1
|
Pan T, Luo D. Data-driven gated positron emission tomography/computed tomography for radiotherapy. Phys Imaging Radiat Oncol 2024; 31:100601. [PMID: 39040434 PMCID: PMC11261283 DOI: 10.1016/j.phro.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Software-based data-driven gated (DDG) positron emission tomography/computed tomography (PET/CT) has replaced hardware-based 4D PET/CT. The purpose of this article was to review DDG PET/CT, which could improve the accuracy of treatment response assessment, tumor motion evaluation, and target tumor contouring with whole-body (WB) PET/CT for radiotherapy (RT). Material and methods This review covered the topics of 4D PET/CT with hardware gating, advancements in PET instrumentation, DDG PET, DDG CT, and DDG PET/CT based on a systematic literature review. It included a discussion of the large axial field-of-view (AFOV) PET detector and a review of the clinical results of DDG PET and DDG PET/CT. Results DDG PET matched or outperformed 4D PET with hardware gating. DDG CT was more compatible with DDG PET than 4D CT, which required hardware gating. DDG CT could replace 4D CT for RT. DDG PET and DDG CT for DDG PET/CT can be incorporated in a WB PET/CT of less than 15 min scan time on a PET/CT scanner of at least 25 cm AFOV PET detector. Conclusions DDG PET/CT could correct the misregistration and tumor motion artifacts in a WB PET/CT and provide the quantitative PET and tumor motion information of a registered PET/CT for RT.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, United States
| | - Dershan Luo
- Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, United States
| |
Collapse
|
2
|
El Ouaridi A, Ait Elcadi Z, Mkimel M, Bougteb M, El Baydaoui R. The detection instrumentation and geometric design of clinical PET scanner: towards better performance and broader clinical applications. Biomed Phys Eng Express 2024; 10:032002. [PMID: 38412520 DOI: 10.1088/2057-1976/ad2d61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Positron emission tomography (PET) is a powerful medical imaging modality used in nuclear medicine to diagnose and monitor various clinical diseases in patients. It is more sensitive and produces a highly quantitative mapping of the three-dimensional biodistribution of positron-emitting radiotracers inside the human body. The underlying technology is constantly evolving, and recent advances in detection instrumentation and PET scanner design have significantly improved the medical diagnosis capabilities of this imaging modality, making it more efficient and opening the way to broader, innovative, and promising clinical applications. Some significant achievements related to detection instrumentation include introducing new scintillators and photodetectors as well as developing innovative detector designs and coupling configurations. Other advances in scanner design include moving towards a cylindrical geometry, 3D acquisition mode, and the trend towards a wider axial field of view and a shorter diameter. Further research on PET camera instrumentation and design will be required to advance this technology by improving its performance and extending its clinical applications while optimising radiation dose, image acquisition time, and manufacturing cost. This article comprehensively reviews the various parameters of detection instrumentation and PET system design. Firstly, an overview of the historical innovation of the PET system has been presented, focusing on instrumental technology. Secondly, we have characterised the main performance parameters of current clinical PET and detailed recent instrumental innovations and trends that affect these performances and clinical practice. Finally, prospects for this medical imaging modality are presented and discussed. This overview of the PET system's instrumental parameters enables us to draw solid conclusions on achieving the best possible performance for the different needs of different clinical applications.
Collapse
Affiliation(s)
- Abdallah El Ouaridi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Zakaria Ait Elcadi
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
- Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Mounir Mkimel
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Mustapha Bougteb
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| | - Redouane El Baydaoui
- Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Health Sciences and Technologies, Settat, Morocco
| |
Collapse
|
3
|
Hashimoto F, Onishi Y, Ote K, Tashima H, Reader AJ, Yamaya T. Deep learning-based PET image denoising and reconstruction: a review. Radiol Phys Technol 2024; 17:24-46. [PMID: 38319563 PMCID: PMC10902118 DOI: 10.1007/s12194-024-00780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
This review focuses on positron emission tomography (PET) imaging algorithms and traces the evolution of PET image reconstruction methods. First, we provide an overview of conventional PET image reconstruction methods from filtered backprojection through to recent iterative PET image reconstruction algorithms, and then review deep learning methods for PET data up to the latest innovations within three main categories. The first category involves post-processing methods for PET image denoising. The second category comprises direct image reconstruction methods that learn mappings from sinograms to the reconstructed images in an end-to-end manner. The third category comprises iterative reconstruction methods that combine conventional iterative image reconstruction with neural-network enhancement. We discuss future perspectives on PET imaging and deep learning technology.
Collapse
Affiliation(s)
- Fumio Hashimoto
- Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan.
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-Ku, Chiba, 263-8522, Japan.
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| | - Yuya Onishi
- Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan
| | - Kibo Ote
- Central Research Laboratory, Hamamatsu Photonics K. K, 5000 Hirakuchi, Hamana-Ku, Hamamatsu, 434-8601, Japan
| | - Hideaki Tashima
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Andrew J Reader
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Taiga Yamaya
- Graduate School of Science and Engineering, Chiba University, 1-33, Yayoicho, Inage-Ku, Chiba, 263-8522, Japan
- National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| |
Collapse
|
4
|
Abi-Akl M, Dadgar M, Toufique Y, Bouhali O, Vandenberghe S. Monte Carlo simulation of the system performance of a long axial field-of-view PET based on monolithic LYSO detectors. EJNMMI Phys 2023; 10:37. [PMID: 37311926 PMCID: PMC10264335 DOI: 10.1186/s40658-023-00559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND In light of the milestones achieved in PET design so far, further sensitivity improvements aim to optimise factors such as the dose, throughput, and detection of small lesions. While several longer axial field-of-view (aFOV) PET systems based on pixelated detectors have been installed, continuous monolithic scintillation detectors recently gained increased attention due to their depth of interaction capability and superior intrinsic resolution. As a result, the aim of this work is to present and evaluate the performance of two long aFOV, monolithic LYSO-based PET scanner designs. METHODS Geant4 Application for Tomographic Emission (GATE) v9.1 was used to perform the simulations. Scanner designs A and B have an aFOV of 36.2 cm (7 rings) and 72.6 cm (14 rings), respectively, with 40 detector modules per ring each and a bore diameter of 70 cm. Each module is a 50 × 50 × 16 mm3 monolithic LYSO crystal. Sensitivity, noise equivalent count rate (NECR), scatter fraction, spatial resolution, and image quality tests were performed based on NEMA NU-2018 standards. RESULTS The sensitivity of design A was calculated to be 29.2 kcps/MBq at the centre and 27 kcps/MBq at 10 cm radial offset; similarly, the sensitivity of design B was found to be 106.8 kcps/MBq and 98.3 kcps/MBq at 10 cm radial offset. NECR peaks were reached at activity concentrations beyond the range of activities used for clinical studies. In terms of spatial resolution, the values for the point sources were below 2 mm for the radial, tangential, and axial full width half maximum. The contrast recovery coefficient ranged from 53% for design B and 4:1 contrast ratio to 90% for design A and 8:1 ratio, with a reasonably low background variability. CONCLUSIONS Longer aFOV PET designs using monolithic LYSO have superior spatial resolution compared to current pixelated total-body PET (TB-PET) scanners. These systems combine high sensitivity with improved contrast recovery.
