1
|
Lee E, Cho G, Kim J. Structural basis for membrane association and catalysis by phosphatidylserine synthase in Escherichia coli. SCIENCE ADVANCES 2024; 10:eadq4624. [PMID: 39693441 DOI: 10.1126/sciadv.adq4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Phosphatidylserine synthase (PssA) is essential in the biosynthesis of phosphatidylethanolamine, a major phospholipid of bacterial membranes. A peripheral membrane protein PssA can associate with the cellular membrane in its active state or exist in the cytosol in an inactive form. The membrane-bound enzyme acts on cytidine diphosphate diacylglycerol (CDP-DG) to form cytidine monophosphate and a covalent intermediate, which is subsequently targeted by serine to produce phosphatidylserine. Here, we present two crystal structures of Escherichia coli PssA, one complexed with CDP-DG and the other without. The lipid-bound structure mimics the Michaelis complex before the formation of a covalent intermediate, revealing key determinants for substrate recognition and catalysis. Notably, membrane-free PssA is in a monomer-dimer equilibrium, with only the monomer capable of associating with the membrane, suggesting a regulatory mechanism for phospholipid biosynthesis dependent on the oligomerization state of the enzyme.
Collapse
Affiliation(s)
- Eunju Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gyuhyeok Cho
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Yeste-Vázquez A, Paulussen FM, Wendt M, Klintrot R, Schulte C, Wallraven K, van Gijzel L, Simeonov B, van der Gaag M, Gerber A, Maric HM, Hennig S, Grossmann TN. Structure-Based Design of Bicyclic Helical Peptides That Target the Oncogene β-Catenin. Angew Chem Int Ed Engl 2024; 63:e202411749. [PMID: 39167026 DOI: 10.1002/anie.202411749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The inhibition of intracellular protein-protein interactions is challenging, in particular, when involved interfaces lack pronounced cavities. The transcriptional co-activator protein and oncogene β-catenin is a prime example of such a challenging target. Despite extensive targeting efforts, available high-affinity binders comprise only large molecular weight inhibitors. This hampers the further development of therapeutically useful compounds. Herein, we report the design of a considerably smaller peptidomimetic scaffold derived from the α-helical β-catenin-binding motif of Axin. Sequence maturation and bicyclization provided a stitched peptide with an unprecedented crosslink architecture. The binding mode and site were confirmed by a crystal structure. Further derivatization yielded a β-catenin inhibitor with single-digit micromolar activity in a cell-based assay. This study sheds light on how to design helix mimetics with reduced molecular weight thereby improving their biological activity.
Collapse
Affiliation(s)
- Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rasmus Klintrot
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lieke van Gijzel
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Boris Simeonov
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maurice van der Gaag
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Rodriguez Buitrago JA, Landström M, Wolf-Watz M. Human transforming growth factor β type I receptor in complex with kinase inhibitor SB505124. Acta Crystallogr F Struct Biol Commun 2024; 80:314-319. [PMID: 39441620 PMCID: PMC11533363 DOI: 10.1107/s2053230x24010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
The crystal structure of the intracellular domain of transforming growth factor β type I receptor (TβR1) in complex with the competitive inhibitor SB505124 is presented. The study provides insights into the structure and function of TβR1 in complex with SB505124, and as such offers molecular-level understanding of the inhibition of this critical signalling pathway. The potential of SB505124 as an avenue for therapy in cancer treatment is discussed on basis of the results.
Collapse
Affiliation(s)
- Jhon A. Rodriguez Buitrago
- Department of ChemistryUmeå UniversityLinnaeus vag 10901 87UmeåSweden
- Department of Medical BiosciencesUmeå University901 85UmeåSweden
| | - Maréne Landström
- Department of Medical BiosciencesUmeå University901 85UmeåSweden
| | - Magnus Wolf-Watz
- Department of Medical BiosciencesUmeå University901 85UmeåSweden
| |
Collapse
|
4
|
Keegan RM, Simpkin AJ, Rigden DJ. The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era. Acta Crystallogr D Struct Biol 2024; 80:766-779. [PMID: 39360967 PMCID: PMC11544426 DOI: 10.1107/s2059798324009380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/09/2024] Open
Abstract
The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.
Collapse
Affiliation(s)
- Ronan M. Keegan
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
- UKRI–STFCRutherford Appleton LaboratoryResearch Complex at HarwellDidcotOX11 0FAUnited Kingdom
| | - Adam J. Simpkin
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| |
Collapse
|
5
|
Zhang F, Zhang H, Zhou S, Plewka J, Wang M, Sun S, Wu C, Yu Q, Zhu M, Awadasseid A, Wu Y, Magiera-Mularz K, Zhang W. Design, synthesis, and evaluation of antitumor activity of 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives as PD-1/PD-l1 inhibitors. Eur J Med Chem 2024; 276:116683. [PMID: 39032403 DOI: 10.1016/j.ejmech.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
A series of novel 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives was designed, synthesized, and evaluated for their antitumor effects as PD-1/PD-L1 inhibitors both in vitro and in vivo. Firstly, the ability of these compounds to block the PD-1/PD-L1 immune checkpoint was assessed using the homogeneous time-resolved fluorescence (HTRF) assay. Two of the compounds can strongly block the PD-1/PD-L1 interaction, with IC50 values of less than 10 nM, notably, compound HD10 exhibited significant clinical potential by inhibiting the PD-1/PD-L1 interaction with an IC50 value of 3.1 nM. Further microscale thermophoresis (MST) analysis demonstrated that HD10 had strong interaction with PD-L1 protein. Co-crystal structure (2.7 Å) analysis of HD10 in complex with the PD-L1 protein revealed a strong affinity between the compound and the target PD-L1 dimer. This provides a solid theoretical basis for further in vitro and in vivo studies. Next, a typical cell-based experiment demonstrated that HD10 could remarkably prevent the interaction of hPD-1 293 T cells from human recombinant PD-L1 protein, effectively restoring T cell function, and promoting IFN-γ secretion in a dose-dependent manner. Moreover, HD10 was effective in suppressing tumor growth (TGI = 57.31 %) in a PD-1/PD-L1 humanized mouse model without obvious toxicity. Flow cytometry, qPCR, and immunohistochemistry data suggested that HD10 inhibits tumor growth by activating the immune system in vivo. Based on these results, it seems likely that HD10 is a promising clinical candidate that should be further investigated.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Hua Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Department of Pharmacy, Changzhi Medical College, Shanxi, 046012, China
| | - Shijia Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ming Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Shishi Sun
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Caiyun Wu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Qimeng Yu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Mengyu Zhu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Moganshan Institute, Zhejiang University of Technology, Deqing, 313200, China.
