1
|
Gollmann-Tepeköylü C, Graber M, Hirsch J, Mair S, Naschberger A, Pölzl L, Nägele F, Kirchmair E, Degenhart G, Demetz E, Hilbe R, Chen HY, Engert JC, Böhm A, Franz N, Lobenwein D, Lener D, Fuchs C, Weihs A, Töchterle S, Vogel GF, Schweiger V, Eder J, Pietschmann P, Seifert M, Kronenberg F, Coassin S, Blumer M, Hackl H, Meyer D, Feuchtner G, Kirchmair R, Troppmair J, Krane M, Weiss G, Tsimikas S, Thanassoulis G, Grimm M, Rupp B, Huber LA, Zhang SY, Casanova JL, Tancevski I, Holfeld J. Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification. Circulation 2023; 147:1518-1533. [PMID: 37013819 PMCID: PMC10192061 DOI: 10.1161/circulationaha.122.063481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/β receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/β receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.
Collapse
Affiliation(s)
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Naschberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Nägele
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Kirchmair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Degenhart
- Department of Radiology, Core Facility for Micro-CT, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao-Yu Chen
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - James C. Engert
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Anna Böhm
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadja Franz
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lobenwein
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Christiane Fuchs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Anna Weihs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Sonja Töchterle
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Georg F. Vogel
- Department of Pediatrics/Institute of Cell biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victor Schweiger
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonas Eder
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Pietschmann
- Division of Cellular and Molecular Pathophysiology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Markus Seifert
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Blumer
- Institute of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Gudrun Feuchtner
- Department of Radiology, Core Facility for Micro-CT, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, University of Innsbruck, Innsbruck, Innsbruck, Austria
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Günther Weiss
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, University of California, San Diego, La Jolla, USA
| | - George Thanassoulis
- Preventive and Genomic Cardiology, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A. Huber
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Austrian Drug Screening Institute, ADSI, Innsbruck, Austria
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ivan Tancevski
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Naschberger A, Juyoux P, von Velsen J, Rupp B, Bowler MW. Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin. Acta Crystallogr D Struct Biol 2019; 75:1071-1083. [PMID: 31793901 PMCID: PMC6889915 DOI: 10.1107/s2059798319013500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023] Open
Abstract
Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures.
Collapse
Affiliation(s)
- Andreas Naschberger
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| | - Pauline Juyoux
- Grenoble Outstation, European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jill von Velsen
- Grenoble Outstation, European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Bernhard Rupp
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
- C.V.M.O., k. k. Hofkristallamt, 991 Audrey Place, Vista, California, USA
| | - Matthew W. Bowler
- Grenoble Outstation, European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
3
|
Rupp B. Against Method: Table 1-Cui Bono? Structure 2018; 26:919-923. [PMID: 29861344 DOI: 10.1016/j.str.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
The almost universally required "Table 1," summarizing data-collection and data-processing statistics, has in its present form outlived its usefulness in almost all publications of biomolecular crystal structure reports. Information contained in "Table 1" is insufficient to evaluate or repeat the experiment; is redundant with information extractable from deposited diffraction data; and includes data items whose meaning is under increased scrutiny in the crystallographic community. Direct and consistent extraction and analysis of data quality metrics from preferably unmerged intensity data with graphical presentation of reciprocal space features, including impact on map and model features, should replace "Table 1."
Collapse
Affiliation(s)
- Bernhard Rupp
- k.-k.Hofkristallamt, San Diego, CA 92084, USA; Division of Genetic Epidemiology, Medical University Innsbruck, Schöpfstraße 41, Innsbruck, Tyrol 6020, Austria.