Collapse
Affiliation(s)
- Maya Abi-Akl
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, Ghent, Belgium.
- Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar.
| | - Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, Ghent, Belgium
| | - Yassine Toufique
- Energy, Materials, Numerical Physics, Ecole Normal Supérieur (ENS), Abdelmalek Essaadi University, Tétouan, Morocco
| | - Othmane Bouhali
- Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020; 7:35. [PMID: 32451783 PMCID: PMC7248164 DOI: 10.1186/s40658-020-00290-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
The idea of a very sensitive positron emission tomography (PET) system covering a large portion of the body of a patient already dates back to the early 1990s. In the period 2000-2010, only some prototypes with long axial field of view (FOV) have been built, which never resulted in systems used for clinical research. One of the reasons was the limitations in the available detector technology, which did not yet have sufficient energy resolution, timing resolution or countrate capabilities for fully exploiting the benefits of a long axial FOV design. PET was also not yet as widespread as it is today: the growth in oncology, which has become the major application of PET, appeared only after the introduction of PET-CT (early 2000).The detector technology used in most clinical PET systems today has a combination of good energy and timing resolution with higher countrate capabilities and has now been used since more than a decade to build time-of-flight (TOF) PET systems with fully 3D acquisitions. Based on this technology, one can construct total body PET systems and the remaining challenges (data handling, fast image reconstruction, detector cooling) are mostly related to engineering. The direct benefits of long axial FOV systems are mostly related to the higher sensitivity. For single organ imaging, the gain is close to the point source sensitivity which increases linearly with the axial length until it is limited by solid angle and attenuation of the body. The gains for single organ (compared to a fully 3D PET 20-cm axial FOV) are limited to a factor 3-4. But for long objects (like body scans), it increases quadratically with scanner length and factors of 10-40 × higher sensitivity are predicted for the long axial FOV scanner. This application of PET has seen a major increase (mostly in oncology) during the last 2 decades and is now the main type of study in a PET centre. As the technology is available and the full body concept also seems to match with existing applications, the old concept of a total body PET scanner is seeing a clear revival. Several research groups are working on this concept and after showing the potential via extensive simulations; construction of these systems has started about 2 years ago. In the first phase, two PET systems with long axial FOV suitable for large animal imaging were constructed to explore the potential in more experimental settings. Recently, the first completed total body PET systems for human use, a 70-cm-long system, called PennPET Explorer, and a 2-m-long system, called uExplorer, have become reality and first clinical studies have been shown. These results illustrate the large potential of this concept with regard to low-dose imaging, faster scanning, whole-body dynamic imaging and follow-up of tracers over longer periods. This large range of possible technical improvements seems to have the potential to change the current clinical routine and to expand the number of clinical applications of molecular imaging. The J-PET prototype is a prototype system with a long axial FOV built from axially arranged plastic scintillator strips.This paper gives an overview of the recent technical developments with regard to PET scanners with a long axial FOV covering at least the majority of the body (so called total body PET systems). After explaining the benefits and challenges of total body PET systems, the different total body PET system designs proposed for large animal and clinical imaging are described in detail. The axial length is one of the major factors determining the total cost of the system, but there are also other options in detector technology, design and processing for reducing the cost these systems. The limitations and advantages of different designs for research and clinical use are discussed taking into account potential applications and the increased cost of these systems.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-IBiTech, De Pintelaan 185 block B, Ghent, B-9000 Belgium
| | - Pawel Moskal
- Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Joel S. Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Paulesu E, Shallice T, Danelli L, Sberna M, Frackowiak RSJ, Frith CD. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits. Front Hum Neurosci 2017; 11:231. [PMID: 28567009 PMCID: PMC5434108 DOI: 10.3389/fnhum.2017.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/21/2017] [Indexed: 11/16/2022] Open
Abstract
Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system.
Collapse
Affiliation(s)
- Eraldo Paulesu
- Psychology Department and Milan Centre for Neuroscience, University of Milano-BicoccaMilan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico GaleazziMilan, Italy
| | - Tim Shallice
- Institute of Cognitive Neuroscience, University College LondonLondon, United Kingdom.,Cognitive Neuroscience Sector, SISSA, International School for Advanced StudiesTrieste, Italy
| | - Laura Danelli
- Psychology Department and Milan Centre for Neuroscience, University of Milano-BicoccaMilan, Italy
| | - Maurizio Sberna
- Department of Diagnostic Neuroradiology, Niguarda Ca' Granda HospitalMilan, Italy
| | - Richard S J Frackowiak
- Department of Clinical Neurosciences, University Hospital of LausanneLausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, BioTech CampusGeneva, Switzerland
| | - Chris D Frith
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College LondonLondon, United Kingdom.,Institute of Philosophy, School of Advanced Studies, University of LondonLondon, United Kingdom
| |
Collapse
|
7
|
Presotto L, Ballarini T, Caminiti SP, Bettinardi V, Gianolli L, Perani D. Validation of 18F–FDG-PET Single-Subject Optimized SPM Procedure with Different PET Scanners. Neuroinformatics 2017; 15:151-163. [DOI: 10.1007/s12021-016-9322-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Martinez-Möller A, Nekolla SG. Attenuation correction for PET/MR: Problems, novel approaches and practical solutions. Z Med Phys 2012; 22:299-310. [DOI: 10.1016/j.zemedi.2012.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/12/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
|
9
|
Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievements and future challenges. ACTA ACUST UNITED AC 2010; 2:529-545. [PMID: 21339831 DOI: 10.2217/iim.10.49] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions.
