GP, Arentshorst M, Ram AFJ, Vijgenboom E, Punt PJ. Deciphering domain structures of Aspergillus and Streptomyces GH3-β-Glucosidases: a screening system for enzyme engineering and biotechnological applications. BMC Res Notes 2024; 17:257. [PMID: 39256846 PMCID: PMC11389254 DOI: 10.1186/s13104-024-06896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
The glycoside hydrolase family 3 (GH3) β-glucosidases from filamentous fungi are crucial industrial enzymes facilitating the complete degradation of lignocellulose, by converting cello-oligosaccharides and cellobiose into glucose. Understanding the diverse domain organization is essential for elucidating their biological roles and potential biotechnological applications. This research delves into the variability of domain organization within GH3 β-glucosidases. Two distinct configurations were identified in fungal GH3 β-glucosidases, one comprising solely the GH3 catalytic domain, and another incorporating the GH3 domain with a C-terminal fibronectin type III (Fn3) domain. Notably, Streptomyces filamentous bacteria showcased a separate clade of GH3 proteins linking the GH3 domain to a carbohydrate binding module from family 2 (CBM2). As a first step to be able to explore the role of accessory domains in β-glucosidase activity, a screening system utilizing the well-characterised Aspergillus niger β-glucosidase gene (bglA) in bglA deletion mutant host was developed. Based on this screening system, reintroducing the native GH3-Fn3 gene successfully expressed the gene allowing detection of the protein using different enzymatic assays. Further investigation into the role of the accessory domains in GH3 family proteins, including those from Streptomyces, will be required to design improved chimeric β-glucosidases enzymes for industrial application.
Collapse
Affiliation(s)
- Andika Sidar
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands.
- Department of Food and Agricultural Product Technology, Gadjah Mada University, Yogyakarta, Indonesia.
| | - Gerben P Voshol
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
- , Genomescan, Leiden, The Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
| | - Erik Vijgenboom
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands
| | - Peter J Punt
- Institute of Biology Leiden, Fungal Genetics and Biotechnology, Leiden University, Leiden, The Netherlands.
- Ginkgo Bioworks, Zeist, The Netherlands.
| |
Collapse
|
2
|
Hu C, Wang Y, Wang W, Cui W, Jia X, Mayo KH, Zhou Y, Su J, Yuan Y. A trapped covalent intermediate as a key catalytic element in the hydrolysis of a GH3 β-glucosidase: An X-ray crystallographic and biochemical study. Int J Biol Macromol 2024; 265:131131. [PMID: 38527679 DOI: 10.1016/j.ijbiomac.2024.131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Glycoside hydrolases (GHs) are industrially important enzymes that hydrolyze glycosidic bonds in glycoconjugates. In this study, we found a GH3 β-glucosidase (CcBgl3B) from Cellulosimicrobium cellulans sp. 21 was able to selectively hydrolyze the β-1,6-glucosidic bond linked glucose of ginsenosides. X-ray crystallographic studies of the ligand complex ginsenoside-specific β-glucosidase provided a novel finding that support the catalytic mechanism of GH3. The substrate was clearly identified within the catalytic center of wild-type CcBgl3B, revealing that the C1 atom of the glucose was covalently bound to the Oδ1 group of the conserved catalytic nucleophile Asp264 as an enzyme-glycosyl intermediate. The glycosylated Asp264 could be identified by mass spectrometry. Through site-directed mutagenesis studies with Asp264, it was found that the covalent intermediate state formed by Asp264 and the substrate was critical for catalysis. In addition, Glu525 variants (E525A, E525Q and E525D) showed no or marginal activity against pNPβGlc; thus, this residue could supply a proton for the reaction. Overall, our study provides an insight into the catalytic mechanism of the GH3 enzyme CcBgl3B.
Collapse
Affiliation(s)
- Chenxing Hu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Weiyang Wang
- College of Life Science and Technology, Changchun University of Science & Technology, Changchun, Jilin 130022, China
| | - Wanli Cui
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xinyue Jia
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
3
|
Zhang Y, Nada B, Baker SE, Evans JE, Tian C, Benz JP, Tamayo E. Unveiling a classical mutant in the context of the GH3 β-glucosidase family in Neurospora crassa. AMB Express 2024; 14:4. [PMID: 38180602 PMCID: PMC10770018 DOI: 10.1186/s13568-023-01658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
Classical fungal mutant strains obtained by mutagenesis have helped to elucidate fundamental metabolic pathways in the past. In the filamentous fungus Neurospora crassa, the gluc-1 strain was isolated long ago and characterized by its low level of β-glucosidase activity, which is essential for the degradation of cellulose, the most abundant biopolymer on Earth and the main polymeric component of the plant cell wall. Based on genomic resequencing, we hypothesized that the causative mutation resides in the β-glucosidase gene gh3-3 (bgl6, NCU08755). In this work, growth patterns, enzymatic activities and sugar utilization rates were analyzed in several mutant and overexpression strains related to gluc-1 and gh3-3. In addition, different mutants affected in the degradation and transport of cellobiose were analyzed. While overexpression of gh3-3 led to the recovery of β-glucosidase activity in the gluc-1 mutant, as well as normal utilization of cellobiose, the full gene deletion strain Δgh3-3 was found to behave differently than gluc-1 with lower secreted β-glucosidase activity, indicating a dominant role of the amino acid substitution in the point mutated gh3-3 gene of gluc-1. Our results furthermore confirm that GH3-3 is the major extracellular β-glucosidase in N. crassa and demonstrate that the two cellodextrin transporters CDT-1 and CDT-2 are essential for growth on cellobiose when the three main N. crassa β-glucosidases are absent. Overall, these findings provide valuable insight into the mechanisms of cellulose utilization in filamentous fungi, being an essential step in the efficient production of biorefinable sugars from agricultural and forestry plant biomass.
