1
|
Qu J, Du Y, Jing J, Wang J, Bu L, Wang Y. Short-Term Longitudinal Study on Brain Network Informatics of Stroke Patients Under Acupuncture and Motor Imagery Intervention. IEEE J Biomed Health Inform 2025; 29:3356-3365. [PMID: 40031051 DOI: 10.1109/jbhi.2025.3527074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE The quest for scientifically effective rehabilitation methods for stroke recovery constitutes an urgent need. However, due to the inadequacies of longitudinal studies and multimodal assessment methods, the rehabilitation mechanisms of methods such as Acupuncture Treatment (AT) and Motor Imagery (MI) remain unclear. Consequently, this study presents both AT and Acupuncture Synchronized with MI (ASMI) therapies, utilizing a combination of subjective and objective approaches to evaluate the long-term impacts of these two treatment modalities. METHODS A longitudinal design was adopted for a duration of two weeks. Clinical improvement in patients was assessed using scale data, while Functional Near-infrared spectroscopy (fNIRS) and Electroencephalogram (EEG) data were collected to analyze changes in brain function. This study proposed the Cluster-Span Threshold for Directed Networks (CSTDN) algorithm for identifying key connections within the brain network and conducted in-depth analysis using graph theory metrics. RESULTS Scale data indicated improvements in behavioral capabilities in both groups post-treatment. EEG and fNIRS data revealed significant variations in specific frequency bands between the two groups. CONCLUSION This study not only validates the efficacy of AT and ASMI in stroke rehabilitation but also unveils the underlying neurobiological mechanisms through multimodal data analysis. The proposed CSTDN algorithm and graph theory analysis offer new perspectives for understanding changes in the brain network. SIGNIFICANCE This research contributes to the optimization of future rehabilitation treatment strategies and the formulation of personalized treatment plans.
Collapse
|
2
|
Marcinek A, Katarzynska J, Stanek A, Gebicki J. Prediction of Microvascular Adaptation to Hypoxia Based on Myogenic Microcirculation Oscillations. SENSORS (BASEL, SWITZERLAND) 2025; 25:2751. [PMID: 40363189 PMCID: PMC12074523 DOI: 10.3390/s25092751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Microcirculatory oscillations known as flowmotion are a recognized feature of blood flow that reflect the functional state of the vascular system. Many diseases are associated with impaired flowmotion, especially diseases that are accompanied by hypoxia. Low-frequency myogenic oscillations (0.052-0.15 Hz) are an important regulator of microvascular adaptation to hypoxia. Here, we study the myogenic component of flowmotion using the FMSF-PORH (Flow Mediated Skin Fluorescence-Post Occlusive Reactive Hyperemia) technique. Myogenic oscillations were strongly activated under hypoxic conditions caused by occlusion of the brachial artery or intermittent hypoxic treatment. A strong correlation was noted between the hypoxia sensitivity parameter HS (the intensity of myogenic oscillations activated by hypoxia) and the normoxic myogenic flowmotion parameter VM (the intensity of myogenic oscillations under normoxic conditions). If HS is considered as a direct measure of the microcirculation response to hypoxia, then VM can be considered a measure of the microcirculation's readiness to provide this response. The predictive value of the VM parameter is presented. The assessment of myogenic activity under normoxia conditions could thus provide a simple and rapid diagnostic tool for health care practitioners.
Collapse
Affiliation(s)
- Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
- Angionica Ltd., 90-924 Lodz, Poland;
| | | | - Artur Stanek
- Hypoxico Polska Ltd., 42-202 Czestochowa, Poland;
| | - Jerzy Gebicki
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
- Angionica Ltd., 90-924 Lodz, Poland;
| |
Collapse
|
3
|
Fisher JT, Ciuha U, Denise P, McDonnell AC, Normand H, Mekjavic IB. The combined effects of artificial gravity, temperature, and hypoxia on haemodynamic responses and limb blood flow. Eur J Appl Physiol 2025:10.1007/s00421-025-05773-7. [PMID: 40172601 DOI: 10.1007/s00421-025-05773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
Under simultaneous environmental and gravitational stressors, integrated vascular responses maintain homeostatic balance via coordinated baro- and thermo-regulatory action. The effect of temperature and hypoxia at an elevated gravitational vector on the interaction of these systems was examined. Ten male participants experienced either cool (18.4 °C) or warm (29.1 °C) ambient temperatures in normoxia (partial pressure of oxygen, PIO2 = 133 mmHg) or hypoxia (PIO2 = 92 mmHg). Cardiovascular (heart rate, HR; arterial pressure, MAP; cardiac output, CO; stroke volume, SV; skin blood flow, SkBF) and thermoregulatory (skin temperature; core temperature) responses were monitored during standing (NG), and supine centrifugation at ground reaction forces (GRF) measured with a force platform at 1GRF and 2GRF. At 2GRF, warm and hypoxic conditions reduced the test duration by 16%. No differences were observed between NG and 1GRF in any variable; however, 2GRF significantly raised HR by 29.3% and MAP by 12.6%, and lowered SV by 22.2%. Warm condition significantly increased HR, and significantly decreased MAP and SV compared to the cool condition, by 17.8%, 6.1%, and 5.8%, respectively. Hypoxia had no effect on any variable. Arm SkBF significantly decreased by 33.3% with increasing artificial gravity, whereas leg SkBF increased by 38.7%. Higher ambient temperatures had no effect on leg SkBF, but significantly increased arm SkBF by 38.7%. Human tolerance to passive centrifugation is significantly lower at 2GRF, and further affected by the ambient conditions. Haemodynamic and leg SkBF responses in higher temperature and Gz conditions were frequently unable to prevent pre-syncopal symptoms. Finally, arm SkBF was modulated by both baroreflex and thermoregulation, and the baroreflex alone in leg SkBF.
Collapse
Affiliation(s)
- Jason T Fisher
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Pierre Denise
- Université de Caen Normandie, Inserm, Cyceron, CHU de Caen, COMETE U1075, Caen, France
| | - Adam C McDonnell
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Hervé Normand
- Université de Caen Normandie, Inserm, Cyceron, CHU de Caen, COMETE U1075, Caen, France
| | - Igor B Mekjavic
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Howells T, Hånell A, Svedung Wettervik T, Enblad P. Vasomotion and Cerebral Blood Flow in Patients With Traumatic Brain Injury and Subarachnoid Hemorrhage: Cerebrovascular Autoregulation Versus Autonomic Control. J Neurotrauma 2025; 42:700-713. [PMID: 39723450 DOI: 10.1089/neu.2024.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
This study compared the roles of extraparenchymal autonomic nervous system (ANS) control of cerebral blood flow (CBF) versus intraparenchymal cerebrovascular autoregulation in 487 patients with aneurysmal subarachnoid hemorrhage (SAH) and 413 patients with traumatic brain injury (TBI). Vasomotion intensity of extraparenchymal and intraparenchymal vessels were quantified as the amplitude of oscillations of arterial blood pressure (ABP) and intracranial pressure (ICP) in the very low frequency range of 0.02-0.07 Hz, or periods of 55-15 sec, computed with a bandpass filter. A version of the pressure reactivity index (PRx-55-15) was computed as the correlation of the filtered waveforms, ABP-55-15 and ICP-55-15. Since ABP-55-15 is measured in the radial artery, any influence of cerebral factors must be mediated by the ANS. ICP-55-15 is measured in the brain and is influenced by intraparenchymal chemical and metabolic factors in addition to the ANS. Patient outcome was assessed using the Extended Glasgow Outcome Score (GOSe). Ten-day mean cerebral perfusion pressure (CPP) was negatively correlated with GOSe in the TBI cohort (R = -0.13, p = 0.01) but positively correlated with GOSe in the SAH cohort, (R = 0.32, p < 0.00001), indicating a much greater dependence on ANS support in the form of elevated CPP in SAH. The optimal CPP range for TBI was 60-70 mmHg, but for SAH it was 110-120 mmHg. The percentage of monitoring time with PRx-55-15 < 0.8, indicating very pressure-active cerebral vessels that resist ANS influence via systemic ABP, is positively correlated with GOSe in the TBI cohort (R = 0.14, p = 0.003), but negatively correlated with GOSe in the SAH cohort (R = -0.10, p = 0.004). The TBI cohort optimal PRx-55-15 for patient outcome was -1.0, while the SAH optimum was 0.3. For the TBI cohort, the correlation of ABP-55-15 amplitude with 10-day mean ICP-55-15 amplitude was 0.29. For the SAH cohort the correlation was 0.51, which is stronger (p = 0.0001). The TBI cohort had a median GOSe of 5 (interquartile range [IQR] 3-7), while SAH had a median of 3 (IQR 3-5), which is worse (p < 0.00001). The higher optimal CPP in patients with SAH, more passive optimal pressure reactivity, and greater dependence of cerebral on systemic vasomotion indicate that they require more active support by the ANS and systemic circulation for CBF than patients with TBI. CBF in patients with TBI is more reliant on cerebrovascular autoregulation based on metabolic demand. This appears to be deficient following SAH, making the heightened ANS support necessary. Although this support is beneficial, it does not fully compensate for the loss of cerebrovascular autoregulation, as reflected in the problems in the SAH cohort with delayed cerebral ischemia and poor outcome.
Collapse
Affiliation(s)
- Timothy Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Loktionova YI, Zharkikh EV, Parshakova VE, Sidorov VV, Dunaev AV. Wearable Multimodal Optical Analyzers: Physiological Variability and Reproducibility of Measurements. JOURNAL OF BIOPHOTONICS 2025; 18:e202400527. [PMID: 39876540 DOI: 10.1002/jbio.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025]
Abstract
The work is devoted to the study of the physiological variability of the microcirculatory-tissue system (MTS) parameters under normal conditions and during functional tests. The results were obtained in vivo using multimodal wearable analyzers implementing methods of laser Doppler flowmetry and fluorescence spectroscopy. Comprehensive data analysis and calculation of the coefficients of variation of the MTS parameters of the human body for various topographic and anatomical areas of the skin were carried out. The obtained results showed higher values of the coefficient of variation of MTS parameters in the area of the toes and wrists, while the fingers and forehead skin showed lower levers of variation. In all areas of the study, reproducibility of the parameters obtained for the right and left areas of the study is observed.