Collapse
Affiliation(s)
- Shan Tong
- Department of Radiology, University of Washington, Seattle WA, USA
| | | | | |
Collapse
|
10
|
Son YD, Kim HK, Kim ST, Kim NB, Kim YB, Cho ZH. Analysis of Biased PET Images Caused by Inaccurate Attenuation Coefficients. J Nucl Med 2010; 51:753-60. [DOI: 10.2967/jnumed.109.070326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Peng JY, Aston JAD, Gunn RN, Liou CY, Ashburner J. Dynamic positron emission tomography data-driven analysis using sparse Bayesian learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:1356-1369. [PMID: 18753048 DOI: 10.1109/tmi.2008.922185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A method is presented for the analysis of dynamic positron emission tomography (PET) data using sparse Bayesian learning. Parameters are estimated in a compartmental framework using an over-complete exponential basis set and sparse Bayesian learning. The technique is applicable to analyses requiring either a plasma or reference tissue input function and produces estimates of the system's macro-parameters and model order. In addition, the Bayesian approach returns the posterior distribution which allows for some characterisation of the error component. The method is applied to the estimation of parametric images of neuroreceptor radioligand studies.
Collapse
Affiliation(s)
- Jyh-Ying Peng
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Pichler BJ, Wehrl HF, Judenhofer MS. Latest Advances in Molecular Imaging Instrumentation. J Nucl Med 2008; 49 Suppl 2:5S-23S. [PMID: 18523063 DOI: 10.2967/jnumed.108.045880] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bernd J Pichler
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Radiology, Eberhard Karls University Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
13
|
Turkheimer FE, Aston JAD, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. Neuroimage 2006; 32:111-21. [PMID: 16644238 DOI: 10.1016/j.neuroimage.2006.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/13/2005] [Accepted: 03/07/2006] [Indexed: 11/16/2022] Open
Abstract
In the kinetic analysis of dynamic PET data, one usually posits that the variation of the data through one dimension, time, can be described by a mathematical model encapsulating the relevant physiological features of the radioactive tracer. In this work, we posit that the remaining dimension, space, can also be modeled as a physiological feature, and we introduce this concept into a new computational procedure for the production of parametric maps. An organ and, in the instance considered here, the brain presents similarities in the physiological properties of its elements across scales: computationally, this similarity can be implemented in two stages. Firstly, a multi-scale decomposition of the dynamic frames is created through the wavelet transform. Secondly, kinetic analysis is performed in wavelet space and the kinetic parameters estimated at low resolution are used as priors to inform estimates at higher resolutions. Kinetic analysis in the above scheme is achieved by extension of the Patlak analysis through Bayesian linear regression that retains the simplicity and speed of the original procedure. Application to artificial and real data (FDG and FDOPA) demonstrates the ability of the procedure to reduce remarkably the variance of parametric maps (up to 4-fold reduction) without introducing sizeable bias. Significance of the methodology and extension of the procedure to other data (fMRI) and models are discussed.
Collapse
Affiliation(s)
- F E Turkheimer
- Hammersmith Imanet, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Hammersmith Hospital, DuCane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
14
|
Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460020402] [Citation(s) in RCA: 6701] [Impact Index Per Article: 335.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
|
16
|
Démonet JF, Wise R, Frackowiak RSJ. Language functions explored in normal subjects by positron emission tomography: A critical review. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460010105] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Horwitz B, Sporns O. Neural modeling and functional neuroimaging. Hum Brain Mapp 2004; 1:269-83. [DOI: 10.1002/hbm.460010405] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/1994] [Accepted: 05/30/1994] [Indexed: 11/11/2022] Open
|
18
|
Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460010108] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Brasse D, Kinahan PE, Clackdoyle R, Defrise M, Comtat C, Townsend DW. Fast fully 3-D image reconstruction in PET using planograms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:413-425. [PMID: 15084067 DOI: 10.1109/tmi.2004.824231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15.
Collapse
Affiliation(s)
- D Brasse
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
20
|
Turkheimer FE, Hinz R, Gunn RN, Aston JAD, Gunn SR, Cunningham VJ. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping. Phys Med Biol 2003; 48:3819-41. [PMID: 14703160 DOI: 10.1088/0031-9155/48/23/002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Hammersmith Imanet, Cyclotron Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
21
|
Barrett NA, Large MM, Smith GL, Karayanidis F, Michie PT, Kavanagh DJ, Fawdry R, Henderson D, O'Sullivan BT. Human brain regions required for the dividing and switching of attention between two features of a single object. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 17:1-13. [PMID: 12763187 DOI: 10.1016/s0926-6410(02)00246-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves.
Collapse
Affiliation(s)
- N A Barrett
- Department of Physiology, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Turkheimer FE, Aston JAD, Banati RB, Riddell C, Cunningham VJ. A linear wavelet filter for parametric imaging with dynamic PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2003; 22:289-301. [PMID: 12760547 DOI: 10.1109/tmi.2003.809597] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper describes a new filter for parametric images obtained from dynamic positron emission tomography (PET) studies. The filter is based on the wavelet transform following the heuristics of a previously published method that are here developed into a rigorous theoretical framework. It is shown that the space-time problem of modeling a dynamic PET sequence reduces to the classical one of estimation of a normal multivariate vector of independent wavelet coefficients that, under least-squares risk, can be solved by straightforward application of well established theory. From the study of the distribution of wavelet coefficients of PET images, it is inferred that a James-Stein linear estimator is more suitable for the problem than traditional nonlinear procedures that are incorporated in standard wavelet filters. This is confirmed by the superior performance of the James-Stein filter in simulation studies compared to a state-of-the-art nonlinear wavelet filter and a nonstationary filter selected from literature. Finally, the formal framework is interpreted for the practitioner's point of view and advantages and limitations of the method are discussed.
Collapse
|
23
|
Daube-Witherspoon ME, Zubal IG, Karp JS. Developments in instrumentation for emission computed tomography. Semin Nucl Med 2003; 33:28-41. [PMID: 12605355 DOI: 10.1053/snuc.2003.127295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Instrumentation for emission computed tomography continues to evolve, taking advantage of developments in detector technology, data processing and correction methods, and reconstruction algorithms. This article reviews the basic principles and latest developments in emission computed tomography instrumentation, for both positron emission tomography and single-photon emission computed tomography applications.