Collapse
Affiliation(s)
- Yuxin Zhang
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Scott E Baker
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Microbial Molecular Phenotyping Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James E Evans
- Microbial Molecular Phenotyping Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
4
|
Qi L, Shi M, Zhu FC, Lian CA, He LS. Genomic evidence for the first symbiotic Deferribacterota, a novel gut symbiont from the deep-sea hydrothermal vent shrimp Rimicaris kairei. Front Microbiol 2023; 14:1179935. [PMID: 37455748 PMCID: PMC10344455 DOI: 10.3389/fmicb.2023.1179935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The genus Rimicaris is the dominant organism living in hydrothermal vents. However, little research has been done on the functions of their intestinal flora. Here, we investigated the potential functions of Deferribacterota, which is dominant in the intestine of Rimicaris kairei from the Central Indian Ridge. In total, six metagenome-assembled genomes (MAGs) of Deferribacterota were obtained using the metagenomic approach. The six Deferribacterota MAGs (Def-MAGs) were clustered into a new branch in the phylogenetic tree. The six Def-MAGs were further classified into three species, including one new order and two new genera, based on the results of phylogenetic analysis, relative evolutionary divergence (RED), average nucleotide identity (ANI), average amino acid identity (AAI) and DNA-DNA hybridization (DDH) values. The results of the energy metabolism study showed that these bacteria can use a variety of carbon sources, such as glycogen, sucrose, salicin, arbutin, glucose, cellobiose, and maltose. These bacteria have a type II secretion system and effector proteins that can transport some intracellular toxins to the extracellular compartment and a type V CRISPR-Cas system that can defend against various invasions. In addition, cofactors such as biotin, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) synthesized by R. kairei gut Deferribacterota may also assist their host in surviving under extreme conditions. Taken together, the potential function of Deferribacterota in the hydrothermal R. kairei gut suggests its long-term coevolution with the host.
Collapse
Affiliation(s)
- Li Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengke Shi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Chao Zhu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Chun-Ang Lian
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
5
|
Identifying the gluc-1 and gluc-2 mutations in Neurospora crassa by genome resequencing. J Genet 2022. [DOI: 10.1007/s12041-022-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Xia W, Bai Y, Shi P. Improving the Substrate Affinity and Catalytic Efficiency of β-Glucosidase Bgl3A from Talaromyces leycettanus JCM12802 by Rational Design. Biomolecules 2021; 11:biom11121882. [PMID: 34944526 PMCID: PMC8699594 DOI: 10.3390/biom11121882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Improving the substrate affinity and catalytic efficiency of β-glucosidase is necessary for better performance in the enzymatic saccharification of cellulosic biomass because of its ability to prevent cellobiose inhibition on cellulases. Bgl3A from Talaromyces leycettanus JCM12802, identified in our previous work, was considered a suitable candidate enzyme for efficient cellulose saccharification with higher catalytic efficiency on the natural substrate cellobiose compared with other β-glucosidase but showed insufficient substrate affinity. In this work, hydrophobic stacking interaction and hydrogen-bonding networks in the active center of Bgl3A were analyzed and rationally designed to strengthen substrate binding. Three vital residues, Met36, Phe66, and Glu168, which were supposed to influence substrate binding by stabilizing adjacent binding site, were chosen for mutagenesis. The results indicated that strengthening the hydrophobic interaction between stacking aromatic residue and the substrate, and stabilizing the hydrogen-bonding networks in the binding pocket could contribute to the stabilized substrate combination. Four dominant mutants, M36E, M36N, F66Y, and E168Q with significantly lower Km values and 1.4–2.3-fold catalytic efficiencies, were obtained. These findings may provide a valuable reference for the design of other β-glucosidases and even glycoside hydrolases.
Collapse
Affiliation(s)
- Wei Xia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Yingguo Bai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.B.); (P.S.)
| | - Pengjun Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: (Y.B.); (P.S.)
| |
Collapse
|
7
|
Crystal Structure of a GH3 β-Glucosidase from the Thermophilic Fungus Chaetomium thermophilum. Int J Mol Sci 2019; 20:ijms20235962. [PMID: 31783503 PMCID: PMC6929035 DOI: 10.3390/ijms20235962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Beta-glucosidases (β-glucosidases) have attracted considerable attention in recent years for use in various biotechnological applications. They are also essential enzymes for lignocellulose degradation in biofuel production. However, cost-effective biomass conversion requires the use of highly efficient enzymes. Thus, the search for new enzymes as better alternatives of the currently available enzyme preparations is highly important. Thermophilic fungi are nowadays considered as a promising source of enzymes with improved stability. Here, the crystal structure of a family GH3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum (CtBGL) was determined at a resolution of 2.99 Å. The structure showed the three-domain architecture found in other β-glucosidases with variations in loops and linker regions. The active site catalytic residues in CtBGL were identified as Asp287 (nucleophile) and Glu517 (acid/base). Structural comparison of CtBGL with Protein Data Bank (PDB)-deposited structures revealed variations among glycosylated Asn residues. The enzyme displayed moderate glycosylation compared to other GH3 family β-glucosidases with similar structure. A new glycosylation site at position Asn504 was identified in CtBGL. Moreover, comparison with respect to several thermostability parameters suggested that glycosylation and charged residues involved in electrostatic interactions may contribute to the stability of the enzyme at elevated temperatures. The reported CtBGL structure provides additional insights into the family GH3 enzymes and could offer new ideas for further improvements in β-glucosidases for more efficient use in biotechnological applications regarding cellulose degradation.
Collapse
|