Collapse
Affiliation(s)
- Yu I Loktionova
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - E V Zharkikh
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - V E Parshakova
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | | | - A V Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| |
Collapse
|
6
|
Wang N, He Y, Zhu S, Liu D, Chai X, He Q, Cao T, He J, Li J, Si J, Yang Y, Zhao J. Functional near-infrared spectroscopy for the assessment and treatment of patients with disorders of consciousness. Front Neurol 2025; 16:1524806. [PMID: 39963381 PMCID: PMC11830608 DOI: 10.3389/fneur.2025.1524806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background Advances in neuroimaging have significantly enhanced our understanding of brain function, providing critical insights into the diagnosis and management of disorders of consciousness (DoC). Functional near-infrared spectroscopy (fNIRS), with its real-time, portable, and noninvasive imaging capabilities, has emerged as a promising tool for evaluating functional brain activity and nonrecovery potential in DoC patients. This review explores the current applications of fNIRS in DoC research, identifies its limitations, and proposes future directions to optimize its clinical utility. Aim This review examines the clinical application of fNIRS in monitoring DoC. Specifically, it investigates the potential value of combining fNIRS with brain-computer interfaces (BCIs) and closed-loop neuromodulation systems for patients with DoC, aiming to elucidate mechanisms that promote neurological recovery. Methods A systematic analysis was conducted on 155 studies published between January 1993 and October 2024, retrieved from the Web of Science Core Collection database. Results Analysis of 21 eligible studies on neurological diseases involving 262 DoC patients revealed significant findings. The prefrontal cortex was the most frequently targeted brain region. fNIRS has proven crucial in assessing brain functional connectivity and activation, facilitating the diagnosis of DoC. Furthermore, fNIRS plays a pivotal role in diagnosis and treatment through its application in neuromodulation techniques such as deep brain stimulation (DBS) and spinal cord stimulation (SCS). Conclusion As a noninvasive, portable, and real-time neuroimaging tool, fNIRS holds significant promise for advancing the assessment and treatment of DoC. Despite limitations such as low spatial resolution and the need for standardized protocols, fNIRS has demonstrated its utility in evaluating residual brain activity, detecting covert consciousness, and monitoring therapeutic interventions. In addition to assessing consciousness levels, fNIRS offers unique advantages in tracking hemodynamic changes associated with neuroregulatory treatments, including DBS and SCS. By providing real-time feedback on cortical activation, fNIRS facilitates optimizing therapeutic strategies and supports individualized treatment planning. Continued research addressing its technical and methodological challenges will further establish fNIRS as an indispensable tool in the diagnosis, prognosis, and treatment monitoring of DoC patients.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yifang He
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Sipeng Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongsheng Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingqi Li
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Juanning Si
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Huang L, Mo PC, Samadi M, Shen WC, Yu H, Hernandez M, Jan YK. Wavelet Phase Coherence Analysis of Oxyhemoglobin and DeoxyHemoglobin Oscillations to Investigate the Relationship Between Cups of Cupping Therapy. JOURNAL OF BIOPHOTONICS 2025; 18:e202400337. [PMID: 39512092 DOI: 10.1002/jbio.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Research has not demonstrated whether multiple cups of negative pressure cupping therapy would induce interactions of hemodynamic responses between different areas. A multichannel near-infrared spectroscopy (NIRS) was used to assess oxyhemoglobin and deoxyhemoglobin oscillations in response to cupping therapy. Wavelet transform and wavelet phase (WPC) coherence were used to quantify NIRS signals. Three levels of negative pressure (-75, -225, and -300 mmHg) were applied to the gastrocnemius in 12 healthy adults. Oxyhemoglobin coherence between the two inside-cup areas was higher at -75 mmHg compared to -300 mmHg in both metabolic (WPC = 0.80 ± 0.11 vs. 0.73 ± 0.13) and neurogenic (WPC = 0.70 ± 0.11 vs. 0.60 ± 0.17) controls. Deoxyhemoglobin coherence was also higher at -75 mmHg compared to -300 mmHg in both metabolic (WPC = 0.78 ± 0.11 vs. 0.66 ± 0.14) and neurogenic (WPC = 0.67 ± 0.11 vs. 0.58 ± 0.13) controls. Our study provides first evidence on the interaction of hemodynamic responses between the two cups of cupping therapy using WPC analysis of NIRS signals.
Collapse
Affiliation(s)
- Liwan Huang
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Pu-Chun Mo
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mansoureh Samadi
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei-Cheng Shen
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Creative Product Design, Asia University, Taichung, Taiwan
| | - Hongjun Yu
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physical Education, Tsinghua University, Beijing, China
| | - Manuel Hernandez
- Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yih-Kuen Jan
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Jan YK, Kelhofer N, Tu T, Mansuri O, Onyemere K, Dave S, Pappu S. Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus. Diagnostics (Basel) 2024; 14:2830. [PMID: 39767191 PMCID: PMC11674805 DOI: 10.3390/diagnostics14242830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Microcirculation is an essential system that regulates oxygen and nutrients to cells and tissues in response to various environmental stimuli and pathophysiological conditions. Diabetes mellitus can cause microvascular complications including nephropathy, neuropathy, and retinopathy. The pathogenesis of microvascular dysfunction in diabetes is associated with hyperglycemia and the result of an interplay of various factors. Research studies have demonstrated that functional microvascular dysfunction appears much earlier than structural alterations in vasculature in diabetes. This finding of the progression from microvascular dysfunction to macrovascular disease establishes a foundation for the screening and early diagnosis of diabetes by assessing the microvascular function. This comprehensive review discusses technologies (laser Doppler, transcutaneous oximetry, infrared thermography and near-infrared spectroscopy) with computational methods (linear (time and frequency domains), nonlinear and machine learning approaches) for diagnosing microvascular dysfunction in diabetes. Pathophysiological changes of microvascular dysfunction leading to impaired vasomotion and blood flow oscillations in diabetes are reviewed. Recent findings in managing microvascular dysfunction using lifestyle modifications and force-based modulations are evaluated. A consensus endorsed by the American Diabetes Association has been reached that an effective exercise program would greatly slow down the progression of microvascular dysfunction and its impact on diabetic foot ulcers, muscle fatigue and weakness and peripheral neuropathy. However, it is imperative to determine the dose-response relationship of exercise and microvascular responses in patients with diabetes. Research studies have demonstrated that local vibration and whole-body vibration can improve microcirculation in various pathological conditions, including diabetes. Due to the complex nature of microvascular regulation, various computational methods have been developed to shed light on the influence of diabetes on microvascular dysfunction. This comprehensive review will contribute to the diagnosis and management of microvascular dysfunction in diabetes.
Collapse
Affiliation(s)
- Yih-Kuen Jan
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicolas Kelhofer
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (N.K.); (T.T.)
| | - Tony Tu
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (N.K.); (T.T.)
| | - Owaise Mansuri
- Department of Endocrinology, Carle Foundation Hospital, Urbana, IL 61801, USA; (O.M.); (K.O.); (S.D.)
| | - Kingsley Onyemere
- Department of Endocrinology, Carle Foundation Hospital, Urbana, IL 61801, USA; (O.M.); (K.O.); (S.D.)
| | - Shruti Dave
- Department of Endocrinology, Carle Foundation Hospital, Urbana, IL 61801, USA; (O.M.); (K.O.); (S.D.)
| | - Suguna Pappu
- Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL 61801, USA;
| |
Collapse
|
9
|
Eskandari R, Milkovich S, Kamar F, Goldman D, Welsh DG, Ellis CG, Diop M. Non-invasive point-of-care optical technique for continuous in vivo assessment of microcirculatory function: Application to a preclinical model of early sepsis. FASEB J 2024; 38:e70204. [PMID: 39628290 PMCID: PMC11615564 DOI: 10.1096/fj.202401889r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024]
Abstract
Increased amplitude of peripheral vasomotion is a potential early marker of sepsis-related microcirculatory impairment; however, previous reports relied on clinically unsuitable invasive techniques. Hyperspectral near-infrared spectroscopy (hsNIRS) and diffuse correlation spectroscopy (DCS) are non-invasive, bedside techniques that can be paired to continuously monitor tissue hemoglobin content (HbT), oxygenation (StO2), and perfusion (rBF) to detect vasomotion as low-frequency microhemodynamic oscillations. While previous studies have primarily focused on the peripheral microcirculation, cerebral injury is also a common occurrence in sepsis and hsNIRS-DCS could be used to assess cerebral microcirculatory function. This work aimed to use a hybrid hsNIRS-DCS system to continuously monitor changes in the peripheral and cerebral microcirculation in a rat model of early sepsis. It was hypothesized that the skeletal muscle would be a more sensitive early indicator of sepsis-related changes in microhemodynamics than the brain. Control animals received saline while the experimental group received fecal slurry to induce sepsis. Subsequently, hsNIRS-DCS measurements were acquired from the skeletal muscle and brain for 6 h. Peripheral rBF rapidly decreased in septic animals, but there were no significant changes in peripheral HbT or StO2, nor cerebral HbT, rBF, or StO2. The power of low-frequency peripheral oscillations in all parameters (i.e., HbT, StO2, and rBF) as well as cerebral HbT oscillations were elevated in septic animals during the final 4 h. These findings suggest that in the early stages of sepsis, while vital organs like the brain are partly protected, changes in peripheral perfusion and vasomotor activity can be detected using hsNIRS-DCS. Future work will apply the technique to ICU patients.