Collapse
MESH Headings
- Equipment Design
- Humans
- Quality Control
- Reproducibility of Results
- Scattering, Radiation
- Sensitivity and Specificity
- Tomography, Emission-Computed/classification
- Tomography, Emission-Computed/instrumentation
- Tomography, Emission-Computed/methods
- Tomography, Emission-Computed/trends
- Tomography, Emission-Computed, Single-Photon/classification
- Tomography, Emission-Computed, Single-Photon/instrumentation
- Tomography, Emission-Computed, Single-Photon/methods
- Tomography, Emission-Computed, Single-Photon/trends
Collapse
|
24
|
Isaev G, Murphy K, Guz A, Adams L. Areas of the brain concerned with ventilatory load compensation in awake man. J Physiol 2002; 539:935-45. [PMID: 11897862 PMCID: PMC2290189 DOI: 10.1113/jphysiol.2001.012957] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Accepted: 12/18/2001] [Indexed: 11/08/2022] Open
Abstract
There is broad agreement that the awake human ventilatory response to a moderate inspiratory load consists of a prolongation of inspiratory time (T(I)) with a maintenance of tidal volume (V(T)) and end-tidal P(C)(O(2)) (P(ET,C)(O(2))), the response being severely blunted in sleep. There is no agreement on the mechanisms underlying this ventilatory response. Six naive healthy males (aged 39-44) were studied supine with their heads in a positron emission tomography (PET) scanner to allow relative regional cerebral blood flow (rCBF) to be measured with H(2)(15)O given intravenously. A linearised resistive load (24 cmH(2)O (l s(-1))(-1)) could be added to the inspiratory limb of a breathing valve inserted into a tightly fitting facemask; inspiratory flow was measured with a pneumotachograph. The load was applied, without alerting the subject, when the radioactivity first reached the head. Six scans were performed with and without the load, in each subject. Relative rCBF contrasts between the loaded and unloaded breathing states showed significant activations in inferior parietal cortex, prefrontal cortex, midbrain, basal ganglia and multiple cerebellar sites. No activations were found in the primary sensorimotor cortex. The findings suggest that there is a pattern of motor behavioural response to the uncomfortable sensation that inspiration is impeded. This results in a prolongation of T(I), the maintenance of V(T) and a reduction in the degree of discomfort, presumably because of the reduction of mean negative pressure in the airways.
Collapse
Affiliation(s)
- Gennadi Isaev
- Pavlov Institute of Physiology, St Petersburg, Russia
| | | | | | | |
Collapse
|
25
|
Koeppe RA, Raffel DM, Snyder SE, Ficaro EP, Kilbourn MR, Kuhl DE. Dual-[11C]tracer single-acquisition positron emission tomography studies. J Cereb Blood Flow Metab 2001; 21:1480-92. [PMID: 11740210 DOI: 10.1097/00004647-200112000-00013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability to study multiple physiologic processes of the brain simultaneously within the same subject would provide a new means to explore the interactions between neurotransmitter systems in vivo. Currently, examination of two distinct neuropharmacologic measures with positron emission tomography (PET) necessitates performing two separate scans spaced in time to allow for radionuclide decay. The authors present results from a dual-tracer PET study protocol using a single dynamic-scan acquisition where the injections of two tracers are offset by several minutes. Kinetic analysis is used to estimate neuropharmacologic parameters for both tracers simultaneously using a combined compartmental model configuration. This approach results in a large reduction in total study time of nearly 2 hours for carbon-11-labeled tracers. As multiple neuropharmacologic measures are obtained at nearly the same time, interventional protocols involving a pair of dual-tracer scans become feasible in a single PET session. Both computer simulations and actual human PET studies were performed using combinations of three different tracers: [11C]flumazenil, N-[11C]methylpiperidinyl propionate, and [ 11 C]dihydrotetrabenazine. Computer simulations of tracer-injection separations of 10 to 30 minutes showed the feasibility of the approach for separations down to 15 to 20 minutes or less. Dual-tracer PET studies were performed in 32 healthy volunteers using injection separations of 10, 15, or 20 minutes. Model parameter estimates for each tracer were similar to those obtained from previously performed single-injection studies. Voxel-by-voxel parametric images were of good quality for injections spaced by 20 minutes and were nearly as good for 15-minute separations, but were degraded noticeably for some model parameters when injections were spaced by only 10 minutes. The authors conclude that dual-tracer single-scan PET is feasible, yields accurate estimates of multiple neuropharmacologic measures, and can be implemented with a number of different radiotracer pairs.
Collapse
Affiliation(s)
- R A Koeppe
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
26
|
Barrett NA, Large MM, Smith GL, Michie PT, Karayanidis F, Kavanagh DJ, Fawdry R, Henderson D, O'Sullivan BT. Human cortical processing of colour and pattern. Hum Brain Mapp 2001. [PMID: 11410950 DOI: 10.1002/hbm.1034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study investigates human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that we specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. We did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. We found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions.
Collapse
Affiliation(s)
- N A Barrett
- Department of Physiology, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vandenberghe S, D'Asseler Y, Van de Walle R, Kauppinen T, Koole M, Bouwens L, Van Laere K, Lemahieu I, Dierckx RA. Iterative reconstruction algorithms in nuclear medicine. Comput Med Imaging Graph 2001; 25:105-11. [PMID: 11137786 DOI: 10.1016/s0895-6111(00)00060-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iterative reconstruction algorithms produce accurate images without streak artifacts as in filtered backprojection. They allow improved incorporation of important corrections for image degrading effects, such as attenuation, scatter and depth-dependent resolution. Only some corrections, which are important for accurate reconstruction in positron emission tomography and single photon emission computed tomography, can be applied to the data before filtered backprojection. The main limitation for introducing iterative algorithms in nuclear medicine has been computation time, which is much longer for iterative techniques than for filtered backprojection. Modern algorithms make use of acceleration techniques to speed up the reconstruction. These acceleration techniques and the development in computer processors have introduced iterative reconstruction in daily nuclear medicine routine. We give an overview of the most important iterative techniques and discuss the different corrections that can be incorporated to improve the image quality.