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China.
| |
Collapse
|
6
|
Salsabila SD, Kim J. Structural insights into phosphatidylethanolamine N-methyltransferase PmtA mediating bacterial phosphatidylcholine synthesis. SCIENCE ADVANCES 2024; 10:eadr0122. [PMID: 39356767 PMCID: PMC11446283 DOI: 10.1126/sciadv.adr0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Phosphatidylethanolamine N-methyltransferase (PmtA) catalyzes the biosynthesis of phosphatidylcholine (PC) from phosphatidylethanolamine (PE). Although PC is one of the major phospholipids constituting bilayer membranes in eukaryotes, certain bacterial species encode PmtA, a membrane-associated methyltransferase, to produce PC, which is correlated with cellular stress responses, adaptability to environmental changes, and symbiosis or virulence with eukaryotic hosts. Depending on the organism, multiple PmtAs may be required for producing monomethyl- and dimethyl-PE derivatives along with PC, whereas in organisms such as Rubellimicrobium thermophilum, a single enzyme is sufficient to direct all three methylation steps. In this study, we present the x-ray crystal structures of PmtA from R. thermophilum in complex with dimethyl-PE and S-adenosyl-l-homocysteine, as well as in its lipid-free form. Moreover, we demonstrate that the enzyme associates with the cellular membrane via electrostatic interactions facilitated by a group of critical basic residues and can successively methylate PE and its methylated derivatives, culminating in the production of PC.
Collapse
Affiliation(s)
- Salma D Salsabila
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Kovalevskiy O, Mateos-Garcia J, Tunyasuvunakool K. AlphaFold two years on: Validation and impact. Proc Natl Acad Sci U S A 2024; 121:e2315002121. [PMID: 39133843 PMCID: PMC11348012 DOI: 10.1073/pnas.2315002121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Two years on from the initial release of AlphaFold, we have seen its widespread adoption as a structure prediction tool. Here, we discuss some of the latest work based on AlphaFold, with a particular focus on its use within the structural biology community. This encompasses use cases like speeding up structure determination itself, enabling new computational studies, and building new tools and workflows. We also look at the ongoing validation of AlphaFold, as its predictions continue to be compared against large numbers of experimental structures to further delineate the model's capabilities and limitations.
Collapse
|
8
|
Chazot A, Zimberger C, Feracci M, Moussa A, Good S, Sommadossi JP, Alvarez K, Ferron F, Canard B. The activation cascade of the broad-spectrum antiviral bemnifosbuvir characterized at atomic resolution. PLoS Biol 2024; 22:e3002743. [PMID: 39190717 DOI: 10.1371/journal.pbio.3002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.
Collapse
Affiliation(s)
- Aurélie Chazot
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Claire Zimberger
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Mikael Feracci
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Steven Good
- ATEA Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
- European Virus Bioinformatics Center, Jena, Germany
| |
Collapse
|
9
|
Gruninger RJ, Kevorkova M, Low KE, Jones DR, Worrall L, McAllister TA, Abbott DW. Structural, Biochemical, and Phylogenetic Analysis of Bacterial and Fungal Carbohydrate Esterase Family 15 Glucuronoyl Esterases in the Rumen. Protein J 2024; 43:910-922. [PMID: 39153129 PMCID: PMC11345330 DOI: 10.1007/s10930-024-10221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Glucuronoyl esterases (GEs) are carbohydrate active enzymes in carbohydrate esterase family 15 which are involved in the hydrolysis of lignin-carbohydrate complexes. They are encoded by a wide range of aerobic and anaerobic fungi and bacteria inhabiting diverse environments. The rumen microbiome is a complex microbial community with a wide array of enzymes that specialize in deconstructing plant cell wall carbohydrates. Enzymes from the rumen tend to show low similarity to homologues found in other environments, making the rumen microbiome a promising source for the discovery of novel enzymes. Using a combination of phylogenetic and structural analysis, we investigated the structure-function relationship of GEs from the rumen bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens, and from the rumen fungus, Piromyces rhizinflata. All adopt a canonical α/β hydrolase fold and possess a structurally conserved Ser-His-Glu/Asp catalytic triad. Structural variations in the enzymes are localized to loops surrounding the active site. Analysis of the active site structures in these enzymes emphasized the importance of structural plasticity in GEs with non-canonical active site conformations. We hypothesize that interkingdom HGT events may have contributed to the diversity of GEs in the rumen, and this is demonstrated by the phylogenetic and structural similarity observed between rumen bacterial and fungal GEs. This study advances our understanding of the structure-function relationship in glucuronoyl esterases and illuminates the evolutionary dynamics that contribute to enzyme diversity in the rumen microbiome.