Collapse
Affiliation(s)
- Rasa Eskandari
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | | | - Farah Kamar
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Daniel Goldman
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
| | - Donald G. Welsh
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
- Department of Physiology and PharmacologyWestern UniversityLondonOntarioCanada
| | - Christopher G. Ellis
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
| | - Mamadou Diop
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
10
|
Singh J, Ellingson CJ, Ellingson CA, Shafiq MA, Dech RT, Sirant LW, Dorsch KD, Gruszecki M, Kratzig GP, Neary JP. Acute sport-related concussion alters cardiac contribution to cerebral oxygenation during repeated squat stands. J Sports Sci 2024; 42:2474-2480. [PMID: 39675011 DOI: 10.1080/02640414.2024.2442257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Assessment of cerebral oxygenation during repeated squat stands following an acute sport-related concussion (SRC) has the potential to identify physiological changes following SRC. All varsity university athletes completed a pre-season assessment and 53 were followed up within 5-days of suffering an SRC. Of the 53 participants, 29 had continuous beat-to-beat blood pressure (BP; sampled at 200 hz) collected by finger photoplethysmography, and 53 had right prefrontal cortex oxygenation collected by near-infrared spectroscopy (NIRS; sampled at 10 hz). Participants completed a 5-min repeated squat (10 s) stand (10 s) manoeuvre (0.05 hz). Wavelet transformation was applied to the signals, separating them into smooth muscle cell (0.05 to 0.145 hz), respiratory (0.145 to 0.6 hz) and cardiac (0.6 to 2 hz) frequency intervals, with the 5-min squat stand manoeuvre compared from pre-season to post-concussion. A significant amplitude increase (p < 0.05) in oxyhaemoglobin, total haemoglobin and haemoglobin difference following SRC was found at the cardiac interval. During the squat stand dynamic cerebral autoregulation challenge, this exploratory study found an elevated contribution from the heart to the oxygenation response at the right prefrontal cortex, suggestive of a cardiac compensatory response during concussion. Future research with cerebral blood flow alongside NIRS can provide greater insight to dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Chase J Ellingson
- College of Medicine, University of Saskatchewan Regina Campus, Regina, Canada
| | - Cody A Ellingson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, Regina, Canada
| | - Ryan T Dech
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Luke W Sirant
- College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Kim D Dorsch
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Marcin Gruszecki
- Department of Radiology Informatics and Statistics, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | | | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
11
|
Eratova L, Makovik I, Dremin V. Effects of 1267 nm Illumination on Microcirculation Regulatory Mechanisms. JOURNAL OF BIOPHOTONICS 2024:e202400296. [PMID: 39600189 DOI: 10.1002/jbio.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
This study explored the effects of 1267 nm laser irradiation on changes in blood flow parameters and activation of the regulatory mechanisms of the microcirculatory bed (MCB). Using laser Doppler flowmetry (LDF) technique and time-frequency analysis of perfusion signals, changes in the MCB of 16 healthy volunteers, targeting the distal phalanx of the third finger with 1267 nm laser irradiation were evaluated. Results indicated no significant differences in perfusion between control and target measurements, likely due to blood flow redistribution caused by vessel dilation/constriction. However, differences in oscillation amplitudes in endothelial and myogenic ranges were observed, suggesting microcirculation self-regulation. Detailed analysis revealed characteristic peaks in the endothelial range during and after irradiation, indicating endothelial mediator release. It is assumed that the identified effects may be related to the singlet oxygen generated by 1267 nm laser irradiation, which directly affects the MCB, manifesting as endothelium-dependent vascular activity.
Collapse
Affiliation(s)
- Lyubov Eratova
- R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Irina Makovik
- R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Viktor Dremin
- R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| |
Collapse
|
12
|
Zharkikh E, Loktionova Y, Dunaev A. Microcirculatory Dysfunction in Patients With Diabetes Mellitus Detected by a Distributed System of Wearable Laser Doppler Flowmetry Analysers. JOURNAL OF BIOPHOTONICS 2024; 17:e202400297. [PMID: 39351628 DOI: 10.1002/jbio.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 11/12/2024]
Abstract
The paper is devoted to the study of perfusion and amplitude-frequency spectra of laser Doppler flowmetry (LDF) signals in patients with diabetes mellitus (DM) in different skin areas of the upper and lower extremities using a distributed system of wearable LDF analysers. LDF measurements were performed in the areas of the fingers, toes, wrists and shins. The mean perfusion values, the amplitudes of blood flow oscillations in endothelial, neurogenic, myogenic, respiratory and cardiac frequency ranges, and the values of nutritive blood flow were analysed. The results revealed a decrease in tissue perfusion and nutritive blood flow in the lower extremities and an increase in these parameters in the upper extremities in patients with DM. A decrease in the amplitudes of endothelial and neurogenic oscillations was observed. The obtained results confirm the possibility of using wearable LDF analysers to detect differences in the blood flow regulation in normal and pathological conditions.
Collapse
Affiliation(s)
- Elena Zharkikh
- Research and Development Center of Biomedical Photonics, Orel State University Named After I.S. Turgenev, Orel, Russia
| | - Yulia Loktionova
- Research and Development Center of Biomedical Photonics, Orel State University Named After I.S. Turgenev, Orel, Russia
| | - Andrey Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University Named After I.S. Turgenev, Orel, Russia
| |
Collapse
|
13
|
Dar IA, Khan IR, Johnson TW, Helmy SM, Cardona JI, Escobar S, Selioutski O, Marinescu MA, Zhang CT, Proctor AR, AbdAllah N, Busch DR, Maddox RK, Choe R. Wavelet and time-based cerebral autoregulation analysis using diffuse correlation spectroscopy on adults undergoing extracorporeal membrane oxygenation therapy. PLoS One 2024; 19:e0299752. [PMID: 39471182 PMCID: PMC11521301 DOI: 10.1371/journal.pone.0299752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Adult patients who have suffered acute cardiac or pulmonary failure are increasingly being treated using extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass technique. While ECMO has improved the long-term outcomes of these patients, neurological injuries can occur from underlying illness or ECMO itself. Cerebral autoregulation (CA) allows the brain to maintain steady perfusion during changes in systemic blood pressure. Dysfunctional CA is a marker of acute brain injury and can worsen neurologic damage. Monitoring CA using invasive modalities can be risky in ECMO patients due to the necessity of anticoagulation therapy. Diffuse correlation spectroscopy (DCS) measures cerebral blood flow continuously, noninvasively, at the bedside, and can monitor CA. In this study, we compare DCS-based markers of CA in veno-arterial ECMO patients with and without acute brain injury. METHODS Adults undergoing ECMO were prospectively enrolled at a single tertiary hospital and underwent DCS and arterial blood pressure monitoring during ECMO. Neurologic injuries were identified using brain computerized tomography (CT) scans obtained in all patients. CA was calculated over a twenty-minute window via wavelet coherence analysis (WCA) over 0.05 Hz to 0.1 Hz and a Pearson correlation (DCSx) between cerebral blood flow measured by DCS and mean arterial pressure. RESULTS Eleven ECMO patients who received CT neuroimaging were recruited. 5 (45%) patients were found to have neurologic injury. CA indices WCOH, the area under the curve of the WCA, were significantly higher for patients with neurological injuries compared to those without neurological injuries (right hemisphere p = 0.041, left hemisphere p = 0.041). %DCSx, percentage of time DCSx was above a threshold 0.4, were not significantly higher (right hemisphere p = 0.268, left hemisphere p = 0.073). CONCLUSION DCS can be used to detect differences in CA for ECMO patients with neurological injuries compared to uninjured patients using WCA.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Marie Helmy
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeronimo I. Cardona
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Escobar
- Clinical and Translational Sciences Program, University of Rochester, Rochester, New York, United States of America
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Mississippi, Jackson, Mississippi, United States of America
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chloe T. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Ashley R. Proctor
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Noura AbdAllah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - David R. Busch
- Departments of Anesthesiology and Pain Management, Neurology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
14
|
Yan W, He J, Peng Y, Ma H, Li C. Research on brain functional network property analysis and recognition methods targeting brain fatigue. Sci Rep 2024; 14:22556. [PMID: 39343963 PMCID: PMC11439938 DOI: 10.1038/s41598-024-73919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
At present, researches on brain fatigue recognition are still in the stage of single task and simple brain region network features, while researches on high-order brain functional network features and brain region state mechanisms during fatigue in multi-task scenarios are still insufficient, making it difficult to meet the needs of fatigue recognition under complex conditions. Therefore, this study utilized functional near-infrared spectroscopy (fNIRS) technology to explore the correlation and differences in the low-order and high-order brain functional network attributes of three task induced mental fatigue, and to explore the brain regions that have a major impact on mental fatigue. Self-training algorithms were used to identify the three levels of brain fatigue. The results showed that during the fatigue development, the overall connection strength of the endothelial cell metabolic activity and neural activity frequency bands of the low-order brain functional network first decreased and then increased, while the myogenic activity and heart rate activity frequency bands showed the opposite pattern. Network topology analysis indicated that from no fatigue to mild fatigue, the clustering coefficient of endothelial cell metabolic activity and myogenic activity frequency bands significantly decreased, while the characteristic path length of myogenic activity significantly increased; when experiencing severe fatigue, the small-world attribute of the neural frequency band significantly weakened. However, each frequency band maintained its small-world attribute, reflecting the self-optimization and adaptability of the network during the fatigue process. During mild fatigue, neuronal activity bands' node degree, cluster coefficient, and efficiency rose in high-order brain networks, while low-order networks showed no significant changes. As fatigue progressed, the myogenic activity bands of high-order network properties dominated, but neural bands gained prominence in mild fatigue, approaching the level of myogenic bands in severe fatigue, indicating that brain fatigue orchestrated a shift from myogenic to neural dominance in frequency bands. In addition, during the process of fatigue, the four network attributes of the high-order network cluster composed of low-order nodes related to the prefrontal cortex region, left anterior motor region, motor assist region, and left frontal lobe eye movement region significantly increased, indicating that these brain regions had a significant impact on brain fatigue status. The accuracy of using both high-order and low-order features to identify fatigue levels reached 88.095%, indicating that the combined network features of both high-order and low-order fNIRS signals could effectively detect multi-level mental fatigue, providing innovative ideas for fatigue warning.
Collapse
Affiliation(s)
- Wei Yan
- The Key Laboratory of Robotics System of Jiangsu Province School of Mechanical Electric Engineering, Soochow University, Suzhou, 215000, China
| | - Jiajun He
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300000, China.
| | - Yaoxing Peng
- The Key Laboratory of Robotics System of Jiangsu Province School of Mechanical Electric Engineering, Soochow University, Suzhou, 215000, China
| | - Haozhe Ma
- The Key Laboratory of Robotics System of Jiangsu Province School of Mechanical Electric Engineering, Soochow University, Suzhou, 215000, China
| | - Chunguang Li
- The Key Laboratory of Robotics System of Jiangsu Province School of Mechanical Electric Engineering, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
15
|
Marcinek A, Katarzynska J, Cypryk K, Los-Stegienta A, Slowikowska-Hilczer J, Walczak-Jedrzejowska R, Zielinski J, Gebicki J. Assessment of Microvascular Function Based on Flowmotion Monitored by the Flow-Mediated Skin Fluorescence Technique. BIOSENSORS 2024; 14:459. [PMID: 39451673 PMCID: PMC11505855 DOI: 10.3390/bios14100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
This review summarizes studies dedicated to the assessment of microvascular function based on microcirculatory oscillations monitored by the Flow-Mediated Skin Fluorescence (FMSF) technique. Two approaches are presented. The first approach uses oscillatory parameters measured under normoxic conditions, expressed as flowmotion (FM), vasomotion (VM), and the normoxia oscillatory index (NOI). These parameters have been used for the identification of impaired microcirculatory oscillations associated with intense physical exercise, post-COVID syndrome, psychological stress, and erectile dysfunction. The second approach involves characterization of the microcirculatory response to hypoxia based on the measurement of hypoxia sensitivity (HS). The HS parameter is used to characterize microvascular complications in diabetes, such as diabetic kidney disease and diabetic foot ulcers. Based on research conducted by the authors of this review, the FMSF parameter ranges characterizing microvascular function are presented. The diagnostic approach to assessing microvascular function based on flowmotion monitored by the FMSF technique has a wide range of applications and the potential to be integrated into widespread medical practice.
