1
|
Yan D, Ruiz JRL, Hsieh ML, Jeong D, Vöröslakos M, Lanzio V, Warner EV, Ko E, Tian Y, Patel PR, ElBidweihy H, Smith CS, Lee JH, Cheon J, Buzsáki G, Yoon E. Self-Assembled Origami Neural Probes for Scalable, Multifunctional, Three-Dimensional Neural Interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591141. [PMID: 38712092 PMCID: PMC11071508 DOI: 10.1101/2024.04.25.591141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Flexible intracortical neural probes have drawn attention for their enhanced longevity in high-resolution neural recordings due to reduced tissue reaction. However, the conventional monolithic fabrication approach has met significant challenges in: (i) scaling the number of recording sites for electrophysiology; (ii) integrating of other physiological sensing and modulation; and (iii) configuring into three-dimensional (3D) shapes for multi-sided electrode arrays. We report an innovative self-assembly technology that allows for implementing flexible origami neural probes as an effective alternative to overcome these challenges. By using magnetic-field-assisted hybrid self-assembly, multiple probes with various modalities can be stacked on top of each other with precise alignment. Using this approach, we demonstrated a multifunctional device with scalable high-density recording sites, dopamine sensors and a temperature sensor integrated on a single flexible probe. Simultaneous large-scale, high-spatial-resolution electrophysiology was demonstrated along with local temperature sensing and dopamine concentration monitoring. A high-density 3D origami probe was assembled by wrapping planar probes around a thin fiber in a diameter of 80∼105 μm using optimal foldable design and capillary force. Directional optogenetic modulation could be achieved with illumination from the neuron-sized micro-LEDs (μLEDs) integrated on the surface of 3D origami probes. We could identify angular heterogeneous single-unit signals and neural connectivity 360° surrounding the probe. The probe longevity was validated by chronic recordings of 64-channel stacked probes in behaving mice for up to 140 days. With the modular, customizable assembly technologies presented, we demonstrated a novel and highly flexible solution to accommodate multifunctional integration, channel scaling, and 3D array configuration.
Collapse
|
2
|
Brown MA, Zappitelli KM, Singh L, Yuan RC, Bemrose M, Brogden V, Miller DJ, Smear MC, Cogan SF, Gardner TJ. Direct laser writing of 3D electrodes on flexible substrates. Nat Commun 2023; 14:3610. [PMID: 37330565 PMCID: PMC10276853 DOI: 10.1038/s41467-023-39152-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
This report describes a 3D microelectrode array integrated on a thin-film flexible cable for neural recording in small animals. The fabrication process combines traditional silicon thin-film processing techniques and direct laser writing of 3D structures at micron resolution via two-photon lithography. Direct laser-writing of 3D-printed electrodes has been described before, but this report is the first to provide a method for producing high-aspect-ratio structures. One prototype, a 16-channel array with 300 µm pitch, demonstrates successful electrophysiological signal capture from bird and mouse brains. Additional devices include 90 µm pitch arrays, biomimetic mosquito needles that penetrate through the dura of birds, and porous electrodes with enhanced surface area. The rapid 3D printing and wafer-scale methods described here will enable efficient device fabrication and new studies examining the relationship between electrode geometry and electrode performance. Applications include small animal models, nerve interfaces, retinal implants, and other devices requiring compact, high-density 3D electrodes.
Collapse
Affiliation(s)
- Morgan A Brown
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Kara M Zappitelli
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Loveprit Singh
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Rachel C Yuan
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Melissa Bemrose
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Valerie Brogden
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - David J Miller
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Matthew C Smear
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Timothy J Gardner
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
3
|
Liu X, Bibineyshvili Y, Robles DA, Boreland AJ, Margolis DJ, Shreiber DI, Zahn JD. Fabrication of a Multilayer Implantable Cortical Microelectrode Probe to Improve Recording Potential. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:569-581. [PMID: 34539168 PMCID: PMC8445332 DOI: 10.1109/jmems.2021.3092230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intracortical neural probes are a key enabling technology for acquiring high fidelity neural signals within the cortex. They are viewed as a crucial component of brain-computer interfaces (BCIs) in order to record electrical activities from neurons within the brain. Smaller, more flexible, polymer-based probes have been investigated for their potential to limit the acute and chronic neural tissue response. Conventional methods of patterning electrodes and connecting traces on a single supporting layer can limit the number of recording sites which can be defined, particularly when designing narrower probes. We present a novel strategy of increasing the number of recording sites without proportionally increasing the size of the probe by using a multilayer fabrication process to vertically layer recording traces on multiple Parylene support layers, allowing more recording traces to be defined on a smaller probe width. Using this approach, we are able to define 16 electrodes on 4 supporting layers (4 electrodes per layer), each with a 30 μm diameter recording window and 5 μm wide connecting trace defined by conventional LWUV lithography, on an 80 μm wide by 9 μm thick microprobe. Prior to in vitro and in vivo validation, the multilayer probes are electrically characterized via impedance spectroscopy and evaluating crosstalk between adjacent layers. Demonstration of acute in vitro recordings in a cerebral organoid model and in vivo recordings in a murine model indicate the probe's capability for single unit recordings. This work demonstrates the ability to fabricate smaller, more compliant neural probes without sacrificing electrode density.