Collapse
Affiliation(s)
- S Vandenberghe
- MEDISIP, ELIS, Ghent University, Sint-Pietersnieuwstraat 41 B-9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK. A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol 2000; 45:3253-66. [PMID: 11098902 DOI: 10.1088/0031-9155/45/11/310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Normalization coefficients in three-dimensional positron emission tomography (3D PET) are affected by parameters such as camera geometry and the design and arrangement of the block detectors. In this work, normalization components for three whole-body 3D-capable tomographs (the GE Advance, the Siemens/CTI962/HR+ and the Siemens/CTI951R) are compared by means of a series of scans using uniform cylindrical and rotating line sources. Where applicable, the manufacturers' normalization methods are validated, and it is shown that these methods can be improved upon by using previously published normalization protocols. Those architectural differences between the three tomographs that affect normalization are discussed with a view to drawing more general conclusions about the effect of machine architecture on normalization. The data presented suggest that uniformity of system response becomes easier to achieve as the uniformity of crystal response within the detector block is improved.
Collapse
Affiliation(s)
- R D Badawi
- Division of Nuclear Medicine, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Garcia EV, Faber TL, Galt JR, Cooke CD, Folks RD. Advances in nuclear emission PET and SPECT imaging. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2000; 19:21-33. [PMID: 11016027 DOI: 10.1109/51.870228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
MESH Headings
- Artificial Intelligence
- Brain Neoplasms/diagnostic imaging
- Heart Diseases/diagnostic imaging
- Humans
- Image Processing, Computer-Assisted/methods
- Tomography, Emission-Computed/economics
- Tomography, Emission-Computed/instrumentation
- Tomography, Emission-Computed/trends
- Tomography, Emission-Computed, Single-Photon/economics
- Tomography, Emission-Computed, Single-Photon/instrumentation
- Tomography, Emission-Computed, Single-Photon/trends
Collapse
Affiliation(s)
- E V Garcia
- Emory University Hospital, Emory Center for PET, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
30
|
Castelli F, Happé F, Frith U, Frith C. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 2000; 12:314-25. [PMID: 10944414 DOI: 10.1006/nimg.2000.0612] [Citation(s) in RCA: 816] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report a functional neuroimaging study with positron emission tomography (PET) in which six healthy adult volunteers were scanned while watching silent computer-presented animations. The characters in the animations were simple geometrical shapes whose movement patterns selectively evoked mental state attribution or simple action description. Results showed increased activation in association with mental state attribution in four main regions: medial prefrontal cortex, temporoparietal junction (superior temporal sulcus), basal temporal regions (fusiform gyrus and temporal poles adjacent to the amygdala), and extrastriate cortex (occipital gyrus). Previous imaging studies have implicated these regions in self-monitoring, in the perception of biological motion, and in the attribution of mental states using verbal stimuli or visual depictions of the human form. We suggest that these regions form a network for processing information about intentions, and speculate that the ability to make inferences about other people's mental states evolved from the ability to make inferences about other creatures' actions.
Collapse
Affiliation(s)
- F Castelli
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, United Kingdom
| | | | | | | |
Collapse
|
31
|
McCrory E, Frith U, Brunswick N, Price C. Abnormal functional activation during a simple word repetition task: A PET study of adult dyslexics. J Cogn Neurosci 2000; 12:753-62. [PMID: 11054918 DOI: 10.1162/089892900562570] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Eight dyslexic subjects, impaired on a range of tasks requiring phonological processing, were matched for age and general ability with six control subjects. Participants were scanned using positron emission tomography (PET) during three conditions: repeating real words, repeating pseudowords, and rest. In both groups, speech repetition relative to rest elicited widespread bilateral activation in areas associated with auditory processing of speech; there were no significant differences between words and pseudowords. However, irrespective of word type, the dyslexic group showed less activation than the control group in the right superior temporal and right post-central gyri and also in the left cerebellum. Notably, the right anterior superior temporal cortex (Brodmann's area 22 [BA 22]) was less activated in each of the eight dyslexic subjects, compared to each of the six control subjects. This deficit appears to be specific to auditory repetition as it was not detected in a previous study of reading which used the same sets of stimuli (Brunswick, N., McCrory, E., Price, C., Frith, C.D., & Frith, U. [1999]. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain, 122, 1901-1917). This implies that the observed neural manifestation of developmental dyslexia is task-specific (i.e., functional rather than structural). Other studies of normal subjects indicate that attending to the phonetic structure of speech leads to a decrease in right-hemisphere processing. Lower right hemisphere activation in the dyslexic group may therefore indicate less processing of non-phonetic aspects of speech, allowing greater salience to be accorded to phonological aspects of attended speech.
Collapse
|
32
|
Spinks TJ, Jones T, Bloomfield PM, Bailey DL, Miller M, Hogg D, Jones WF, Vaigneur K, Reed J, Young J, Newport D, Moyers C, Casey ME, Nutt R. Physical characteristics of the ECAT EXACT3D positron tomograph. Phys Med Biol 2000; 45:2601-18. [PMID: 11008960 DOI: 10.1088/0031-9155/45/9/313] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 'EXACT3D' positron tomograph, which is now in routine clinical research use, was developed with the aim of achieving unprecedented sensitivity, high spatial and temporal resolution and simplicity of design using proven detector technology. It consists of six rings of standard detector blocks (CTI/Siemens EXACT HR+) with 4.39 mm x 4.05 mm x 30 mm elements, giving an axial field of view (FOV) of 23.4 cm. This extended FOV and the absence of interplane septa and retractable transmission rod sources has allowed greatly simplified gantry and detector cassette design. Operation in exclusive 3D mode requires an alternative to the conventional coincidence method for transmission scanning, and a single photon approach using a hydraulically driven 137Cs point source has been implemented. The tomograph has no other moving parts. A single time frame of data without any compression is very large (> 300 Mbyte) and two approaches are employed to overcome this difficulty: (a) adjacent sinograms can be summed automatically into different combinations and (b) listmode (event-by-event) acquisition has been instituted, which is both storage efficient (particularly for acquisition of sparse data sets) and maximizes temporal resolution. The high-speed I/O and computing hardware can maintain a sustained acquisition rate of about 4 million coincidence events per second. A disadvantage of the large axial FOV in 3D is the increased sensitivity to activity outside the coincidence FOV. However, this can be minimized by additional side shielding. The mean spatial resolution is 4.8 +/- 0.2 mm FWHM (transaxial, 1 cm off-axis) and 5.6 +/- 0.5 mm (axial, on-axis). Its absolute efficiency is 5.8% for a line source in air (just spanning the axial FOV) and 10% for a central point source (with thresholds of 350-650 keV). For a uniform 20 cm diameter cylinder, the efficiency is 69 kcps kBq(-1) ml(-1) (after subtraction of a scatter fraction of 42%). Sensitivity relative to the EXACT HR+ (with four rings of blocks) is 2.5 (3D) and 12 (2D) times respectively. The rate of random events in blood flow studies in the brain and body, using 15O-labelled water, can be controlled by limiting the administered dose and inserting additional side shielding.