Collapse
Affiliation(s)
- Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
- Angionica Ltd., 90-924 Lodz, Poland;
| | | | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland (A.L.-S.)
| | - Agnieszka Los-Stegienta
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland (A.L.-S.)
| | - Jolanta Slowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.-H.); (R.W.-J.)
| | - Renata Walczak-Jedrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.-H.); (R.W.-J.)
| | - Jacek Zielinski
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Jerzy Gebicki
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
- Angionica Ltd., 90-924 Lodz, Poland;
| |
Collapse
|
16
|
Astashev ME, Serov DA, Tankanag AV, Knyazeva IV, Dorokhov AA, Simakin AV, Gudkov SV. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. BIOLOGY 2024; 13:685. [PMID: 39336112 PMCID: PMC11428995 DOI: 10.3390/biology13090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The oscillation synchronization analysis in biological systems will expand our knowledge about the response of living systems to changes in environmental conditions. This knowledge can be used in medicine (diagnosis, therapy, monitoring) and agriculture (increasing productivity, resistance to adverse effects). Currently, the search is underway for an informative, accurate and sensitive method for analyzing the synchronization of oscillatory processes in cell biology. It is especially pronounced in analyzing the concentration oscillations of intracellular signaling molecules in electrically nonexcitable cells. The bispectral analysis method could be applied to assess the characteristics of synchronized oscillations of intracellular mediators. We chose endothelial cells from mouse microvessels as model cells. Concentrations of well-studied calcium and nitric oxide (NO) were selected for study in control conditions and well-described stress: heating to 40 °C and hyperglycemia. The bispectral analysis allows us to accurately evaluate the proportion of synchronized cells, their synchronization degree, and the amplitude and frequency of synchronized calcium and NO oscillations. Heating to 40 °C increased cell synchronization for calcium but decreased for NO oscillations. Hyperglycemia abolished this effect. Heating to 40 °C changed the frequencies and increased the amplitudes of synchronized oscillations of calcium concentration and the NO synthesis rate. The first part of this paper describes the principles of the bispectral analysis method and equations and modifications of the method we propose. In the second part of this paper, specific examples of the application of bispectral analysis to assess the synchronization of living cells in vitro are presented. The discussion compares the capabilities of bispectral analysis with other analytical methods in this field.
Collapse
Affiliation(s)
- Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Arina V Tankanag
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Inna V Knyazeva
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Artem A Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
17
|
Hultman M, Richter F, Larsson M, Strömberg T, Iredahl F, Fredriksson I. Robust analysis of microcirculatory flowmotion during post-occlusive reactive hyperemia. Microvasc Res 2024; 155:104715. [PMID: 39004173 DOI: 10.1016/j.mvr.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Flowmotion analysis of the microcirculatory blood flow is a method to extract information about the vessel regulatory function. It has previously shown promise when applied to measurements during a post-occlusive reactive hyperemia. However, the reperfusion peak and the following monotonic decline introduces false low frequencies that should not be interpreted as rhythmic vasomotion effect. AIM To develop and validate a robust method for flowmotion analysis of post-occlusive reactive hyperemia signals. METHOD The occlusion-induced reperfusion response contains a typical rapid increase followed by a monotonic decline to baseline. A mathematical model is proposed to detrend this transient part of the signal to enable further flowmotion analysis. The model is validated in 96 measurements on healthy volunteers. RESULTS Applying the proposed model corrects the flowmotion signal without adding any substantial new false flowmotion components. CONCLUSION Future studies should use the proposed method or equivalent when analyzing flowmotion during post-occlusive reactive hyperemia to ensure valid results.
Collapse
Affiliation(s)
- Martin Hultman
- Department of Biomedical Engineering, Linköping University, Sweden; Perimed AB, Datavägen 9A, Järfälla, Stockholm, Sweden.
| | - Freya Richter
- Primary Health Care Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Marcus Larsson
- Department of Biomedical Engineering, Linköping University, Sweden
| | - Tomas Strömberg
- Department of Biomedical Engineering, Linköping University, Sweden
| | - Fredrik Iredahl
- Primary Health Care Center, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ingemar Fredriksson
- Department of Biomedical Engineering, Linköping University, Sweden; Perimed AB, Datavägen 9A, Järfälla, Stockholm, Sweden
| |
Collapse
|
18
|
Barnes SJK, Bjerkan J, Clemson PT, Newman J, Stefanovska A. Phase coherence-A time-localized approach to studying interactions. CHAOS (WOODBURY, N.Y.) 2024; 34:073155. [PMID: 39052926 DOI: 10.1063/5.0202865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Coherence measures the similarity of progression of phases between oscillations or waves. When applied to multi-scale, nonstationary dynamics with time-varying amplitudes and frequencies, high values of coherence provide a useful indication of interactions, which might otherwise go unnoticed. However, the choice of analyzing coherence based on phases and amplitudes (amplitude-weighted phase coherence) vs only phases (phase coherence) has long been seen as arbitrary. Here, we review the concept of coherence and focus on time-localized methods of analysis, considering both phase coherence and amplitude-weighted phase coherence. We discuss the importance of using time-localized analysis and illustrate the methods and their practicalities on both numerically modeled and real time-series. The results show that phase coherence is more robust than amplitude-weighted phase coherence to both noise perturbations and movement artifacts. The results also have wider implications for the analysis of real data and the interpretation of physical systems.
Collapse
Affiliation(s)
- S J K Barnes
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - J Bjerkan
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - P T Clemson
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - J Newman
- Department of Mathematics and Statistics, University of Exeter, Exeter, United Kingdom
| | - A Stefanovska
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
19
|
Xu M, Fu S, Wang B, Song X, Li B, Liu X, Li Y, Wang Y, Wang Q, Ling H, Li A, Liu M, Zhang X. Evaluation of Renal Microhemodynamics Heterogeneity in Different Strains and Sexes of Mice. J Transl Med 2024; 104:102087. [PMID: 38797344 DOI: 10.1016/j.labinv.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Addressing the existing gaps in our understanding of sex- and strain-dependent disparities in renal microhemodynamics, this study conducted an investigation into the variations in renal function and related biological oscillators. Using the genetically diverse mouse models BALB/c, C57BL/6, and Kunming, which serve as established proxies for the study of renal pathophysiology, we implemented laser Doppler flowmetry conjoined with wavelet transform analyses to interrogate dynamic renal microcirculation. Creatinine, urea, uric acid, glucose, and cystatin C levels were quantified to investigate potential divergences attributable to sex and genetic lineage. Our findings reveal marked sexual dimorphism in metabolite concentrations, as well as strain-specific variances, particularly in creatinine and cystatin C levels. Through the combination of Mantel tests and Pearson correlation coefficients, we delineated the associations between renal functional metrics and microhemodynamics, uncovering interactions in female BALB/c mice for creatinine and uric acid, and in male C57BL/6 mice for cystatin C. Histopathologic examination confirmed an augmented microvascular density in female mice and elucidating variations in the expression of estrogen receptor β among the strains. These data collectively highlight the influence of both sex and genetic constitution on renal microcirculation, providing an understanding that may inform the etiologic exploration of renal ailments.
Collapse
Affiliation(s)
- Mengting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sunjing Fu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohong Song
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingyu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Science, Beijing, China.
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China.
| |
Collapse
|
20
|
Bjerkan J, Kobal J, Lancaster G, Šešok S, Meglič B, McClintock PVE, Budohoski KP, Kirkpatrick PJ, Stefanovska A. The phase coherence of the neurovascular unit is reduced in Huntington's disease. Brain Commun 2024; 6:fcae166. [PMID: 38938620 PMCID: PMC11210076 DOI: 10.1093/braincomms/fcae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jan Kobal
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Gemma Lancaster
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Sanja Šešok
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Bernard Meglič
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | | | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
21
|
Lima NS, Tzen Y, Clifford PS. Spectral changes in skin blood flow during pressure manipulations or sympathetic stimulation. Exp Physiol 2024; 109:892-898. [PMID: 38642069 PMCID: PMC11140173 DOI: 10.1113/ep091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Skin blood flow is commonly determined by laser Doppler flowmetry (LDF). It has been suggested that pathophysiological conditions can be assessed by analysis of specific frequency domains of the LDF signals. We tested whether physiological stimuli that activate myogenic and neurogenic mechanisms would affect relevant portions of the laser Doppler spectrum. LDF sensors were placed on the right forearm of 14 healthy volunteers for myogenic (six females) and 13 for neurogenic challenge (five females). Myogenic responses were tested by positioning the arm ∼50° above/below heart level. Neurogenic responses were tested by immersing the left hand into an ice slurry with and without topical application of local anaesthetic. Short-time Fourier analyses were computed over the range of 0.06 to 0.15 Hz for myogenic and 0.02 to 0.06 Hz for neurogenic. No significant differences in spectral density were observed (P = 0.40) in the myogenic range with arm above (7 ± 54 × 10-4 dB) and below heart (7 ± 14 × 10-4 dB). Neurogenic spectral density showed no significant increase from baseline to cold pressor test (0.0017 ± 0.0013 and 0.0038 ± 0.0039 dB; P = 0.087, effect size 0.47). After application of anaesthetic, neurogenic spectral density was unchanged between the baseline and cold pressor test (0.0014 ± 0.0025 and 0.0006 ± 0.0005 dB; P = 0.173). These results suggest that changes in the myogenic and neurogenic spectral density of LDF signals did not fully reflect the skin vascular function activated by pressure manipulation and sympathetic stimulation. Therefore, LDF myogenic and neurogenic spectral density data should be interpreted with caution.