| |
Collapse
|
4
|
Smart OS, Horský V, Gore S, Svobodová Vařeková R, Bendová V, Kleywegt GJ, Velankar S. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr D Struct Biol 2018; 74:228-236. [PMID: 29533230 PMCID: PMC5947763 DOI: 10.1107/s2059798318002541] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) play a crucial role in structure-guided drug discovery and design, and also provide atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. The quality with which small-molecule ligands have been modelled in Protein Data Bank (PDB) entries has been, and continues to be, a matter of concern for many investigators. Correctly interpreting whether electron density found in a binding site is compatible with the soaked or co-crystallized ligand or represents water or buffer molecules is often far from trivial. The Worldwide PDB validation report (VR) provides a mechanism to highlight any major issues concerning the quality of the data and the model at the time of deposition and annotation, so the depositors can fix issues, resulting in improved data quality. The ligand-validation methods used in the generation of the current VRs are described in detail, including an examination of the metrics to assess both geometry and electron-density fit. It is found that the LLDF score currently used to identify ligand electron-density fit outliers can give misleading results and that better ligand-validation metrics are required.
Collapse
Affiliation(s)
- Oliver S. Smart
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Vladimír Horský
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Swanand Gore
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Radka Svobodová Vařeková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Veronika Bendová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Gerard J. Kleywegt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| |
Collapse
|
5
|
Altamirano A, Naschberger A, Fürnrohr BG, Saldova R, Struwe WB, Jennings PM, Millán Martín S, Malic S, Plangger I, Lechner S, Pisano R, Peretti N, Linke B, Aguiar MM, Fresser F, Ritsch A, Lenac Rovis T, Goode C, Rudd PM, Scheffzek K, Rupp B, Dieplinger H. Expression, Purification, and Biochemical Characterization of Human Afamin. J Proteome Res 2018; 17:1269-1277. [PMID: 29441788 DOI: 10.1021/acs.jproteome.7b00867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Afamin is an 87 kDa glycoprotein with five predicted N-glycosylation sites. Afamin's glycan abundance contributes to conformational and chemical inhomogeneity presenting great challenges for molecular structure determination. For the purpose of studying the structure of afamin, various forms of recombinantly expressed human afamin (rhAFM) with different glycosylation patterns were thus created. Wild-type rhAFM and various hypoglycosylated forms were expressed in CHO, CHO-Lec1, and HEK293T cells. Fully nonglycosylated rhAFM was obtained by transfection of point-mutated cDNA to delete all N-glycosylation sites of afamin. Wild-type and hypo/nonglycosylated rhAFM were purified from cell culture supernatants by immobilized metal ion affinity and size exclusion chromatography. Glycan analysis of purified proteins demonstrated differences in micro- and macro-heterogeneity of glycosylation enabling the comparison between hypoglycosylated, wild-type rhAFM, and native plasma afamin. Because antibody fragments can work as artificial chaperones by stabilizing the structure of proteins and consequently enhance the chance for successful crystallization, we incubated a Fab fragment of the monoclonal anti-afamin antibody N14 with human afamin and obtained a stoichiometric complex. Subsequent results showed sufficient expression of various partially or nonglycosylated forms of rhAFM in HEK293T and CHO cells and revealed that glycosylation is not necessary for expression and secretion.