Collapse
Affiliation(s)
- T J Spinks
- MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The purpose of this study was to examine changes in regional cerebral blood flow (rCBF) using positron emission tomography (PET) during overt word and nonword reading tasks to determine structures involved in semantic processing. Ten young, healthy, right-handed subjects were scanned 12 times, twice in each of six specific conditions. Blood flow was measured by 15O-water using standard PET imaging technology. The rCBFs during different cognitive conditions were compared by using analysis of covariance (SPM94), which resulted in three-dimensional maps of those brain regions more active in one condition relative to another. When the subjects read aloud words with difficult or unusual grapheme-phoneme translations (i.e., third-order approximation to English or irregularly spelled real words), increases in activation were seen in the inferior frontal cortex. When subjects were reading aloud regular and irregular words (which had important semantic components relative to nonwords), activation of the fusiform gyrus was seen. These data are broadly consistent with brain regions generally associated with reading based on other neuropsychological paradigms, and they emphasize the multicomponent aspects of this complex cognitive process.
Collapse
Affiliation(s)
- A N Herbster
- Department of Psychiatry, University of Pittsburgh Medical Center, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Functional brain imaging has provided unique and exciting opportunities to strengthen our knowledge of the biologic substrate of the aging brain and neuropsychiatric disorders. Positron emission tomography (PET) is a particularly powerful tool for quantifying the neurobiologic correlates of cognition, mood, and behavior. Initial PET studies of aging, psychiatric disorders, and neurodegenerative disease focused primarily on generalized physiologic parameters such as cerebral blood flow and metabolism, and early neuroreceptor imaging studies relied on relatively nonselective markers. New, selective receptor radioligands now offer a previously inaccessible means to investigate the dynamic relationships among neurochemistry, aging, and psychopathology in vivo. This approach has substantial advantages over peripheral (platelet and cerebrospinal fluid) markers, neuroendocrine challenge studies, animal models, and postmortem receptor binding assays. Advances in tracer kinetic modeling, magnetic resonance imaging facilitated PET image analysis, radiochemistry techniques, instrumentation, and image processing have helped pave the way for increased emphasis on functional imaging studies of neuropsychiatric disorders. The capability to correct PET image data for the confounding effect of cerebral atrophy permits relationships among age-related brain changes and neurobiologic disease mechanisms to be more accurately examined in the elderly.
Collapse
Affiliation(s)
- C C Meltzer
- Department of Radiology, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999; 19:1189-208. [PMID: 10566965 DOI: 10.1097/00004647-199911000-00003] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article develops a theoretical framework for the use of the wavelet transform in the estimation of emission tomography images. The solution of the problem of estimation addresses the equivalent problems of optimal filtering, maximum compression, and statistical testing. In particular, new theory and algorithms are presented that allow current wavelet methodology to deal with the two main characteristics of nuclear medicine images: low signal-to-noise ratios and correlated noise. The technique is applied to synthetic images, phantom studies, and clinical images. Results show the ability of wavelets to model images and to estimate the signal generated by cameras of different resolutions in a wide variety of noise conditions. Moreover, the same methodology can be used for the multiscale analysis of statistical maps. The relationship of the wavelet approach to current hypothesis-testing methods is shown with an example and discussed. The wavelet transform is shown to be a valuable tool for the numerical treatment of images in nuclear medicine. It is envisaged that the methods described here may be a starting point for further developments in image reconstruction and image processing.
Collapse
Affiliation(s)
- F E Turkheimer
- PET Methodology Group, MRC Cyclotron Unit, Hammersmith Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
36
|
Brunswick N, McCrory E, Price CJ, Frith CD, Frith U. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? Brain 1999; 122 ( Pt 10):1901-17. [PMID: 10506092 DOI: 10.1093/brain/122.10.1901] [Citation(s) in RCA: 419] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two groups of male university students who had been diagnosed as dyslexic when younger, and two groups of control subjects of similar age and IQ to the dyslexics, were scanned whilst reading aloud and during a task where reading was implicit. The dyslexics performed less well than their peers on a range of literacy tasks and were strikingly impaired on phonological tasks. In the reading aloud experiment, simple words and pseudowords were presented at a slow pace so that reading accuracy was equal for dyslexics and controls. Relative to rest, both normal and dyslexic groups activated the same peri- and extra-sylvian regions of the left hemisphere that are known to be involved in reading. However, the dyslexic readers showed less activation than controls in the left posterior inferior temporal cortex [Brodmann area (BA) 37, or Wernicke's Wortschatz], left cerebellum, left thalamus and medial extrastriate cortex. In the implicit reading experiment, word and pseudoword processing was contrasted to visually matched false fonts while subjects performed a feature detection paradigm. The dyslexic readers showed reduced activation in BA 37 relative to normals suggesting that this group difference, seen in both experiments, resides in highly automated aspects of the reading process. Since BA 37 has been implicated previously in modality-independent naming, the reduced activation may indicate a specific impairment in lexical retrieval. Interestingly, during the reading aloud experiment only, there was increased activation for the dyslexics relative to the controls in a pre-motor region of Broca's area (BA 6/44). We attribute this result to the enforced use of an effortful compensatory strategy involving sublexical assembly of articulatory routines. The results confirm previous findings that dyslexic readers process written stimuli atypically, based on abnormal functioning of the left hemisphere reading system. More specifically, we localize this deficit to the neural system underlying lexical retrieval.
Collapse
Affiliation(s)
- N Brunswick
- Wellcome Department of Cognitive Neurology, Institute of Neurology, UK
| | | | | | | | | |
Collapse
|
37
|
Conway MA, Turk DJ, Miller SL, Logan J, Nebes RD, Meltzer CC, Becker JT. A positron emission tomography (PET) study of autobiographical memory retrieval. Memory 1999; 7:679-702. [PMID: 10659092 DOI: 10.1080/096582199387805] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Memory for the experiences of one's life, autobiographical memory (AM), is one of the most human types of memory, yet comparatively little is known of its neurobiology. A positron emission tomography (PET) study of AM retrieval revealed that the left frontal cortex was significantly active during retrieval (compared to memory control tasks), together with activation in the inferior temporal and occipital lobes in the left hemisphere. We propose that this left frontal lobe activation reflects the operation of control processes that modulate the construction of AMs in posterior neocortical networks.