Collapse
Affiliation(s)
- Natalia S. Lima
- Integrative Physiology LaboratoryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Yi‐Ting Tzen
- Integrative Physiology LaboratoryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Philip S. Clifford
- Integrative Physiology LaboratoryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
22
|
D'Alesio G, Stumpp LI, Sciarrone P, Navari A, Gentile F, Borrelli C, Ballanti S, Degl'Innocenti E, Carrasco A, Costa AC, Andrade A, Mannini A, Macefield VG, Emdin M, Passino C, Mazzoni A, Giannoni A, Oddo CM. An open computational toolbox to analyze multi- and single-unit sympathetic nerve activity in microneurography. BIOPHYSICS REVIEWS 2024; 5:021401. [PMID: 38895135 PMCID: PMC11184970 DOI: 10.1063/5.0202385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Microelectrode recordings from human peripheral and cranial nerves provide a means to study both afferent and efferent axonal signals at different levels of detail, from multi- to single-unit activity. Their analysis can lead to advancements both in diagnostic and in the understanding of the genesis of neural disorders. However, most of the existing computational toolboxes for the analysis of microneurographic recordings are limited in scope or not open-source. Additionally, conventional burst-based metrics are not suited to analyze pathological conditions and are highly sensitive to distance of the microelectrode tip from the active axons. To address these challenges, we developed an open-source toolbox that offers advanced analysis capabilities for studying neuronal reflexes and physiological responses to peripheral nerve activity. Our toolbox leverages the observation of temporal sequences of action potentials within inherently cyclic signals, introducing innovative methods and indices to enhance analysis accuracy. Importantly, we have designed our computational toolbox to be accessible to novices in biomedical signal processing. This may include researchers and professionals in healthcare domains, such as clinical medicine, life sciences, and related fields. By prioritizing user-friendliness, our software application serves as a valuable resource for the scientific community, allowing to extract advanced metrics of neural activity in short time and evaluate their impact on other physiological variables in a consistent and standardized manner, with the final aim to widen the use of microneurography among researchers and clinicians.
Collapse
Affiliation(s)
- Giacomo D'Alesio
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Alessandro Navari
- Cardiovascular Medicine Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Chiara Borrelli
- Medical Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Sara Ballanti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | - Alexandre Andrade
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Andrea Mannini
- Artificial Intelligence for Rehabilitation Laboratory, Fondazione Don Carlo Gnocchi IRCCS, Florence, Italy
| | | | | | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | |
Collapse
|
23
|
Huang SJY, Wang X, Halvorson BD, Bao Y, Frisbee SJ, Frisbee JC, Goldman D. Laser Doppler Fluximetry in Cutaneous Vasculature: Methods for Data Analyses. J Vasc Res 2024; 61:197-211. [PMID: 38749406 DOI: 10.1159/000538718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. METHODS This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. CONCLUSION It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.
Collapse
Affiliation(s)
- Sophie J Y Huang
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xuan Wang
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brayden D Halvorson
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Yuki Bao
- Biomedical Engineering, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Jefferson C Frisbee
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Biomedical Engineering, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Skytioti M, Wiedmann M, Sorteberg A, Romundstad L, Hassan Ali Y, Mohammad Ayoubi A, Zilakos I, Elstad M. Dynamic cerebral autoregulation is preserved during orthostasis and intrathoracic pressure regulation in healthy subjects: A pilot study. Physiol Rep 2024; 12:e16027. [PMID: 38684421 PMCID: PMC11058003 DOI: 10.14814/phy2.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Resistance breathing may restore cardiac output (CO) and cerebral blood flow (CBF) during hypovolemia. We assessed CBF and cerebral autoregulation (CA) during tilt, resistance breathing, and paced breathing in 10 healthy subjects. Blood velocities in the internal carotid artery (ICA), middle cerebral arteries (MCA, four subjects), and aorta were measured by Doppler ultrasound in 30° and 60° semi-recumbent positions. ICA blood flow and CO were calculated. Arterial blood pressure (ABP, Finometer), and end-tidal CO2 (ETCO2) were recorded. ICA blood flow response was assessed by mixed-models regression analysis. The synchronization index (SI) for the variable pairs ABP-ICA blood velocity, ABP-MCA velocities in 0.005-0.08 Hz frequency interval was calculated as a measure of CA. Passive tilting from 30° to 60° resulted in 12% decrease in CO (p = 0.001); ICA blood flow tended to fall (p = 0.04); Resistance breathing restored CO and ICA blood flow despite a 10% ETCO2 drop. ETCO2 and CO contributed to ICA blood flow variance (adjusted R2: 0.9, p < 0.0001). The median SI was low (<0.2) indicating intact CA, confirmed by surrogate date testing. The peak SI was transiently elevated during resistance breathing in the 60° position. Resistance breathing may transiently reduce CA efficiency. Paced breathing did not restore CO or ICA blood flow.
Collapse
Affiliation(s)
- M. Skytioti
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of AnesthesiologyOslo University HospitalOsloNorway
| | - M. Wiedmann
- Department of NeurosurgeryOslo University HospitalOsloNorway
| | - A. Sorteberg
- Department of NeurosurgeryOslo University HospitalOsloNorway
| | - L. Romundstad
- Department of AnesthesiologyOslo University HospitalOsloNorway
| | - Y. Hassan Ali
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - A. Mohammad Ayoubi
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - M. Elstad
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
25
|
Kralj L, Potočnik N, Lenasi H. Evaluating transient phenomena by wavelet analysis: early recovery to exercise. Am J Physiol Heart Circ Physiol 2024; 326:H96-H102. [PMID: 37921668 PMCID: PMC11213473 DOI: 10.1152/ajpheart.00558.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Wavelet analysis (WA) provides superior time-frequency decomposition of complex signals than conventional spectral analysis tools. To illustrate its usefulness in assessing transient phenomena, we applied a custom-developed WA algorithm to laser-Doppler (LD) signals of the cutaneous microcirculation measured at glabrous (finger pulp) and nonglabrous (forearm) sites during early recovery after dynamic exercise. This phase, importantly contributing to the establishment of thermal homeostasis after exercise cessation, has not been adequately explored because of its complex, transient form. Using WA, we decomposed the LD signals measured during the baseline and early recovery into power spectra of characteristic frequency intervals corresponding to endothelial nitric oxide (NO)-dependent, neurogenic, myogenic, respiratory, and cardiac physiological influence. Assessment of relative power (RP), defined as the ratio between the median power in the frequency interval and the median power of the total spectrum, revealed that endothelial NO-dependent (5.87 early recovery; 1.53 baseline; P = 0.005; Wilcoxon signed-rank test) and respiratory (0.71 early recovery; 0.40 baseline; P = 0.001) components were significantly increased, and myogenic component (1.35 early recovery; 1.83 baseline; P = 0.02) significantly decreased during early recovery in the finger pulp. In the forearm, only the RP of the endothelial NO-dependent (1.90 early recovery; 0.94 baseline; P = 0.009) component was significantly increased. WA presents an irreplaceable tool for the assessment of transient phenomena. The relative contribution of the physiological mechanisms controlling the microcirculatory response in the early recovery phase appears to differ in glabrous and nonglabrous skin when compared with baseline; moreover, the endothelial NO-dependent influence seems to play an important role.NEW & NOTEWORTHY We address the applicability of wavelet analysis (WA) in evaluating transient phenomena on a model of early recovery to exercise, which is the only exercise-associated phase characterized by a distinct transient shape and as such cannot be assessed using conventional tools. Our WA-based algorithm provided a reliable spectral decomposition of laser-Doppler (LD) signals in early recovery, enabling us to speculate roughly on the mechanisms involved in the regulation of skin microcirculation in this phase.
Collapse
Affiliation(s)
- Lana Kralj
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nejka Potočnik
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Noël C, Settembre N. Near-wall hemodynamic parameters of finger arteries altered by hand-transmitted vibration. Comput Biol Med 2024; 168:107709. [PMID: 37992469 DOI: 10.1016/j.compbiomed.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Sustained exposure to high-level hand-transmitted vibrations may result in angioneurotic disorders, which partly originate from vibration-altered hemodynamics in the finger arteries when repeating these disturbances throughout working life. Hence, the aim of this study is to assess the most relevant hemodynamic descriptors in the digital arteries, determine the relationship between the latter and vibration features, and gain better understanding of the physiological mechanisms involved. METHODS An experimental setup, mainly comprised of an ultra-high frequency ultrasound scanner and a vibration shaker, was used to image the digital proper volar arteries of the forefinger. Raw ultrasound data were post-processed by custom-made numerical routines to supply a pulsatile fluid mechanics model for computing the hemodynamic descriptors. Twenty-four healthy volunteers participated in the measurement campaign. Classical statistical methods were then applied to the dataset and also the wavelet transform for calculating the signal power in the frequency bands matching cardiac, respiratory, myogenic and neurogenic activities. RESULTS The artery diameter, the wall shear stress - WSS - and the WSS temporal gradient - WSSTG - were found to be the most relevant descriptors. Vibration-induced WSS was divided by three compared to its basal value whatever the vibration frequency and it was proportional to log2 of the acceleration level. Marked increases in WSSTG when stopping vibration might also lead to adverse health effects. Vibration caused a drop in WSS power for the frequency band associated with the neurogenic activity of the sympathetic nervous system. CONCLUSION This study may pave the way for a new framework to prevent vibration-induced vascular risk.
Collapse
Affiliation(s)
- Christophe Noël
- Electromagnetism, Vibration, Optics laboratory, Institut national de recherche et de sécurité (INRS), Vandœuvre-lès-Nancy, France.
| | - Nicla Settembre
- Department of Vascular Surgery, Nancy University Hospital, University of Lorraine, France.
| |
Collapse
|
27
|
Bergmann T, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Islam A, Stein K, Marquez I, Amenta F, Park K, Ibrahim Y, Zeiler FA. Evaluation of Morlet Wavelet Analysis for Artifact Detection in Low-Frequency Commercial Near-Infrared Spectroscopy Systems. Bioengineering (Basel) 2023; 11:33. [PMID: 38247909 PMCID: PMC11154537 DOI: 10.3390/bioengineering11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Regional cerebral oxygen saturation (rSO2), a method of cerebral tissue oxygenation measurement, is recorded using non-invasive near-infrared Spectroscopy (NIRS) devices. A major limitation is that recorded signals often contain artifacts. Manually removing these artifacts is both resource and time consuming. The objective was to evaluate the applicability of using wavelet analysis as an automated method for simple signal loss artifact clearance of rSO2 signals obtained from commercially available devices. A retrospective observational study using existing populations (healthy control (HC), elective spinal surgery patients (SP), and traumatic brain injury patients (TBI)) was conducted. Arterial blood pressure (ABP) and rSO2 data were collected in all patients. Wavelet analysis was determined to be successful in removing simple signal loss artifacts using wavelet coefficients and coherence to detect signal loss artifacts in rSO2 signals. The removal success rates in HC, SP, and TBI populations were 100%, 99.8%, and 99.7%, respectively (though it had limited precision in determining the exact point in time). Thus, wavelet analysis may prove to be useful in a layered approach NIRS signal artifact tool utilizing higher-frequency data; however, future work is needed.