Collapse
Affiliation(s)
- Xin Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - Denise A Robles
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Andrew J Boreland
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
4
|
McAvoy M, Tsosie JK, Vyas KN, Khan OF, Sadtler K, Langer R, Anderson DG. Flexible Multielectrode Array for Skeletal Muscle Conditioning, Acetylcholine Receptor Stabilization and Epimysial Recording After Critical Peripheral Nerve Injury. Am J Cancer Res 2019; 9:7099-7107. [PMID: 31660089 PMCID: PMC6815960 DOI: 10.7150/thno.35436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023] Open
Abstract
Complete re-innervation after a traumatic injury severing a muscle's peripheral nerve may take years. During this time, the denervated muscle atrophies and loses acetylcholine receptors, a vital component of the neuromuscular junction, limiting functional recovery. One common clinical treatment for atrophy is electrical stimulation; however, epimysial electrodes currently used are bulky and often fail due to an excessive inflammatory response. Additionally, there remains a need for a device providing in vivo monitoring of neuromuscular regeneration and the maintenance of acetylcholine receptors. Here, an implantable, flexible microelectrode array (MEA) was developed that provides surface neuromuscular stimulation and recording during long-term denervation. Methods: The MEA uses a flexible polyimide elastomer and an array of gold-based microelectrodes featuring Peano curve motifs, which together maintain electrode flexibility. The devices were implanted along the denervated gastrocnemius muscles of 5 rats. These rats underwent therapeutic stimulation using the MEA daily beginning on post-operative day 2. Another 5 rats underwent tibial nerve resection without implantation of MEA. Tissues were harvested on post-operative day 14 and evaluated for quantification of acetylcholine receptors and muscle fiber area using immunofluorescence and histological staining. Results: The Young's modulus was 1.67 GPa, which is comparable to native tendon and muscle. The devices successfully recorded electromyogram data when implanted in rats. When compared to untreated denervated muscles, MEA therapy attenuated atrophy by maintaining larger muscle fiber cross-sectional areas (p < 0.05). Furthermore, the acetylcholine receptor areas were markedly larger with MEA treatment (p < 0.05). Conclusions: This proof-of-concept work successfully demonstrates the ability to combine conformability, tensile strength-enhancing metal micropatterning, electrical stimulation and recording into a functional implant for both epimysial stimulation and recording.
Collapse
|
5
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH, Chen S, Geaghan-Breiner C, Karlsson MP, Karlsson M, Lee KY, Liang H, Magland JF, Pebbles JA, Tooker AC, Greengard LF, Tolosa VM, Frank LM. High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays. Neuron 2019; 101:21-31.e5. [PMID: 30502044 PMCID: PMC6326834 DOI: 10.1016/j.neuron.2018.11.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/03/2018] [Accepted: 10/31/2018] [Indexed: 01/26/2023]
Abstract
The brain is a massive neuronal network, organized into anatomically distributed sub-circuits, with functionally relevant activity occurring at timescales ranging from milliseconds to years. Current methods to monitor neural activity, however, lack the necessary conjunction of anatomical spatial coverage, temporal resolution, and long-term stability to measure this distributed activity. Here we introduce a large-scale, multi-site, extracellular recording platform that integrates polymer electrodes with a modular stacking headstage design supporting up to 1,024 recording channels in freely behaving rats. This system can support months-long recordings from hundreds of well-isolated units across multiple brain regions. Moreover, these recordings are stable enough to track large numbers of single units for over a week. This platform enables large-scale electrophysiological interrogation of the fast dynamics and long-timescale evolution of anatomically distributed circuits, and thereby provides a new tool for understanding brain activity.