Collapse
Affiliation(s)
- Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | - Maya Kevorkova
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Liam Worrall
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Cruz-Navarrete FA, Baxter NJ, Flinders AJ, Buzoianu A, Cliff MJ, Baker PJ, Waltho JP. Peri active site catalysis of proline isomerisation is the molecular basis of allomorphy in β-phosphoglucomutase. Commun Biol 2024; 7:909. [PMID: 39068257 PMCID: PMC11283535 DOI: 10.1038/s42003-024-06577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic regulation occurs through precise control of enzyme activity. Allomorphy is a post-translational fine control mechanism where the catalytic rate is governed by a conformational switch that shifts the enzyme population between forms with different activities. β-Phosphoglucomutase (βPGM) uses allomorphy in the catalysis of isomerisation of β-glucose 1-phosphate to glucose 6-phosphate via β-glucose 1,6-bisphosphate. Herein, we describe structural and biophysical approaches to reveal its allomorphic regulatory mechanism. Binding of the full allomorphic activator β-glucose 1,6-bisphosphate stimulates enzyme closure, progressing through NAC I and NAC III conformers. Prior to phosphoryl transfer, loops positioned on the cap and core domains are brought into close proximity, modulating the environment of a key proline residue. Hence accelerated isomerisation, likely via a twisted anti/C4-endo transition state, leads to the rapid predominance of active cis-P βPGM. In contrast, binding of the partial allomorphic activator fructose 1,6-bisphosphate arrests βPGM at a NAC I conformation and phosphoryl transfer to both cis-P βPGM and trans-P βPGM occurs slowly. Thus, allomorphy allows a rapid response to changes in food supply while not otherwise impacting substantially on levels of important metabolites.
Collapse
Affiliation(s)
- F Aaron Cruz-Navarrete
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicola J Baxter
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Adam J Flinders
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Cancer Research UK, Manchester Institute, Patterson Building, Manchester, M20 4BX, UK
| | - Anamaria Buzoianu
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Bern, 3012, Switzerland
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Patrick J Baker
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jonathan P Waltho
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
11
|
Sohail AA, Koski MK, Ruddock LW. Biophysical and structural studies of fibulin-2. Sci Rep 2024; 14:15091. [PMID: 38956220 PMCID: PMC11220139 DOI: 10.1038/s41598-024-64931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Fibulin-2 is a multidomain, disulfide-rich, homodimeric protein which belongs to a broader extracellular matrix family. It plays an important role in the development of elastic fiber structures. Malfunction of fibulin due to mutation or poor expression can result in a variety of diseases including synpolydactyly, limb abnormalities, eye disorders leading to blindness, cardiovascular diseases and cancer. Traditionally, fibulins have either been produced in mammalian cell systems or were isolated from the extracellular matrix, a procedure that results in poor availability for structural and functional studies. Here, we produced seven fibulin-2 constructs covering 62% of the mature protein (749 out of 1195 residues) using a prokaryotic expression system. Biophysical studies confirm that the purified constructs are folded and that the presence of disulfide bonds within the constructs makes them extremely thermostable. In addition, we solved the first crystal structure for any fibulin isoform, a structure corresponding to the previously suggested three motifs related to anaphylatoxin. The structure reveals that the three anaphylatoxins moieties form a single-domain structure.
Collapse
Affiliation(s)
- Anil A Sohail
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - M Kristian Koski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland.
| |
Collapse
|
12
|
Arriaza RH, Kapingidza AB, Dolamore C, Khatri K, O’Malley A, Glesner J, Wuenschmann S, Hyduke NP, Easley W, Chhiv C, Pomés A, Chruszcz M. Structural, Biophysical, and Computational Studies of a Murine Light Chain Dimer. Molecules 2024; 29:2885. [PMID: 38930950 PMCID: PMC11206851 DOI: 10.3390/molecules29122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Antibodies are widely used in medicinal and scientific research due to their ability to bind to a specific antigen. Most often, antibodies are composed of heavy and light chain domains. Under physiological conditions, light chains are produced in excess, as compared to the heavy chain. It is now known that light chains are not silent partners of the heavy chain and can modulate the immune response independently. In this work, the first crystal structure of a light chain dimer originating from mice is described. It represents the light chain dimer of 6A8, a monoclonal antibody specific to the allergen Der f 1. Building on the unexpected occurrence of this kind of dimer, we have demonstrated that this light chain is stable in solution alone. Moreover, enzyme-linked immunosorbent assays (ELISA) have revealed that, when the light chain is not partnered to its corresponding heavy chain, it interacts non-specifically with a wide range of proteins. Computational studies were used to provide insight on the role of the 6A8 heavy chain domain in the specific binding to Der f 1. Overall, this work demonstrates and supports the ongoing notion that light chains can function by themselves and are not silent partners of heavy chains.
Collapse
Affiliation(s)
- Ricardo H. Arriaza
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Andrea O’Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Jill Glesner
- InBio, Charlottesville, VA 22903, USA; (J.G.); (S.W.); (A.P.)
| | | | - Noah P. Hyduke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - William Easley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Charline Chhiv
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| | - Anna Pomés
- InBio, Charlottesville, VA 22903, USA; (J.G.); (S.W.); (A.P.)
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48864, USA; (R.H.A.); (K.K.); (A.O.)