Collapse
Affiliation(s)
- Tobias Bergmann
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Abrar Islam
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Kevin Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Izzy Marquez
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Fiorella Amenta
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Kevin Park
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Younis Ibrahim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
28
|
Chang HH, Hou KH, Chiang TW, Wang YM, Sun CW. Using Signal Features of Functional Near-Infrared Spectroscopy for Acute Physiological Score Estimation in ECMO Patients. Bioengineering (Basel) 2023; 11:26. [PMID: 38247902 PMCID: PMC10813775 DOI: 10.3390/bioengineering11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a vital emergency procedure providing respiratory and circulatory support to critically ill patients, especially those with compromised cardiopulmonary function. Its use has grown due to technological advances and clinical demand. Prolonged ECMO usage can lead to complications, necessitating the timely assessment of peripheral microcirculation for an accurate physiological evaluation. This study utilizes non-invasive near-infrared spectroscopy (NIRS) to monitor knee-level microcirculation in ECMO patients. After processing oxygenation data, machine learning distinguishes high and low disease severity in the veno-venous (VV-ECMO) and veno-arterial (VA-ECMO) groups, with two clinical parameters enhancing the model performance. Both ECMO modes show promise in the clinical severity diagnosis. The research further explores statistical correlations between the oxygenation data and disease severity in diverse physiological conditions, revealing moderate correlations with the acute physiologic and chronic health evaluation (APACHE II) scores in the VV-ECMO and VA-ECMO groups. NIRS holds the potential for assessing patient condition improvements.
Collapse
Affiliation(s)
- Hsiao-Huang Chang
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Hsiang Hou
- Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan (C.-W.S.)
| | - Ting-Wei Chiang
- Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan (C.-W.S.)
| | - Yi-Min Wang
- Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan (C.-W.S.)
| | - Chia-Wei Sun
- Biomedical Optical Imaging Lab, Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan (C.-W.S.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
29
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
30
|
Serantoni V, Jourdan F, Louche H, Avignon A, Sultan A. Definition of thermal indicators for the study of thermoregulation alterations in the foot of people living within diabetic peripheral neuropathy: A proof of concept. J Therm Biol 2023; 118:103729. [PMID: 37976865 DOI: 10.1016/j.jtherbio.2023.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
AIMS This study investigates how diabetic peripheral neuropathy is linked to impairment of thermoregulatory mechanisms using a thermal camera, spectral thermal analysis and a physical test. METHODS The plantar skin temperature of all participants was measured using a thermal camera following a 6-min walking exercise. The data were subjected to frequency decomposition, resulting in two frequency ranges corresponding to endothelial and neurogenic mechanisms. Then, 40 thermal indicators were evaluated for each participant. ROC curve and statistical tests allowed to identify indicators able to detect the presence or absence of diabetic peripheral neuropathy. RESULTS The study included 33 participants living with diabetes. The results revealed that a 6-min walk exercise increased plantar foot temperature and highlighted a significant difference between people living with diabetes with and without peripheral neuropathy (p < 0.01). The results also revealed the advantages of using thermal images rather than single point measurements. CONCLUSIONS Diabetic peripheral neuropathy is linked to impairment of thermoregulatory mechanisms. This link can be highlighted after a dedicated 6-min walk exercise, enabling to activate these mechanisms, and measuring with a thermal camera the temporal plantar skin temperature. Assessment of this link gave best results by filtering the thermal signal in the neurogenic range.
Collapse
Affiliation(s)
- Vincent Serantoni
- LMGC, Univ. Montpellier, CNRS, Rue St-Priest, 34095, Montpellier, France.
| | - Franck Jourdan
- LMGC, Univ. Montpellier, CNRS, Rue St-Priest, 34095, Montpellier, France
| | - Hervé Louche
- LMGC, Univ. Montpellier, CNRS, Rue St-Priest, 34095, Montpellier, France
| | - Antoine Avignon
- Unit of Nutrition and Diabetes, Department of Endocrinology-Nutrition and Diabetes, Univ. Montpellier, INSERM, CHRU Montpellier, Montpellier, France
| | - Ariane Sultan
- PHYMEDEXP, Univ. Montpellier, INSERM, CNRS UMR, CHRU, Montpellier, Montpellier, France
| |
Collapse
|
31
|
Sissons C, Saeed F, Carter C, Lee K, Kerr K, Shahdadian S, Liu H. Unilateral Mitochondrial-Hemodynamic Coupling and Bilateral Connectivity in the Prefrontal Cortices of Young and Older Healthy Adults. Bioengineering (Basel) 2023; 10:1336. [PMID: 38002460 PMCID: PMC10669330 DOI: 10.3390/bioengineering10111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
A recent study demonstrated that noninvasive measurements of cortical hemodynamics and metabolism in the resting human prefrontal cortex can facilitate quantitative metrics of unilateral mitochondrial-hemodynamic coupling and bilateral connectivity in infraslow oscillation frequencies in young adults. The infraslow oscillation includes three distinct vasomotions with endogenic (E), neurogenic (N), and myogenic (M) frequency bands. The goal of this study was to prove the hypothesis that there are significant differences between young and older adults in the unilateral coupling (uCOP) and bilateral connectivity (bCON) in the prefrontal cortex. Accordingly, we performed measurements from 24 older adults (67.2 ± 5.9 years of age) using the same two-channel broadband near-infrared spectroscopy (bbNIRS) setup and resting-state experimental protocol as those in the recent study. After quantification of uCOP and bCON in three E/N/M frequencies and statistical analysis, we demonstrated that older adults had significantly weaker bilateral hemodynamic connectivity but significantly stronger bilateral metabolic connectivity than young adults in the M band. Furthermore, older adults exhibited significantly stronger unilateral coupling on both prefrontal sides in all E/N/M bands, particularly with a very large effect size in the M band (>1.9). These age-related results clearly support our hypothesis and were well interpreted following neurophysiological principles. The key finding of this paper is that the neurophysiological metrics of uCOP and bCON are highly associated with age and may have the potential to become meaningful features for human brain health and be translatable for future clinical applications, such as the early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Claire Sissons
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Fiza Saeed
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Caroline Carter
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kathy Lee
- School of Social Work, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kristen Kerr
- School of Social Work, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sadra Shahdadian
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
32
|
Amendola C, Buttafava M, Carteano T, Contini L, Cortese L, Durduran T, Frabasile L, Guadagno CN, Karadeinz U, Lacerenza M, Mesquida J, Parsa S, Re R, Sanoja Garcia D, Konugolu Venkata Sekar S, Spinelli L, Torricelli A, Tosi A, Weigel UM, Yaqub MA, Zanoletti M, Contini D. Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies. BIOMEDICAL OPTICS EXPRESS 2023; 14:5994-6015. [PMID: 38021143 PMCID: PMC10659778 DOI: 10.1364/boe.502618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Cortese
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Claudia Nunzia Guadagno
- BioPixS Ltd – Biophotonics Standards, IPIC, Tyndall National Institute, Lee Maltings Complex, Cork, Ireland
| | - Umut Karadeinz
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Jaume Mesquida
- Critical Care Department, Parc Taulí Hospital Universitari. Institut D’Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels, (Barcelona), Spain
| | - M. Atif Yaqub
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| |
Collapse
|
33
|
Zherebtsov EA, Zharkikh EV, Loktionova YI, Zherebtsova AI, Sidorov VV, Rafailov EU, Dunaev AV. Wireless Dynamic Light Scattering Sensors Detect Microvascular Changes Associated With Ageing and Diabetes. IEEE Trans Biomed Eng 2023; 70:3073-3081. [PMID: 37171930 DOI: 10.1109/tbme.2023.3275654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This article presents clinical results of wireless portable dynamic light scattering sensors that implement laser Doppler flowmetry signal processing. It has been verified that the technology can detect microvascular changes associated with diabetes and ageing in volunteers. Studies were conducted primarily on wrist skin. Wavelet continuous spectrum calculation was used to analyse the obtained time series of blood perfusion recordings with respect to the main physiological frequency ranges of vasomotions. In patients with type 2 diabetes, the area under the continuous wavelet spectrum in the endothelial, neurogenic, myogenic, and cardio frequency ranges showed significant diagnostic value for the identification of microvascular changes. Aside from spectral analysis, autocorrelation parameters were also calculated for microcirculatory blood flow oscillations. The groups of elderly volunteers and patients with type 2 diabetes, in comparison with the control group of younger healthy volunteers, showed a statistically significant decrease of the normalised autocorrelation function in time scales up to 10 s. A set of identified parameters was used to test machine learning algorithms to classify the studied groups of young controls, elderly controls, and diabetic patients. Our conclusion describes and discusses the classification metrics that were found to be most effective.
Collapse
|
34
|
Park JY, Choi G, Lee K. Pressure stimulus study on acupuncture points with multi-channel multimode-fiber diffuse speckle contrast analysis (MMF-DSCA). BIOMEDICAL OPTICS EXPRESS 2023; 14:5602-5614. [PMID: 38021125 PMCID: PMC10659788 DOI: 10.1364/boe.502447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
A multi-channel multimode-fiber deep tissue flowmetry system has been constructed based on diffuse speckle contrast analysis (DSCA) for simultaneous blood flow measurements at different locations on the human body. This system has been utilized in an acupuncture study within the field of traditional Chinese medicine (TCM), primarily focusing on acupuncture points along the large intestine meridian. Deep tissue blood flow was monitored at four different acupuncture points (LI1, LI5, LI10, and ST25) with a sampling rate of 60 Hz while applying pressure stimulus on LI4 (hegu or hapgok). Although the blood flow index (BFI) and blood volume (BV) did not exhibit significant changes after the pressure stimulus, an increase in the amplitude and complexity of low-frequency oscillations (LFOs) in microcirculation was observed.
Collapse
Affiliation(s)
- Jae Yoon Park
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Gisoon Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kijoon Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
35
|
Lukarski D, Petkoski S, Ji P, Stankovski T. Delta-alpha cross-frequency coupling for different brain regions. CHAOS (WOODBURY, N.Y.) 2023; 33:103126. [PMID: 37844293 DOI: 10.1063/5.0157979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Neural interactions occur on different levels and scales. It is of particular importance to understand how they are distributed among different neuroanatomical and physiological relevant brain regions. We investigated neural cross-frequency couplings between different brain regions according to the Desikan-Killiany brain parcellation. The adaptive dynamic Bayesian inference method was applied to EEG measurements of healthy resting subjects in order to reconstruct the coupling functions. It was found that even after averaging over all subjects, the mean coupling function showed a characteristic waveform, confirming the direct influence of the delta-phase on the alpha-phase dynamics in certain brain regions and that the shape of the coupling function changes for different regions. While the averaged coupling function within a region was of similar form, the region-averaged coupling function was averaged out, which implies that there is a common dependence within separate regions across the subjects. It was also found that for certain regions the influence of delta on alpha oscillations is more pronounced and that oscillations that influence other are more evenly distributed across brain regions than the influenced oscillations. When presenting the information on brain lobes, it was shown that the influence of delta emanating from the brain as a whole is greatest on the alpha oscillations of the cingulate frontal lobe, and at the same time the influence of delta from the cingulate parietal brain lobe is greatest on the alpha oscillations of the whole brain.