Collapse
Affiliation(s)
| | | | | | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research & Training , Dublin, Ireland
| | - Weston B Struwe
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research & Training , Dublin, Ireland
| | - Patrick M Jennings
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research & Training , Dublin, Ireland
| | - Silvia Millán Martín
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research & Training , Dublin, Ireland
| | - Suzana Malic
- Center for Proteomics, Faculty of Medicine, University of Rijeka , 51000 Rijeka, Croatia
| | | | | | | | | | | | | | | | | | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka , 51000 Rijeka, Croatia
| | | | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research & Training , Dublin, Ireland
| | | | | | | |
Collapse
|
6
|
Wlodawer A, Dauter Z, Porebski PJ, Minor W, Stanfield R, Jaskolski M, Pozharski E, Weichenberger CX, Rupp B. Detect, correct, retract: How to manage incorrect structural models. FEBS J 2018; 285:444-466. [PMID: 29113027 PMCID: PMC5799025 DOI: 10.1111/febs.14320] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The massive technical and computational progress of biomolecular crystallography has generated some adverse side effects. Most crystal structure models, produced by crystallographers or well-trained structural biologists, constitute useful sources of information, but occasional extreme outliers remind us that the process of structure determination is not fail-safe. The occurrence of severe errors or gross misinterpretations raises fundamental questions: Why do such aberrations emerge in the first place? How did they evade the sophisticated validation procedures which often produce clear and dire warnings, and why were severe errors not noticed by the depositors themselves, their supervisors, referees and editors? Once detected, what can be done to either correct, improve or eliminate such models? How do incorrect models affect the underlying claims or biomedical hypotheses they were intended, but failed, to support? What is the long-range effect of the propagation of such errors? And finally, what mechanisms can be envisioned to restore the validity of the scientific record and, if necessary, retract publications that are clearly invalidated by the lack of experimental evidence? We suggest that cognitive bias and flawed epistemology are likely at the root of the problem. By using examples from the published literature and from public repositories such as the Protein Data Bank, we provide case summaries to guide correction or improvement of structural models. When strong claims are unsustainable because of a deficient crystallographic model, removal of such a model and even retraction of the affected publication are necessary to restore the integrity of the scientific record.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Przemyslaw J. Porebski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Robyn Stanfield
- Department of Structural and Computational Biology, BCC206, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, Poznan, 61-614, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Bernhard Rupp
- CVMO, k.-k.Hofkristallamt, 991 Audrey Place, Vista, CA, 92084, USA
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, 6020, Austria
| |
Collapse
|
7
|
Naschberger A, Orry A, Lechner S, Bowler MW, Nurizzo D, Novokmet M, Keller MA, Oemer G, Seppi D, Haslbeck M, Pansi K, Dieplinger H, Rupp B. Structural Evidence for a Role of the Multi-functional Human Glycoprotein Afamin in Wnt Transport. Structure 2017; 25:1907-1915.e5. [PMID: 29153507 DOI: 10.1016/j.str.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
Afamin, a human plasma glycoprotein and putative transporter of hydrophobic molecules, has been shown to act as extracellular chaperone for poorly soluble, acylated Wnt proteins, forming a stable, soluble complex with functioning Wnt proteins. The 2.1-Å crystal structure of glycosylated human afamin reveals an almost exclusively hydrophobic binding cleft capable of harboring large hydrophobic moieties. Lipid analysis confirms the presence of lipids, and density in the primary binding pocket of afamin was modeled as palmitoleic acid, presenting the native O-acylation on serine 209 in human Wnt3a. The modeled complex between the experimental afamin structure and a Wnt3a homology model based on the XWnt8-Fz8-CRD fragment complex crystal structure is compelling, with favorable interactions comparable with the crystal structure complex. Afamin readily accommodates the conserved palmitoylated serine 209 of Wnt3a, providing a structural basis how afamin solubilizes hydrophobic and poorly soluble Wnt proteins.
Collapse
Affiliation(s)
- Andreas Naschberger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrew Orry
- MolSoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Stefan Lechner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Didier Nurizzo
- Structural Biology Group, ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mislav Novokmet
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Gregor Oemer
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Daniele Seppi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kathrin Pansi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hans Dieplinger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; k.-k. Hofkristallamt, San Diego, CA 92084, USA.
| |
Collapse
|
8
|
Salunke DM, Nair DT. Macromolecular structures: Quality assessment and biological interpretation. IUBMB Life 2017; 69:563-571. [DOI: 10.1002/iub.1640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Dinakar M. Salunke
- International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi India
| | - Deepak T. Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster; 3rd Milestone, Faridabad-Gurgaon Expressway Faridabad Haryana India
| |
Collapse
|
9
|
Weichenberger CX, Pozharski E, Rupp B. Twilight reloaded: the peptide experience. Acta Crystallogr D Struct Biol 2017; 73:211-222. [PMID: 28291756 PMCID: PMC5349433 DOI: 10.1107/s205979831601620x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/12/2016] [Indexed: 01/20/2024] Open
Abstract
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein-peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided.
Collapse
Affiliation(s)
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bernhard Rupp
- k.k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|