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (A.B.K.); (C.D.); (N.P.H.); (W.E.); (C.C.)
| |
Collapse
|
13
|
Bjelčić M, Aurelius O, Nan J, Neutze R, Ursby T. Room-temperature serial synchrotron crystallography structure of Spinacia oleracea RuBisCO. Acta Crystallogr F Struct Biol Commun 2024; 80:117-124. [PMID: 38809540 PMCID: PMC11189101 DOI: 10.1107/s2053230x24004643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme responsible for the first step of carbon dioxide (CO2) fixation in plants, which proceeds via the carboxylation of ribulose 1,5-biphosphate. Because of the enormous importance of this reaction in agriculture and the environment, there is considerable interest in the mechanism of fixation of CO2 by RuBisCO. Here, a serial synchrotron crystallography structure of spinach RuBisCO is reported at 2.3 Å resolution. This structure is consistent with earlier single-crystal X-ray structures of this enzyme and the results are a good starting point for a further push towards time-resolved serial synchrotron crystallography in order to better understand the mechanism of the reaction.
Collapse
Affiliation(s)
- Monika Bjelčić
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| | - Jie Nan
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| | - Richard Neutze
- Department of Chemistry and Molecular BiologyUniversity of GothenburgMedicinaregatan 9C413 90GothenburgSweden
| | - Thomas Ursby
- MAX IV Laboratory, Lund UniversityPO Box 118221 00LundSweden
| |
Collapse
|
14
|
Dialpuri JS, Bagdonas H, Schofield LC, Pham PT, Holland L, Bond PS, Sánchez Rodríguez F, McNicholas SJ, Agirre J. Online carbohydrate 3D structure validation with the Privateer web app. Acta Crystallogr F Struct Biol Commun 2024; 80:30-35. [PMID: 38265073 PMCID: PMC10836424 DOI: 10.1107/s2053230x24000359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Owing to the difficulties associated with working with carbohydrates, validating glycan 3D structures prior to deposition into the Protein Data Bank has become a staple of the structure-solution pipeline. The Privateer software provides integrative methods for the validation, analysis, refinement and graphical representation of 3D atomic structures of glycans, both as ligands and as protein modifiers. While Privateer is free software, it requires users to install any of the structural biology software suites that support it or to build it from source code. Here, the Privateer web app is presented, which is always up to date and available to be used online (https://privateer.york.ac.uk) without installation. This self-updating tool, which runs locally on the user's machine, will allow structural biologists to simply and quickly analyse carbohydrate ligands and protein glycosylation from a web browser whilst retaining all confidential information on their devices.
Collapse
Affiliation(s)
- Jordan S. Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Lucy C. Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Phuong Thao Pham
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Lou Holland
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Filomeno Sánchez Rodríguez
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, United Kingdom
| |
Collapse
|
15
|
Nagaraj PH. Determining Macromolecular Structures Using Cryo-Electron Microscopy. Methods Mol Biol 2024; 2787:315-332. [PMID: 38656500 DOI: 10.1007/978-1-0716-3778-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Structural insights into macromolecular and protein complexes provide key clues about the molecular basis of the function. Cryogenic electron microscopy (cryo-EM) has emerged as a powerful structural biology method for studying protein and macromolecular structures at high resolution in both native and near-native states. Despite the ability to get detailed structural insights into the processes underlying protein function using cryo-EM, there has been hesitancy amongst plant biologists to apply the method for biomolecular interaction studies. This is largely evident from the relatively fewer structural depositions of proteins and protein complexes from plant origin in electron microscopy databank. Even though the progress has been slow, cryo-EM has significantly contributed to our understanding of the molecular biology processes underlying photosynthesis, energy transfer in plants, besides viruses infecting plants. This chapter introduces sample preparation for both negative-staining electron microscopy (NSEM) and cryo-EM for plant proteins and macromolecular complexes and data analysis using single particle analysis for beginners.
Collapse
Affiliation(s)
- Pradeep Hiriyur Nagaraj
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
16
|
Borlandelli V, Offen W, Moroz O, Nin-Hill A, McGregor N, Binkhorst L, Ishiwata A, Armstrong Z, Artola M, Rovira C, Davies GJ, Overkleeft HS. β-l- Arabinofurano-cyclitol Aziridines Are Covalent Broad-Spectrum Inhibitors and Activity-Based Probes for Retaining β-l-Arabinofuranosidases. ACS Chem Biol 2023; 18:2564-2573. [PMID: 38051515 PMCID: PMC10728902 DOI: 10.1021/acschembio.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
GH127 and GH146 microorganismal retaining β-l-arabinofuranosidases, expressed by human gut microbiomes, feature an atypical catalytic domain and an unusual mechanism of action. We recently reported that both Bacteroides thetaiotaomicron BtGH146 and Bifidobacterium longum HypBA1 are inhibited by β-l-arabinofuranosyl cyclophellitol epoxide, supporting the action of a zinc-coordinated cysteine as a catalytic nucleophile, where in most retaining GH families, an aspartate or glutamate is employed. This work presents a panel of β-l-arabinofuranosyl cyclophellitol epoxides and aziridines as mechanism-based BtGH146/HypBA1 inhibitors and activity-based probes. The β-l-arabinofuranosyl cyclophellitol aziridines both inhibit and label β-l-arabinofuranosidase efficiently (however with different activities), whereas the epoxide-derived probes favor BtGH146 over HypBA1. These findings are accompanied by X-ray structural analysis of the unmodified β-l-arabinofuranosyl cyclophellitol aziridine in complex with both isozymes, which were shown to react by nucleophilic opening of the aziridine, at the pseudoanomeric carbon, by the active site cysteine nucleophile to form a stable thioether bond. Altogether, our activity-based probes may serve as chemical tools for the detection and identification of low-abundance β-l-arabinofuranosidases in complex biological samples.