Collapse
Affiliation(s)
- Dushko Lukarski
- Faculty of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
- University Clinic for Radiotherapy and Oncology, 1000 Skopje, Macedonia
| | - Spase Petkoski
- Aix Marseille Univ, INSERM, Inst Neurosci Syst (INS), 13005 Marseille, France
| | - Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433 Shanghai, China
| | - Tomislav Stankovski
- Faculty of Medicine, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
- Department of Physics, Lancaster University, LA1 4YB Lancaster, United Kingdom
| |
Collapse
|
36
|
Ma H, Li C, Zhu Y, Peng Y, Sun L. Gait parameter fitting and adaptive enhancement based on cerebral blood oxygen information. Front Hum Neurosci 2023; 17:1205858. [PMID: 37554408 PMCID: PMC10405458 DOI: 10.3389/fnhum.2023.1205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Accurate recognition of patients' movement intentions and real-time adjustments are crucial in rehabilitation exoskeleton robots. However, some patients are unable to utilize electromyography (EMG) signals for this purpose due to poor or missing signals in their lower limbs. In order to address this issue, we propose a novel method that fits gait parameters using cerebral blood oxygen signals. Two types of walking experiments were conducted to collect brain blood oxygen signals and gait parameters from volunteers. Time domain, frequency domain, and spatial domain features were extracted from brain hemoglobin. The AutoEncoder-Decoder method is used for feature dimension reduction. A regression model based on the long short-term memory (LSTM) model was established to fit the gait parameters and perform incremental learning for new individual data. Cross-validation was performed on the model to enhance individual adaptivity and reduce the need for individual pre-training. The coefficient of determination (R2) for the gait parameter fit was 71.544%, with a mean square error (RMSE) of less than 3.321%. Following adaptive enhancement, the coefficient of R2 increased by 6.985%, while the RMSE decreased by 0.303%. These preliminary results indicate the feasibility of fitting gait parameters using cerebral blood oxygen information. Our research offers a new perspective on assisted locomotion control for patients who lack effective myoelectricity, thereby expanding the clinical application of rehabilitation exoskeleton robots. This work establishes a foundation for promoting the application of Brain-Computer Interface (BCI) technology in the field of sports rehabilitation.
Collapse
Affiliation(s)
| | - Chunguang Li
- Key Laboratory of Robotics and System of Jiangsu, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
37
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
38
|
Lin YJ, Lee CC, Huang TW, Hsu WC, Wu LW, Lin CC, Hsiu H. Using Arterial Pulse and Laser Doppler Analyses to Discriminate between the Cardiovascular Effects of Different Running Levels. SENSORS (BASEL, SWITZERLAND) 2023; 23:3855. [PMID: 37112196 PMCID: PMC10142346 DOI: 10.3390/s23083855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIMS Running can induce advantageous cardiovascular effects such as improved arterial stiffness and blood-supply perfusion. However, the differences between the vascular and blood-flow perfusion conditions under different levels of endurance-running performance remains unclear. The present study aimed to assess the vascular and blood-flow perfusion conditions among 3 groups (44 male volunteers) according to the time taken to run 3 km: Level 1, Level 2, and Level 3. METHODS The radial blood pressure waveform (BPW), finger photoplethygraphy (PPG), and skin-surface laser-Doppler flowmetry (LDF) signals of the subjects were measured. Frequency-domain analysis was applied to BPW and PPG signals; time- and frequency-domain analyses were applied to LDF signals. RESULTS Pulse waveform and LDF indices differed significantly among the three groups. These could be used to evaluate the advantageous cardiovascular effects provided by long-term endurance-running training, such as vessel relaxation (pulse waveform indices), improvement in blood supply perfusion (LDF indices), and changes in cardiovascular regulation activities (pulse and LDF variability indices). Using the relative changes in pulse-effect indices, we achieved almost perfect discrimination between Level 3 and Level 2 (AUC = 0.878). Furthermore, the present pulse waveform analysis could also be used to discriminate between the Level-1 and Level-2 groups. CONCLUSIONS The present findings contribute to the development of a noninvasive, easy-to-use, and objective evaluation technique for the cardiovascular benefits of prolonged endurance-running training.
Collapse
Affiliation(s)
- Yi-Jia Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chia-Chien Lee
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tzu-Wei Huang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Chun Hsu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Li-Wei Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Health Management Center, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chen-Chun Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- College of Applied Science, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
39
|
Tang Y, Xu F, Lei P, Li G, Tan Z. Spectral analysis of laser speckle contrast imaging and infrared thermography to assess skin microvascular reactive hyperemia. Skin Res Technol 2023; 29:e13308. [PMID: 37113098 PMCID: PMC10234160 DOI: 10.1111/srt.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/25/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Post-occlusive reactive hyperemia (PORH) test with signal spectral analysis coupled provides potential indicators for the assessment of microvascular functions. OBJECTIVE The objective of this study is to investigate the variations of skin blood flow and temperature spectra in the PORH test. Furthermore, to quantify the oscillation amplitude response to occlusion within different frequency ranges. MATERIALS AND METHODS Ten healthy volunteers participated in the PORH test and their hand skin temperature and blood flow images were captured by infrared thermography (IRT) and laser speckle contrast imaging (LSCI) system, respectively. Extracted signals from selected areas were then transformed into the time-frequency space by continuous wavelet transform for cross-correlation analysis and oscillation amplitude response comparisons. RESULTS The LSCI and IRT signals extracted from fingertips showed stronger hyperemia response and larger oscillation amplitude compared with other areas, and their spectral cross-correlations decreased with frequency. According to statistical analysis, their oscillation amplitudes in the PORH stage were obviously larger than the baseline stage within endothelial, neurogenic, and myogenic frequency ranges (p < 0.05), and their quantitative indicators of oscillation amplitude response had high linear correlations within endothelial and neurogenic frequency ranges. CONCLUSION Comparisons of IRT and LSCI techniques in recording the reaction to the PORH test were made in both temporal and spectral domains. The larger oscillation amplitudes suggested enhanced endothelial, neurogenic, and myogenic activities in the PORH test. We hope this study is also significant for investigations of response to the PORH test by other non-invasive techniques.
Collapse
Affiliation(s)
- Yuanliang Tang
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Fei Xu
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Peng Lei
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Guixiang Li
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| | - Zhongwei Tan
- Institute of Biological and Medical EngineeringGuangdong Academy of SciencesGuangzhouChina
- National Engineering Research Center for Healthcare DevicesGuangzhouChina
| |
Collapse
|
40
|
Cerebral blood flow response to cardiorespiratory oscillations in healthy humans. Auton Neurosci 2023; 245:103069. [PMID: 36584666 DOI: 10.1016/j.autneu.2022.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Dynamic cerebral autoregulation (CA) characterizes the cerebral blood flow (CBF) response to abrupt changes in arterial blood pressure (ABP). CA operates at frequencies below 0.15 Hz. ABP regulation and probably CA are modified by autonomic nervous activity. We investigated the CBF response and CA dynamics to mild increase in sympathetic activity. Twelve healthy volunteers underwent oscillatory lower body negative pressure (oLBNP), which induced respiratory-related ABP oscillations at an average of 0.22 Hz. We recorded blood velocity in the internal carotid artery (ICA) by Doppler ultrasound and ABP. We quantified variability and peak wavelet power of ABP and ICA blood velocity by wavelet analysis at low frequency (LF, 0.05-0.15 Hz) and Mayer waves (0.08-0.12 Hz), respectively. CA was quantified by calculation of the wavelet synchronization gamma index for the pair ABP-ICA blood velocity in the LF and Mayer wave band. oLBNP increased ABP peak wavelet power at the Mayer wave frequency. At the Mayer wave, ABP peak wavelet power increased by >70 % from rest to oLBNP (p < 0.05), while ICA blood flow velocity peak wavelet power was unchanged, and gamma index increased (from 0.49 to 0.69, p < 0.05). At LF, variability in both ABP and ICA blood velocity and gamma index were unchanged from rest to oLBNP. Despite an increased gamma index at Mayer wave, ICA blood flow variability was unchanged during increased ABP variability. The increased synchronization during oLBNP did not cause less stable CBF or less active CA. Sympathetic activation seems to improve the mechanisms of CA.
Collapse
|
41
|
Zharkikh EV, Loktionova YI, Fedorovich AA, Gorshkov AY, Dunaev AV. Assessment of Blood Microcirculation Changes after COVID-19 Using Wearable Laser Doppler Flowmetry. Diagnostics (Basel) 2023; 13:920. [PMID: 36900064 PMCID: PMC10000665 DOI: 10.3390/diagnostics13050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The present work is focused on the study of changes in microcirculation parameters in patients who have undergone COVID-19 by means of wearable laser Doppler flowmetry (LDF) devices. The microcirculatory system is known to play a key role in the pathogenesis of COVID-19, and its disorders manifest themselves long after the patient has recovered. In the present work, microcirculatory changes were studied in dynamics on one patient for 10 days before his disease and 26 days after his recovery, and data from the group of patients undergoing rehabilitation after COVID-19 were compared with the data from a control group. A system consisting of several wearable laser Doppler flowmetry analysers was used for the studies. The patients were found to have reduced cutaneous perfusion and changes in the amplitude-frequency pattern of the LDF signal. The obtained data confirm that microcirculatory bed dysfunction is present in patients for a long period after the recovery from COVID-19.