Collapse
Affiliation(s)
- Jason E Chung
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hannah R Joo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiang Lan Fan
- Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel F Liu
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alex H Barnett
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Supin Chen
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Charlotte Geaghan-Breiner
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Kye Y Lee
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Hexin Liang
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeremy F Magland
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Jeanine A Pebbles
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Angela C Tooker
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Leslie F Greengard
- Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA; Courant Institute, NYU, New York, NY 10012, USA
| | - Vanessa M Tolosa
- Center for Micro- and Nano-Technology, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA, USA.
| |
Collapse
|
7
|
Yang C, Cao Q, Puthongkham P, Lee ST, Ganesana M, Lavrik NV, Venton BJ. 3D-Printed Carbon Electrodes for Neurotransmitter Detection. Angew Chem Int Ed Engl 2018; 57:14255-14259. [PMID: 30207021 DOI: 10.1002/anie.201809992] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 11/10/2022]
Abstract
Implantable neural microsensors have significantly advanced neuroscience research, but the geometry of most probes is limited by the fabrication methods. Therefore, new methods are needed for batch-manufacturing with high reproducibility. Herein, a novel method is developed using two-photon nanolithography followed by pyrolysis for fabrication of free-standing microelectrodes with a carbon electroactive surface. 3D-printed spherical and conical electrodes were characterized with slow scan cyclic voltammetry (CV). With fast-scan CV, the electrodes showed low dopamine LODs of 11±1 nm (sphere) and 10±2 nm (cone), high sensitivity to multiple neurochemicals, and high reproducibility. Spherical microelectrodes were used to detect dopamine in a brain slice and in vivo, demonstrating they are robust enough for tissue implantation. This work is the first demonstration of 3D-printing of free-standing carbon electrodes; and the method is promising for batch fabrication of customized, implantable neural sensors.
Collapse
Affiliation(s)
- Cheng Yang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | - Qun Cao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Scott T Lee
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Nickolay V Lavrik
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22901, USA
| |
Collapse
|
8
|
Willsie AC, Dorval AD. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry. Neuromodulation 2015; 18:542-50; discussion 550-1. [PMID: 26245306 DOI: 10.1111/ner.12330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/17/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew C. Willsie
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
| | - Alan D. Dorval
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
| |
Collapse
|
9
|
Smart OL, Tiruvadi VR, Mayberg HS. Multimodal approaches to define network oscillations in depression. Biol Psychiatry 2015; 77:1061-70. [PMID: 25681871 PMCID: PMC5826645 DOI: 10.1016/j.biopsych.2015.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/18/2014] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
Abstract
The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients.
Collapse
Affiliation(s)
- Otis Lkuwamy Smart
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Vineet Ravi Tiruvadi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, Georgia
| | - Helen S Mayberg
- Departments of Psychiatry, Neurology, and Radiology, Emory University School of Medicine, Atlanta, Georgia..
| |
Collapse
|
10
|
Nagaraj V, Lee S, Krook-Magnuson E, Soltesz I, Benquet P, Irazoqui P, Netoff T. Future of seizure prediction and intervention: closing the loop. J Clin Neurophysiol 2015; 32:194-206. [PMID: 26035672 PMCID: PMC4455045 DOI: 10.1097/wnp.0000000000000139] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of epilepsy therapies is to provide seizure control for all patients while eliminating side effects. Improved specificity of intervention through on-demand approaches may overcome many of the limitations of current intervention strategies. This article reviews the progress in seizure prediction and detection, potential new therapies to provide improved specificity, and devices to achieve these ends. Specifically, we discuss (1) potential signal modalities and algorithms for seizure detection and prediction, (2) closed-loop intervention approaches, and (3) hardware for implementing these algorithms and interventions. Seizure prediction and therapies maximize efficacy, whereas minimizing side effects through improved specificity may represent the future of epilepsy treatments.
Collapse
Affiliation(s)
- Vivek Nagaraj
- Graduate Program in Neuroscience, University of Minnesota
| | - Steven Lee
- Weldon School of Biomedical Engineering, Purdue University
| | | | - Ivan Soltesz
- Department of Anatomy & Neurobiology, University of California, Irvine
| | | | - Pedro Irazoqui
- Weldon School of Biomedical Engineering, Purdue University
| | - Theoden Netoff
- Graduate Program in Neuroscience, University of Minnesota
- Department of Biomedical Engineering, University of Minnesota
| |
Collapse
|
11
|
Tian HC, Liu JQ, Du JC, Kang XY, Zhang C, Yang B, Chen X, Yang CS. Flexible intramuscular micro tube electrode combining electrical and chemical interface. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6949-52. [PMID: 25571594 DOI: 10.1109/embc.2014.6945226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the rapidly developed micromachining technology, various kinds of sophisticated microelectrodes integrated with micro fluidic channels are design and fabricated for not only electrophysiological recording and stimulation, but also chemical drug delivery. As many efforts have been devoted to develop rigid microprobes for neural research of brain, few researchers concentrate on fabrication of flexible microelectrodes for intramuscular electrophysiology and chemical interfacing. Since crude wire electrodes still prevail in functional electrical stimulation (FES) and electromyography (EMG) recording of muscle, here we introduce a flexible micro tube electrode combining electrical and chemical pathway. The proposed micro tube electrode is manufactured based on polymer capillary, which provide circumferential electrode site contacting with electro-active tissue and is easy to manufactured with low cost.
Collapse
|