Collapse
Affiliation(s)
- Valentina Borlandelli
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Wendy Offen
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Olga Moroz
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Alba Nin-Hill
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica), Institut
de Química Teòrica i Computacional (IQTCUB), Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Nicholas McGregor
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Lars Binkhorst
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Akihiro Ishiwata
- RIKEN
Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zachary Armstrong
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marta Artola
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica), Institut
de Química Teòrica i Computacional (IQTCUB), Universitat
de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gideon J. Davies
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10
5DD, United Kingdom
| | - Herman S. Overkleeft
- Bio-organic
Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
17
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 2023; 91:1747-1770. [PMID: 37876231 PMCID: PMC10841292 DOI: 10.1002/prot.26602] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty-two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as noncanonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
18
|
Catapano L, Long F, Yamashita K, Nicholls RA, Steiner RA, Murshudov GN. Neutron crystallographic refinement with REFMAC5 from the CCP4 suite. Acta Crystallogr D Struct Biol 2023; 79:1056-1070. [PMID: 37921806 PMCID: PMC7615533 DOI: 10.1107/s2059798323008793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Hydrogen (H) atoms are abundant in macromolecules and often play critical roles in enzyme catalysis, ligand-recognition processes and protein-protein interactions. However, their direct visualization by diffraction techniques is challenging. Macromolecular X-ray crystallography affords the localization of only the most ordered H atoms at (sub-)atomic resolution (around 1.2 Å or higher). However, many H atoms of biochemical significance remain undetectable by this method. In contrast, neutron diffraction methods enable the visualization of most H atoms, typically in the form of deuterium (2H) atoms, at much more common resolution values (better than 2.5 Å). Thus, neutron crystallography, although technically demanding, is often the method of choice when direct information on protonation states is sought. REFMAC5 from the Collaborative Computational Project No. 4 (CCP4) is a program for the refinement of macromolecular models against X-ray crystallographic and cryo-EM data. This contribution describes its extension to include the refinement of structural models obtained from neutron crystallographic data. Stereochemical restraints with accurate bond distances between H atoms and their parent atom nuclei are now part of the CCP4 Monomer Library, the source of prior chemical information used in the refinement. One new feature for neutron data analysis in REFMAC5 is refinement of the protium/deuterium (1H/2H) fraction. This parameter describes the relative 1H/2H contribution to neutron scattering for hydrogen isotopes. The newly developed REFMAC5 algorithms were tested by performing the (re-)refinement of several entries available in the PDB and of one novel structure (FutA) using either (i) neutron data only or (ii) neutron data supplemented by external restraints to a reference X-ray crystallographic structure. Re-refinement with REFMAC5 afforded models characterized by R-factor values that are consistent with, and in some cases better than, the originally deposited values. The use of external reference structure restraints during refinement has been observed to be a valuable strategy, especially for structures at medium-low resolution.
Collapse
Affiliation(s)
- Lucrezia Catapano
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
19
|
De Rose SA, Isupov MN, Worthy HL, Stracke C, Harmer NJ, Siebers B, Littlechild JA. Structural characterization of a novel cyclic 2,3-diphosphoglycerate synthetase involved in extremolyte production in the archaeon Methanothermus fervidus. Front Microbiol 2023; 14:1267570. [PMID: 38045033 PMCID: PMC10690619 DOI: 10.3389/fmicb.2023.1267570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme cyclic di-phosphoglycerate synthetase that is involved in the production of the osmolyte cyclic 2,3-diphosphoglycerate has been studied both biochemically and structurally. Cyclic 2,3-diphosphoglycerate is found exclusively in the hyperthermophilic archaeal methanogens, such as Methanothermus fervidus, Methanopyrus kandleri, and Methanothermobacter thermoautotrophicus. Its presence increases the thermostability of archaeal proteins and protects the DNA against oxidative damage caused by hydroxyl radicals. The cyclic 2,3-diphosphoglycerate synthetase enzyme has been crystallized and its structure solved to 1.7 Å resolution by experimental phasing. It has also been crystallized in complex with its substrate 2,3 diphosphoglycerate and the co-factor ADP and this structure has been solved to 2.2 Å resolution. The enzyme structure has two domains, the core domain shares some structural similarity with other NTP-dependent enzymes. A significant proportion of the structure, including a 127 amino acid N-terminal domain, has no structural similarity to other known enzyme structures. The structure of the complex shows a large conformational change that occurs in the enzyme during catalytic turnover. The reaction involves the transfer of the γ-phosphate group from ATP to the substrate 2,3 -diphosphoglycerate and the subsequent SN2 attack to form a phosphoanhydride. This results in the production of the unusual extremolyte cyclic 2,3 -diphosphoglycerate which has important industrial applications.
Collapse
Affiliation(s)
- Simone A. De Rose
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail N. Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Harley L. Worthy
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Christina Stracke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Nicholas J. Harmer
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jennifer A. Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Bjelčić M, Sigfridsson Clauss KGV, Aurelius O, Milas M, Nan J, Ursby T. Anaerobic fixed-target serial crystallography using sandwiched silicon nitride membranes. Acta Crystallogr D Struct Biol 2023; 79:1018-1025. [PMID: 37860963 PMCID: PMC10619425 DOI: 10.1107/s205979832300880x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
In recent years, the emergence of serial crystallography, initially pioneered at X-ray free-electron lasers (XFELs), has sparked a growing interest in collecting macromolecular crystallographic data at room temperature. Various fixed-target serial crystallography techniques have been developed, ranging from commercially available chips to in-house designs implemented at different synchrotron facilities. Nevertheless, there is currently no commercially available chip (known to the authors) specifically designed for the direct handling of oxygen-sensitive samples. This study presents a methodology employing silicon nitride chips arranged in a `sandwich' configuration, enabling reliable room-temperature data collection from oxygen-sensitive samples. The method involves the utilization of a custom-made 3D-printed assembling tool and a MX sample holder. To validate the effectiveness of the proposed method, deoxyhemoglobin and methemoglobin samples were investigated using the BioMAX X-ray macromolecular crystallography beamline, the Balder X-ray absorption spectroscopy beamline and UV-Vis absorption spectroscopy.