Collapse
Affiliation(s)
- Elena V. Zharkikh
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
| | - Yulia I. Loktionova
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
| | - Andrey A. Fedorovich
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Petroverigsky 10, Moscow 101990, Russia
| | - Alexander Y. Gorshkov
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Petroverigsky 10, Moscow 101990, Russia
| | - Andrey V. Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, Komsomolskaya 95, Orel 302026, Russia
| |
Collapse
|
42
|
Flowmotion imaging analysis of spatiotemporal variations in skin microcirculatory perfusion. Microvasc Res 2023; 146:104456. [PMID: 36403668 DOI: 10.1016/j.mvr.2022.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
|
43
|
Huo C, Xu G, Sun A, Xie H, Hu X, Li W, Li Z, Fan Y. Cortical response induced by task-oriented training of the upper limb in subacute stroke patients as assessed by functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200228. [PMID: 36222197 DOI: 10.1002/jbio.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Despite the popularity of task-oriented training for stroke, the cortical reorganization associated with this type of therapy remains to be fully elucidated due to the lack of dynamic assessment tools. A good tolerance for motion artifacts makes functional near-infrared spectroscopy (fNIRS) suitable for investigating task-induced cortical responses in stroke patients. Here, patients were randomly assigned to receive task oriented (n = 25) or cyclic rotary training (n = 25) with simultaneous cortical activation and effective connectivity network analysis between prefrontal and motor cortices (PFC/MC). Compared with cyclic rotary training, task-oriented training induced significantly increased activation in both hemispheres and enhanced influence of PFC on MC. In addition, significantly decreased activation lateralization and increased betweenness centrality of the contralesional MC suggested widespread involvement of the contralesional hemisphere during task-oriented training. This study verifies the feasibility of fNIRS combined with motor paradigms for assessing neural responses associated with stroke rehabilitation in real time.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Aiping Sun
- Department of Neurological Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Wenhao Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
44
|
Hultman M, Larsson M, Strömberg T, Fredriksson I. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036007. [PMID: 36950019 PMCID: PMC10027009 DOI: 10.1117/1.jbo.28.3.036007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler shifts, and the speed-distribution of blood. It has been demonstrated how to account for these effects in laser Doppler flowmetry (LDF) using inverse Monte Carlo (MC) algorithms. This allows for a speed-resolved perfusion measure in absolute units %RBC × mm/s, improving the physiological interpretation of the data. Until now, this has been limited to a single-point LDF technique but recent advances in multi-exposure LSCI (MELSCI) enable the analysis in an imaging modality. AIM To present a method for speed-resolved perfusion imaging in absolute units %RBC × mm/s, computed from multi-exposure speckle contrast images. APPROACH An artificial neural network (ANN) was trained on a large simulated dataset of multi-exposure contrast values and corresponding speed-resolved perfusion. The dataset was generated using MC simulations of photon transport in randomized skin models covering a wide range of physiologically relevant geometrical and optical tissue properties. The ANN was evaluated on in vivo data sets captured during an occlusion provocation. RESULTS Speed-resolved perfusion was estimated in the three speed intervals 0 to 1 mm / s , 1 to 10 mm / s , and > 10 mm / s , with relative errors 9.8%, 12%, and 19%, respectively. The perfusion had a linear response to changes in both blood tissue fraction and blood flow speed and was less affected by tissue properties compared with single-exposure LSCI. The image quality was subjectively higher compared with LSCI, revealing previously unseen macro- and microvascular structures. CONCLUSIONS The ANN, trained on modeled data, calculates speed-resolved perfusion in absolute units from multi-exposure speckle contrast. This method facilitates the physiological interpretation of measurements using MELSCI and may increase the clinical impact of the technique.
Collapse
Affiliation(s)
- Martin Hultman
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
- Address all correspondence to Martin Hultman,
| | - Marcus Larsson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Tomas Strömberg
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Ingemar Fredriksson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
| |
Collapse
|
45
|
Non-Invasive Assessment of Vascular Circulation Based on Flow Mediated Skin Fluorescence (FMSF). BIOLOGY 2023; 12:biology12030385. [PMID: 36979077 PMCID: PMC10044925 DOI: 10.3390/biology12030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Flow Mediated Skin Fluorescence (FMSF) is a new non-invasive method for assessing vascular circulation and/or metabolic regulation. It enables assessment of both vasoconstriction and vasodilation. The method measures stimulation of the circulation in response to post-occlusive reactive hyperemia (PORH). It analyzes the dynamical changes in the emission of NADH fluorescence from skin tissue, providing the information on mitochondrial metabolic status and intracellular oxygen delivery through the circulatory system. Assessment of the vascular state using the FMSF technique is based on three parameters: reactive hyperemia response (RHR), hypoxia sensitivity (HS), and normoxia oscillatory index (NOI). The RHR and HS parameters determine the risk of vascular circulatory disorders and are the main diagnostic parameters. The NOI parameter is an auxiliary parameter for evaluating the state of microcirculation under stress of various origins (e.g., emotional stress, physical exhaustion, or post-infection stress). The clinical data show that the risk of vascular complications is limited among people whose RHR, log(HS), and NOI parameters are not significantly below the mean values determined by the FMSF technique, especially if they simultaneously meet the conditions RHR > 30% and log(HS) > 1.5 (HS > 30), and NOI > 60%.
Collapse
|
46
|
Correlation analysis of the temporal dynamics of subcutaneous blood perfusion and skin temperature in post-occlusion reactive hyperaemia test. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Kralj L, Lenasi H. Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations. Front Physiol 2023; 13:1076445. [PMID: 36741808 PMCID: PMC9895103 DOI: 10.3389/fphys.2022.1076445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Laser Doppler flowmetry (LDF) has long been considered a gold standard for non-invasive assessment of skin microvascular function. Due to the laser Doppler (LD) microcirculatory signal's complex biological and physiological context, using spectral analysis is advisable to extract as many of the signal's properties as feasible. Spectral analysis can be performed using either a classical Fourier transform (FT) technique, which has the disadvantage of not being able to localize a signal in time, or wavelet analysis (WA), which provides both the time and frequency localization of the inspected signal. So far, WA of LD microcirculatory signals has revealed five characteristic frequency intervals, ranging from 0.005 to 2 Hz, each of which being related to a specific physiological influence modulating skin microcirculatory response, providing for a more thorough analysis of the signals measured in healthy and diseased individuals. Even though WA is a valuable tool for analyzing and evaluating LDF-measured microcirculatory signals, limitations remain, resulting in a lack of analytical standardization. As a more accurate assessment of human skin microcirculation may better enhance the prognosis of diseases marked by microvascular dysfunction, searching for improvements to the WA method is crucial from the clinical point of view. Accordingly, we have summarized and discussed WA application and its limitations when evaluating LD microcirculatory signals, and presented insight into possible future improvements. We adopted a novel strategy when presenting the findings of recent studies using WA by focusing on frequency intervals to contrast the findings of the various studies undertaken thus far and highlight their disparities.
Collapse
Affiliation(s)
- Lana Kralj
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Helena Lenasi,
| |
Collapse
|
48
|
Tikhonova IV, Tankanag AV, Guseva IE, Grinevich AA. Analysis of interactions between cardiovascular oscillations for discrimination of early vascular disorders in arterial hypertension and type 2 diabetes. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Zherebtsov E, Kozlov I, Dremin V, Bykov A, Dunaev A, Meglinski I. Diagnosis of Skin Vascular Complications Revealed by Time-Frequency Analysis and Laser Doppler Spectrum Decomposition. IEEE Trans Biomed Eng 2023; 70:3-14. [PMID: 35679373 DOI: 10.1109/tbme.2022.3181126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nowadays, photonics-based techniques are used extensively in various applications, including functional clinical diagnosis, progress monitoring in treatment, and provision of metrological control. In fact, in the frame of practical implementation of optical methods, such as laser Doppler flowmetry (LDF), the qualitative interpretation and quantitative assessment of the detected signal remains vital and urgently required. In the conventional LDF approach, the key measured parameters, index of microcirculation and perfusion rate, are proportional to an averaged concentration of red blood cells (RBC) and their average velocity within a diagnostic volume. These quantities compose mixed signals from different vascular beds with a range of blood flow velocities and are typically expressed in relative units. In the current paper we introduce a new signal processing approach for the decomposition of LDF power spectra in terms of ranging blood flow distribution by frequency series. The developed approach was validated in standard occlusion tests conducted on healthy volunteers, and applied to investigate the influence of local pressure rendered by a probe on the surface of the skin. Finally, in limited clinical trials, we demonstrate that the approach can significantly improve the diagnostic accuracy of detection of microvascular changes in the skin of the feet in patients with Diabetes Mellitus type 2, as well as age-specific changes. The results obtained show that the developed approach of LDF signal decomposition provides essential new information about blood flow and blood microcirculation and has great potential in the diagnosis of vascular complications associated with various diseases.
Collapse
|
50
|
Deng Y, Ohgami N, Kagawa T, Kurniasari F, Chen D, Kato M, Tazaki A, Aoki M, Katsuta H, Tong K, Gu Y, Kato M. Vascular endothelium as a target tissue for short-term exposure to low-frequency noise that increases cutaneous blood flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158828. [PMID: 36191705 DOI: 10.1016/j.scitotenv.2022.158828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harmful health effects of exposure to low-frequency noise (LFN) defined as noise with frequencies at ≤100 Hz on the circulatory system have been a concern. However, there has been no study on the effects of exposure to LFN on the circulatory system with consideration of its frequencies and decibels. In this study, the effects of short-term exposure to broad-band LFNs and their pure-tone components (pure-tone LFNs) on cutaneous blood flow in the extremities including the hands were investigated. In our fieldwork study, we first sampled some kinds of common broad-band LFNs. Our human study then showed that broad-band LFN with a narrower frequency range more strongly increased cutaneous blood flow than did broad-band LFN with a wider frequency range. Pure-tone LFNs of 70-100 Hz at ≤85 dB(Z), but not pure-tone LFNs exceeding 100 Hz, further increased levels of cutaneous blood flow. Our wavelet-transform spectrum analysis of cutaneous blood flow next revealed that the nitric oxide (NO)-dependent and -independent vascular activities of the vascular endothelium were specifically increased by exposure to pure-tone LFN. Our animal study again indicated that exposure to pure-tone LFN increased cutaneous blood flow in mice with impairments of bilateral inner ears as well as cutaneous blood flow in control mice, suggesting a limited effect of inner ear function on the LFN-mediated increase in cutaneous blood flow. The NO-dependent suppressive effect of pure-tone LFN on cutaneous blood flow was confirmed by inhibition of vascular endothelial activity through intravenous injection of an NO inhibitor in wild-type mice. Taken together, the results of this study demonstrated that the vascular endothelium is a target tissue of LFN and that NO is an effector of the LFN-mediated increase in cutaneous blood flow. Since improvement of peripheral circulation could generally promote human health, short-term exposure to LFN may be beneficial for health.
Collapse
Affiliation(s)
- Yuqi Deng
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | - Takumi Kagawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Fitri Kurniasari
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Dijie Chen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masashi Kato
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masayo Aoki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hiroki Katsuta
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Keming Tong
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yishuo Gu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|