Collapse
Affiliation(s)
- M A Conway
- Department of Experimental Psychology, University of Bristol, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kinahan PE, Noll DC. A direct comparison between whole-brain PET and BOLD fMRI measurements of single-subject activation response. Neuroimage 1999; 9:430-8. [PMID: 10191171 DOI: 10.1006/nimg.1998.0420] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present the results of a direct comparison of single-subject activation using identical tasks for both functional PET and fMRI whole-brain studies. We examined the most commonly employed methods for each modality. For fMRI this is the blood oxygenation level-dependent (BOLD) contrast method with echo-planar imaging. In PET single-subject activation studies are based on the development of high sensitivity 3D imaging of regional cerebral blood flow from multiple [15O]water injections. The identical activation paradigm of a visually cued sequential finger opposition was used for PET and fMRI. For both modalities the entire brain volume difference images were smoothed to the same final resolution and the peak t value within the primary sensory/motor (PSM) area was then identified. All contiguous voxels in the PSM above a predetermined threshold of statistical significance were determined. Finally, the difference-weighted centroid location was calculated for the PSM region for each modality. These studies showed a very similar pattern of activation, with the volume of activation greater in fMRI and higher levels of statistical significance. The centroids of activation, however, differed by 9 +/- 3 mm between the modalities, with the fMRI centroid location dorsal to that for PET. These results were stable across all processing options including differing levels of image smoothing and thresholds of statistical significance. These results are consistent with the hypothesis that draining veins contribute a substantial signal for fMRI activation studies and indicate caution for the interpretation of BOLD fMRI images with activation sites near draining veins.
Collapse
Affiliation(s)
- P E Kinahan
- Department of Radiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA
| | | |
Collapse
|
39
|
Abstract
Normalization in positron emission tomography (PET) is the process of ensuring that all lines of response joining detectors in coincidence have the same effective sensitivity. In three-dimensional (3D) PET, normalization is complicated by the presence of a large proportion of scattered coincidences, and by the fact that cameras operating in 3D mode encounter a very wide range of count-rates. In this work a component-based normalization model is presented which separates the normalization of true and scattered coincidences and accounts for variations in normalization effects with count-rate. The effects of the individual components in the model on reconstructed images are investigated, and it is shown that only a subset of these components has a significant effect on reconstructed image quality.
Collapse
Affiliation(s)
- R D Badawi
- Guy's and St Thomas' Clinical PET Centre, Division of Radiological Sciences and Medical Engineering, King's College, London, UK.
| | | |
Collapse
|
40
|
McKee BT, Hiltz LG. Attenuation correction for three-dimensional PET using uncollimated flood-source transmission measurements. Phys Med Biol 1999; 39:2043-58. [PMID: 15560009 DOI: 10.1088/0031-9155/39/11/015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An attenuation-correction method for three-dimensional PET imaging, which obtains attenuation-correction factors from transmission measurements using an uncollimated flood source, is described. This correction is demonstrated for two different phantoms using transmission data acquired with QPET, a rotating imaging system with two planar detectors developed for imaging small volumes. The scatter amplitude in the transmission projections was a maximum of 30%; to obtain accurate attenuation-correction factors the scatter distribution was first calculated and subtracted. The attenuation-corrected emission images for both phantoms indicate that their original uniform amplitudes have been restored. The attenuation correction adds only a small amount of noise to the emission images, as evaluated from the standard deviation over a central region. For the first phantom, with maximum attenuation of 48%, the noise added was 2.6%. The second phantom was attenuated by a maximum of 37%, and 1.9% noise was added. Because the transmission data are smoothed, some artifacts are visible at the edges of the phantom where the correction factors change abruptly within the emission image.
Collapse
Affiliation(s)
- B T McKee
- Department of Physics, Queen's University, Kingston, Canada K7L 3N6
| | | |
Collapse
|
41
|
Abstract
Three-dimensional filtered backprojection uses filters generally specified in the Fourier domain. Implementing these filters by direct sampling in the Fourier domain produces an artifact in the reconstructed images consisting primarily of a DC shift. This artifact is caused by aliasing of the reconstruction filter. We have developed a filter construction technique using Fourier domain oversampling, which reduces the artifact. A method to construct the filter efficiently without the need to create and store the entire oversampled filter array is also presented. Quantitative accuracy in filtered backprojection is of particular importance in multiple-pass algorithms used to reconstruct data from cylindrical PET scanners. We are able to implement such algorithms without fitting the reprojected views to the scanner data.
Collapse
Affiliation(s)
- C W Stearns
- Applied Science Laboratory, GE Medical Systems, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
42
|
Erlandsson K, Esser PD, Strand SE, van Heertum RL. 3D reconstruction for a multi-ring PET scanner by single-slice rebinning and axial deconvolution. Phys Med Biol 1999; 39:619-29. [PMID: 15551603 DOI: 10.1088/0031-9155/39/3/023] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A three-dimensional (3D) image reconstruction method, which was originally developed for a positron emission tomography (PET) system consisting of two rotating scintillation cameras, has now been implemented for a multi-ring PET scanner with retractable septa. The method is called 'single-slice rebinning with axial deconvolution' (SSAD), and can be described as follows. The projection data are sorted into transaxial 2D sinograms. Correction for the axial blurring is made by deconvolution in the sinograms. To obtain the axial spread functions, which depend on the activity distribution, 2D reconstruction is first made using a limited axial acceptance angle. The final 3D image is obtained by 2D reconstruction of transaxial planes. The method is simple but not approximate, has a modest memory requirement, and can be combined with different 2D techniques. Evaluations by Monte Carlo simulations and phantom studies have been made.
Collapse
Affiliation(s)
- K Erlandsson
- Radiation Physics Department, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
43
|
Lewittt RM, Muehllehner G, Karpt JS. Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 1999; 39:321-39. [PMID: 15551583 DOI: 10.1088/0031-9155/39/3/002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A fast method is described for reconstructing volume images from three-dimensional (3D) coincidence data in positron emission tomography (PET). The reconstruction method makes use of all coincidence data acquired by high-sensitivity PET systems that do not have inter-slice absorbers (septa) to restrict the axial acceptance angle. The reconstruction method requires only a small amount of storage and computation, making it well suited for dynamic and whole-body studies. The method consists of three steps: (i) rebinning of coincidence data into a stack of 2D sinograms; (ii) slice-by-slice reconstruction of the sinogram associated with each slice to produce a preliminary 3D image having strong blurring in the axial (z) direction, but with different blurring at different z positions; and (iii) spatially variant filtering of the 3D image in the axial direction (i.e. 1D filtering in z for each x-y column) to produce the final image. The first step involves a new form of the rebinning operation in which multiple sinograms are incremented for each oblique coincidence line (multi-slice rebinning). The axial filtering step is formulated and implemented using the singular value decomposition (SVD). The method has been applied successfully to simulated data and to measured data for different kinds of phantom (multiple point sources, multiple discs, a cylinder with cold spheres, and a 3D brain phantom).