Collapse
Affiliation(s)
- Monika Bjelčić
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | | | - Oskar Aurelius
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
21
|
Das R, Kretsch RC, Simpkin AJ, Mulvaney T, Pham P, Rangan R, Bu F, Keegan RM, Topf M, Rigden DJ, Miao Z, Westhof E. Assessment of three-dimensional RNA structure prediction in CASP15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538330. [PMID: 37162955 PMCID: PMC10168427 DOI: 10.1101/2023.04.25.538330] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The prediction of RNA three-dimensional structures remains an unsolved problem. Here, we report assessments of RNA structure predictions in CASP15, the first CASP exercise that involved RNA structure modeling. Forty two predictor groups submitted models for at least one of twelve RNA-containing targets. These models were evaluated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using metrics (GDT, lDDT) and approaches (Z-score rankings) initially developed for assessment of proteins and generalized here for RNA assessment. The two assessments independently ranked the same predictor groups as first (AIchemy_RNA2), second (Chen), and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches were significantly worse than these top ranked groups, which did not use deep learning. Further analyses based on direct comparison of predicted models to cryogenic electron microscopy (cryo-EM) maps and X-ray diffraction data support these rankings. With the exception of two RNA-protein complexes, models submitted by CASP15 groups correctly predicted the global fold of the RNA targets. Comparisons of CASP15 submissions to designed RNA nanostructures as well as molecular replacement trials highlight the potential utility of current RNA modeling approaches for RNA nanotechnology and structural biology, respectively. Nevertheless, challenges remain in modeling fine details such as non-canonical pairs, in ranking among submitted models, and in prediction of multiple structures resolved by cryo-EM or crystallography.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, CA USA
- Biophysics Program, Stanford University School of Medicine, CA USA
- Howard Hughes Medical Institute, Stanford University, CA USA
| | | | - Adam J. Simpkin
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Phillip Pham
- Department of Biochemistry, Stanford University School of Medicine, CA USA
| | - Ramya Rangan
- Biophysics Program, Stanford University School of Medicine, CA USA
| | - Fan Bu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Division of Life Sciences and Medicine,University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Ronan M. Keegan
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
- Life Science, Diamond Light Source, Harwell Science, UK
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV)
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J. Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
22
|
Brehm W, Triviño J, Krahn JM, Usón I, Diederichs K. XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO. J Appl Crystallogr 2023; 56:1585-1594. [PMID: 37791359 PMCID: PMC10543682 DOI: 10.1107/s1600576723007057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 10/05/2023] Open
Abstract
XDSGUI is a lightweight graphical user interface (GUI) for the XDS, SHELX and ARCIMBOLDO program packages that serves both novice and experienced users in obtaining optimal processing and phasing results for X-ray, neutron and electron diffraction data. The design of the program enables data processing and phasing without command line usage, and supports advanced command flows in a simple user-modifiable and user-extensible way. The GUI supplies graphical information based on the tabular log output of the programs, which is more intuitive, comprehensible and efficient than text output can be.
Collapse
Affiliation(s)
- Wolfgang Brehm
- Department of Physics, University of Hamburg, Hamburg 22761, Germany
| | - Josep Triviño
- Instituto de Biologia Molecular de Barcelona (IBMB), Baldiri Reixach 15, Barcelona 08028, Spain
| | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Isabel Usón
- Instituto de Biologia Molecular de Barcelona (IBMB), Baldiri Reixach 15, Barcelona 08028, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz 78457, Germany
| |
Collapse
|
23
|
Simpkin AJ, Caballero I, McNicholas S, Stevenson K, Jiménez E, Sánchez Rodríguez F, Fando M, Uski V, Ballard C, Chojnowski G, Lebedev A, Krissinel E, Usón I, Rigden DJ, Keegan RM. Predicted models and CCP4. Acta Crystallogr D Struct Biol 2023; 79:806-819. [PMID: 37594303 PMCID: PMC10478639 DOI: 10.1107/s2059798323006289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google's Deepmind in tackling the prediction problem. The level of accuracy in their predictions was the first instance of a competitor achieving a global distance test score of better than 90 across all categories of difficulty. This achievement represents both a challenge and an opportunity for the field of experimental structural biology. For structure determination by macromolecular X-ray crystallography, access to highly accurate structure predictions is of great benefit, particularly when it comes to solving the phase problem. Here, details of new utilities and enhanced applications in the CCP4 suite, designed to allow users to exploit predicted models in determining macromolecular structures from X-ray diffraction data, are presented. The focus is mainly on applications that can be used to solve the phase problem through molecular replacement.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
| | - Stuart McNicholas
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Kyle Stevenson
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Maria Fando
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ville Uski
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Charles Ballard
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrey Lebedev
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Eugene Krissinel
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
24
|
Martin MP, Endicott JA, Noble MEM, Tatum NJ. Crystallographic fragment screening in academic cancer drug discovery. Methods Enzymol 2023; 690:211-234. [PMID: 37858530 DOI: 10.1016/bs.mie.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Fragment-based drug discovery (FBDD) has brought several drugs to the clinic, notably to target proteins once considered to be challenging, or even undruggable. Screening in FBDD relies upon observing and/or measuring weak (millimolar-scale) binding events using biophysical techniques or crystallographic fragment screening. This latter structural approach provides no information about binding affinity but can reveal binding mode and atomic detail on protein-fragment interactions to accelerate hit-to-lead development. In recent years, high-throughput platforms have been developed at synchrotron facilities to screen thousands of fragment-soaked crystals. However, using accessible manual techniques it is possible to run informative, smaller-scale screens within an academic lab setting. This chapter describes general protocols for home laboratory-scale fragment screening, from fragment soaking through to structure solution and, where appropriate, signposts to background, protocols or alternatives elsewhere.
Collapse
Affiliation(s)
- Mathew P Martin
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Jane A Endicott
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Martin E M Noble
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Natalie J Tatum
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Translation and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
25
|
Chojnowski G. Sequence-assignment validation in protein crystal structure models with checkMySequence. Acta Crystallogr D Struct Biol 2023; 79:559-568. [PMID: 37314404 PMCID: PMC10306063 DOI: 10.1107/s2059798323003765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023] Open
Abstract
Sequence-register shifts remain one of the most elusive errors in experimental macromolecular models. They may affect model interpretation and propagate to newly built models from older structures. In a recent publication, it was shown that register shifts in cryo-EM models of proteins can be detected using a systematic reassignment of short model fragments to the target sequence. Here, it is shown that the same approach can be used to detect register shifts in crystal structure models using standard, model-bias-corrected electron-density maps (2mFo - DFc). Five register-shift errors in models deposited in the PDB detected using this method are described in detail.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
26
|
Li Y, Zhang C, Samad A, Zheng P, Li Y, Chen F, Jin T. Structural mechanism of dsDNA recognition by the hMNDA HIN domain: New insights into the DNA-binding model of a PYHIN protein. Int J Biol Macromol 2023; 245:125461. [PMID: 37348588 DOI: 10.1016/j.ijbiomac.2023.125461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The hematopoietic interferon-inducible nuclear (HIN) domain of the PYHIN family of proteins recognizes double-stranded DNA (dsDNA) through different dsDNA-binding modes. These modes apparently confer different roles upon these proteins in the regulation of innate immune responses, gene transcription, and apoptosis. Myeloid cell nuclear differentiation antigen (MNDA), a member of the human PYHIN family, binds DNA and regulates gene transcription in monocytes. However, the mechanism of DNA recognition and DNA-binding modes of human MNDA (hMNDA) remain unclear. Here, we determined the crystal structure of the hMNDA-HIN domain in complex with dsDNA at 2.4 Å resolution, and reveal that hMNDA-HIN binds to dsDNA in a sequence-independent manner. Structure and mutation studies indicated that hMNDA-HIN binds to dsDNA through a unique mode, involving two dsDNA-binding interfaces. Interface I exhibits an AIM2-like dsDNA-binding mode, and interface II has a previously unreported mode of dsDNA-binding. These results provide new insights into the DNA-binding modes of this PYHIN protein.
Collapse
Affiliation(s)
- Yuelong Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Caiying Zhang
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yajuan Li
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
27
|
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Borges RJ, Brown DG, Burgos-Mármol JJ, Berrisford JM, Bond PS, Caballero I, Catapano L, Chojnowski G, Cook AG, Cowtan KD, Croll TI, Debreczeni JÉ, Devenish NE, Dodson EJ, Drevon TR, Emsley P, Evans G, Evans PR, Fando M, Foadi J, Fuentes-Montero L, Garman EF, Gerstel M, Gildea RJ, Hatti K, Hekkelman ML, Heuser P, Hoh SW, Hough MA, Jenkins HT, Jiménez E, Joosten RP, Keegan RM, Keep N, Krissinel EB, Kolenko P, Kovalevskiy O, Lamzin VS, Lawson DM, Lebedev AA, Leslie AGW, Lohkamp B, Long F, Malý M, McCoy AJ, McNicholas SJ, Medina A, Millán C, Murray JW, Murshudov GN, Nicholls RA, Noble MEM, Oeffner R, Pannu NS, Parkhurst JM, Pearce N, Pereira J, Perrakis A, Powell HR, Read RJ, Rigden DJ, Rochira W, Sammito M, Sánchez Rodríguez F, Sheldrick GM, Shelley KL, Simkovic F, Simpkin AJ, Skubak P, Sobolev E, Steiner RA, Stevenson K, Tews I, Thomas JMH, Thorn A, Valls JT, Uski V, Usón I, Vagin A, Velankar S, Vollmar M, Walden H, Waterman D, Wilson KS, Winn MD, Winter G, Wojdyr M, Yamashita K. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:449-461. [PMID: 37259835 PMCID: PMC10233625 DOI: 10.1107/s2059798323003595] [Citation(s) in RCA: 245] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Charles B. Ballard
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rafael J. Borges
- The Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - David G. Brown
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - J. Javier Burgos-Mármol
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - John M. Berrisford
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Lucrezia Catapano
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Atlanta G. Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tristan I. Croll
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Altos Labs, Portway Building, Granta Park, Great Abington, Cambridge CB21 6GP, United Kingdom
| | - Judit É. Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Tarik R. Drevon
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Phil R. Evans
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Maria Fando
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Luis Fuentes-Montero
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Markus Gerstel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Richard J. Gildea
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Kaushik Hatti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Maarten L. Hekkelman
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Michael A. Hough
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Robbie P. Joosten
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronan M. Keegan
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nicholas Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Eugene B. Krissinel
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
| | - Oleg Kovalevskiy
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrey A. Lebedev
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Andrew G. W. Leslie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Bernhard Lohkamp
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin Malý
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 55, 252 50 Vestec, Czech Republic
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stuart J. McNicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James W. Murray
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Garib N. Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin E. M. Noble
- Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Robert Oeffner
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Navraj S. Pannu
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - James M. Parkhurst
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0QS, United Kingdom
| | - Nicholas Pearce
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Joana Pereira
- Biozentrum and SIB Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland
| | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harold R. Powell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - William Rochira
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Massimo Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
- Discovery Centre, Biologics Engineering, AstraZeneca, Biomedical Campus, 1 Francis Crick Avenue, Trumpington, Cambridge CB2 0AA, United Kingdom
| | - Filomeno Sánchez Rodríguez
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - George M. Sheldrick
- Department of Structural Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Kathryn L. Shelley
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Felix Simkovic
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J. Simpkin
- Laboratoires Servier SAS Institut de Recherches, Croissy-sur-Seine, France
| | - Pavol Skubak
- Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Italy
| | - Kyle Stevenson
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jens M. H. Thomas
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Andrea Thorn
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Josep Triviño Valls
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Ville Uski
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Alexei Vagin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Melanie Vollmar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities Council, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited (United Kingdom), Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
28
|
Ghosh S, Zorić D, Dahl P, Bjelčić M, Johannesson J, Sandelin E, Borjesson P, Björling A, Banacore A, Edlund P, Aurelius O, Milas M, Nan J, Shilova A, Gonzalez A, Mueller U, Brändén G, Neutze R. A simple goniometer-compatible flow cell for serial synchrotron X-ray crystallography. J Appl Crystallogr 2023; 56:449-460. [PMID: 37032973 PMCID: PMC10077854 DOI: 10.1107/s1600576723001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via light-weight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Å resolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX.