Collapse
Affiliation(s)
- R M Lewittt
- University of Pennsylvania, Department of Radiology, 419 Blockley Hall, 418 Service Drive Philadelphia, PA 19104-6021, USA
| | | | | |
Collapse
|
44
|
Msaki P, Erlandsson K, Svensson L, Nolstedt L. The convolution scatter subtraction hypothesis and its validity domain in radioisotope imaging. Phys Med Biol 1999. [DOI: 10.1088/0031-9155/38/9/015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Comtat C, Morel C, Defrise M, Townsend DW. The FAVOR algorithm for 3D PET data and its implementation using a network of transputers. Phys Med Biol 1999. [DOI: 10.1088/0031-9155/38/7/004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Abstract
We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent.
Collapse
Affiliation(s)
- D Townsend
- Division of Nuclear Medicine, Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998; 25:2046-53. [PMID: 9800714 DOI: 10.1118/1.598392] [Citation(s) in RCA: 492] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this work we demonstrate the proof of principle of CT-based attenuation correction of 3D positron emission tomography (PET) data by using scans of bone and soft tissue equivalent phantoms and scans of humans. This method of attenuation correction is intended for use in a single scanner that combines volume-imaging (3D) PET with x-ray computed tomography (CT) for the purpose of providing accurately registered anatomical localization of structures seen in the PET image. The goal of this work is to determine if we can perform attenuation correction of the PET emission data using accurately aligned CT attenuation information. We discuss possible methods of calculating the PET attenuation map at 511 keV based on CT transmission information acquired from 40 keV through 140 keV. Data were acquired on separate CT and PET scanners and were aligned using standard image registration procedures. Results are presented on three of the attenuation calculation methods: segmentation, scaling, and our proposed hybrid segmentation/scaling method. The results are compared with those using the standard 3D PET attenuation correction method as a gold standard. We demonstrate the efficacy of our proposed hybrid method for converting the CT attenuation map from an effective CT photon energy of 70 keV to the PET photon energy of 511 keV. We conclude that using CT information is a feasible way to obtain attenuation correction factors for 3D PET.
Collapse
Affiliation(s)
- P E Kinahan
- Department of Radiology, University of Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
49
|
Trébossen R, Bendriem B, Ribeiro MJ, Fontaine A, Frouin V, Remy P. Validation of the three-dimensional acquisition mode in positron emission tomography for the quantitation of [18F]fluoro-DOPA uptake in the human striata. J Cereb Blood Flow Metab 1998; 18:951-9. [PMID: 9740098 DOI: 10.1097/00004647-199809000-00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three-dimensional (3D) positron emission tomography (PET) is attractive for [18F]fluoro-DOPA studies, since the sensitivity improvement is maximal for radioactive sources located in central planes, which is usually the case for the human striata. However, the image quantitation in that mode must be assessed because of the nearly threefold increase in scattered coincidences. We report the results of [18F]fluoro-DOPA studies performed on six normal volunteers. Each one was scanned in the 3D and two-dimensional (2D) modes on the same tomograph. The quantitation in the 3D and 2D modes was compared for a Patlak graphical analysis with the occipital counts as the input function (Ki) and a striatooccipital ratio analysis. We find that, in 3D PET, a scatter correction is required to preserve the same quantitation as in 2D PET. When the 3D data sets are corrected for scatter, the quantitation of the [18F]fluoro-DOPA uptake, using the Patlak analysis, is similar in the 2D and 3D acquisition modes. Conversely, analysis of the striatooccipital ratio leads to higher values in 3D PET because of a better in-plane resolution. Finally, using the 3D mode, the dose injected to the subjects can be reduced by a factor greater than 1.5 without any loss in accuracy compared to the 2D mode.
Collapse
Affiliation(s)
- R Trébossen
- Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
This report has emphasized the attributes of positron emission tomography (PET) through a discussion of the historical development with attention to limitations or factors that are of importance in using and further developing this technology. As is the case for all nuclear detector developments, the factors that require consideration are spatial resolution, uniformity of resolution, sensitivity, distortions (attenuation), background noise (scatter and randoms), image volume, data acquisition capabilities (count-rate saturation), and limitations based on allowable radiation doses to the subject. Forty years ago, the fact that dual gamma-cameras could not handle the count-rates from the short half-life radionuclides that had clinical applications at that time (ie, 15O, 11C, 13N) precluded their acceptance in nuclear medicine. With the advent of 18F applications particularly with FDG in oncology, this limitations was no longer a barrier. Twenty years ago and until recently, the promise of time-of-flight PET has been stifled by the fact that the appropriately fast scintillator BaF2 had too low an efficiency (low density) to be useful in improving the signal to noise of a time-of-flight tomograph over contemporary systems. With the development of dense scintillators with high light output and high speed such as LSO30 the time-of-flight potentials are now once again worth pursuing. Twenty years ago systems that theoretically would have improved sensitivity by minimal or no septa with spherical geometric arrangements of detectors were ignored because it appeared that scatter backgrounds would lead to a signal to noise less than 1. But in the last 5 years, cylindrical systems without speta have shown that noise effective sensitivity improvements of a factor of 4 can be realized. With time-of-flight additional improvements in sensitivity will be realized. Horizons for detector development include discovery of new scintillators, new methods of registering scintillation light, deployment of larger field of view systems and methods of compensating for scatter, randoms, attenuation, and irregular sampling associated with new geometries which can encircle most of the body. The expected limit for PET is 2 mm isotropic resolution for the head and appendages including joints and breasts. Clinical realization of this resolution for the thorax and abdomen requires compensation for motion and even in this area strategies are underdevelopment which rely on the improvement in sensitivity being realized by 3D systems.
Collapse
Affiliation(s)
- T F Budinger
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, CA 94720, USA
| |
Collapse
|