Collapse
Affiliation(s)
- Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Doris Zorić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Monika Bjelčić
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Per Borjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | | | - Analia Banacore
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Anastasya Shilova
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Uwe Mueller
- Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| |
Collapse
|
29
|
Zahm JA, Jenni S, Harrison SC. Structure of the Ndc80 complex and its interactions at the yeast kinetochore-microtubule interface. Open Biol 2023; 13:220378. [PMID: 36883282 PMCID: PMC9993044 DOI: 10.1098/rsob.220378] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
The conserved Ndc80 kinetochore complex, Ndc80c, is the principal link between mitotic spindle microtubules and centromere-associated proteins. We used AlphaFold 2 (AF2) to obtain predictions of the Ndc80 'loop' structure and of the Ndc80 : Nuf2 globular head domains that interact with the Dam1 subunit of the heterodecameric DASH/Dam1 complex (Dam1c). The predictions guided design of crystallizable constructs, with structures close to the predicted ones. The Ndc80 'loop' is a stiff, α-helical 'switchback' structure; AF2 predictions and positions of preferential cleavage sites indicate that flexibility within the long Ndc80c rod occurs instead at a hinge closer to the globular head. Conserved stretches of the Dam1 C terminus bind Ndc80c such that phosphorylation of Dam1 serine residues 257, 265 and 292 by the mitotic kinase Ipl1/Aurora B can release this contact during error correction of mis-attached kinetochores. We integrate the structural results presented here into our current molecular model of the kinetochore-microtubule interface. The model illustrates how multiple interactions between Ndc80c, DASH/Dam1c and the microtubule lattice stabilize kinetochore attachments.
Collapse
Affiliation(s)
- Jacob A. Zahm
- Department of Biological Chemistry and Molecular Pharmacology, and
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, and
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, and
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Medina A, Jiménez E, Caballero I, Castellví A, Triviño Valls J, Alcorlo M, Molina R, Hermoso JA, Sammito MD, Borges R, Usón I. Verification: model-free phasing with enhanced predicted models in ARCIMBOLDO_SHREDDER. Acta Crystallogr D Struct Biol 2022; 78:1283-1293. [PMID: 36322413 PMCID: PMC9629495 DOI: 10.1107/s2059798322009706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Structure predictions have matched the accuracy of experimental structures from close homologues, providing suitable models for molecular replacement phasing. Even in predictions that present large differences due to the relative movement of domains or poorly predicted areas, very accurate regions tend to be present. These are suitable for successful fragment-based phasing as implemented in ARCIMBOLDO. The particularities of predicted models are inherently addressed in the new predicted_model mode, rendering preliminary treatment superfluous but also harmless. B-value conversion from predicted LDDT or error estimates, the removal of unstructured polypeptide, hierarchical decomposition of structural units from domains to local folds and systematically probing the model against the experimental data will ensure the optimal use of the model in phasing. Concomitantly, the exhaustive use of models and stereochemistry in phasing, refinement and validation raises the concern of crystallographic model bias and the need to critically establish the information contributed by the experiment. Therefore, in its predicted_model mode ARCIMBOLDO_SHREDDER will first determine whether the input model already constitutes a solution or provides a straightforward solution with Phaser. If not, extracted fragments will be located. If the landscape of solutions reveals numerous, clearly discriminated and consistent probes or if the input model already constitutes a solution, model-free verification will be activated. Expansions with SHELXE will omit the partial solution seeding phases and all traces outside their respective masks will be combined in ALIXE, as far as consistent. This procedure completely eliminates the molecular replacement search model in favour of the inferences derived from this model. In the case of fragments, an incorrect starting hypothesis impedes expansion. The predicted_model mode has been tested in different scenarios.
Collapse
Affiliation(s)
- Ana Medina
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Iracema Caballero
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Albert Castellví
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Josep Triviño Valls
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Martin Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry ‘Rocasolano’, Spanish National Research Council (CSIC), Madrid, Spain
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry ‘Rocasolano’, Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry ‘Rocasolano’, Spanish National Research Council (CSIC), Madrid, Spain
| | - Massimo D. Sammito
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Rafael Borges
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo 18618-689, Brazil
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| |
Collapse
|